(10-1) Structs
H&K Chapter 10

Instructor — Beiyu Lin
CptS 121 (June 3rd, 2019)
Washington State University

WASHINGTON STATE
@ [UNIVERSITY
g

Struct: user-defined type

* Data Structure is a way in which data is stored on a computer.

A\

—

“"'aictionary

ran e ol s

y:

2 C. Hundhausen, A. O’Fallon, B. Lin Graphs are from: https://www.youtube.com/watch?v=NzUVn8Y9deQ z

Structs (1)
-

e Let's first define a struct student

typedef struct typedef struct
{ {
details ... int ID;
1Type; char grade;
Int present;
} Student;

3 C. Hundhausen, A. O’Fallon, B. Lin

Struct: user-defined type
o]

e C supports another kind of user-defined type: the
struct

e structs are a way to combine multiple variables

into a single "package” (this is called
"encapsulation")

e Sometimes referred to as an aggregate, where all
variables are under one name

e Suppose, for example, that we want to create a
database of students in a course. We could define a

student struct as follows:

4 C. Hundhausen, A. O’Fallon ‘

struct Type (2)
-

typedef enum {freshman, sophomore, junior, senior} class t;

typedef enum {anthropology, biology, chemistry,
english, compsci, polisci,psychology,
physics, engineering, 5001ology} major t;

typedef struct
{

int id number;
class t class standing; /* see above */
major "t major; /* see above */
double gpa;
int credits taken;
} student t;

5 C. Hundhausen, A. O’Fallon, B. Lin ‘

struct Type (3)

e \We can then define some students:
int creditl, credit2;

student t studentl, student2;
studentl.id num = 123456789;
studentl.class standing = freshman;
studentl.major = anthropology;
studentl.gpa = 3.5;
studentl.credits taken = 15;
student2.id num = 321123456;
studentZ2.class standing = senior;
student?2.major = biology;
studnet2.gpa = 3.2;
studentZ2.credits taken = 100;

Notice how we use the "." (selection) operator to access the
"fields" of the struct

6 C. Hundhausen, A. O’Fallon, B. Lin ‘

struct Type (4)
S

e \We can easily make a copy of a whole

structure simply by using the assignment
operator:

/* each field is copied to the corresponding field

in student3 */
student t student3 = studentl;

7 C. Hundhausen, A. O’Fallon ‘

struct Type (5)
-

e \We can also return a struct as a function result;:

student t read student () int read student ()
{ {

student t student “ int int var

int temp class, temp major; details....

printf ("Please enter ID number of student: ");

scanf ("%d", &student.id num) ;

printf ("Please enter class standing (0 = fr,\n");

printf ("1 = so, 2 = ju, 3 = se): ");

scanf ("%d", &temp class);

student.class = (class t)temp class;

printf ("Please enter major (0 = anthro.,\n");

printf ("1 = biol., 2 = chem., .., 8 = soc.: ");

scanf ("%d", &temp major);

student.major = (major t)temp major;

printf ("Please enter gpa: ");

scanf ("$1f", &student.gpa);

printf ("Please enter credits taken: ");

scanf ("%d", &student.credits taken);

return student;
} ﬁ return int var;
8 C. Hundhausen, A. O’Fallon, B. Lin ‘

struct Type (6)
—

e Here's how we could use the previous function:
int main (void)
{
student t studentl, student2;
studentl = read student();
studentZ2 = read student();
print student (studentl); /+ assume print_student is defined */
print student (student?2) ;

return(l) ;

9 C. Hundhausen, A. O’Fallon, B. Lin

struct Type (7)
-

e \We can rewrite the previous function so that it fills in an output
parameter:
voild read student (student t *student)

{

int temp class, temp major;

printf ("Please enter ID number of student: ");
scanf ("$d", & (*student) .1id num) ;

printf ("Please enter class standing (0 = fr,\n");
printf ("1 = so, 2 = ju, 3 = se): "),

scanf ("$d", &temp class);

(*student) .class = (class t)temp class;

printf ("Please enter major (0 = anthro.,\n");
printf ("1 = biol., 2 = chem., .. , 8 = soc.: ");
scanf ("%d", &temp major);

(*student).major_= (major t)temp major;

printf ("Please enter gpa: ");

scanf ("%1f", & (*student) .gpa) ;

printf ("Please enter credits taken: ");

scanf ("%d", & (*student) .credits taken);

1 0 C. Hundhausen, A. O’Fallon, B. Lin

struct Type (8)

e Here's how we could use the previous function:

int main (void)
{ Similar as read in data from file

student t student student?2;

read student(&studentl
read_student(&studentZ),

print_StUdent (StU.dentl) ;r /* assume print student is defined */

print student (student?2) ;

return (1) ;

11 | ~¢

C. Hundhausen, A. O’Fallon, B. Lin

12

struct Type (9)
S

e C provides the -> (component selection) operator as a means of
accessing struct fields. This provides a nice alternative to the *
operator:

vold read student (student t *student)

{

int temp class, temp major;

printf ("Please enter ID number of student: ");
scanf ("$d", & (student->id num)) ;

printf ("Please enter class standing (0 = fr,\n");
printf ("1 = so, 2 = ju, 3 = se): "),

scanf ("$d", &temp class);

student->class = (class t)temp class;

printf ("Please enter major (0 = anthro.,\n");
printf ("1 = biol., 2 = chem., .. , 8 = soc.: ");
scanf ("$d", &temp major) ;

student->.major = (major t)temp major;

printf ("Please enter gpa: ");

scanf ("%1f", & (student->gpa)) ;

printf ("Please enter credits taken: ");

scanf ("%d", & (student->credits taken));

C. Hundhausen, A. O’Fallon

struct Type (10)
S

e Notes

— struct types are most often used in applications
that work with databases
e student records
e employee records
e planet records

- Often, we define databases as arrays of structs

-~ For now, just understand that a struct is a way

to encapsulate multiple variables in a single
"package”

1 3 C. Hundhausen, A. O’Fallon ‘

References
7

e J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8" Ed.), Addison-
Wesley, 2016

e P.J. Deitel & H.M. Deitel, C How to Program
(71" Ed.), Pearson Education , Inc., 2013.

14 C. Hundhausen, A. O’Fallon ‘

Collaborators
]

e Chris Hundhausen
e Andrew O’Fallon

1 5 C. Hundhausen, A. O’Fallon

http://eecs.wsu.edu/~hundhaus/

