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Basic Memory Concepts (1)
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Basic Memory Concepts (1)
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Basic Memory Concepts (1)
c-

e Recall when a variable is declared, memory is
allocated based on its data type

e Recall some of the major data types in C include:
— Char (1 byte), int (4 bytes), and double (8 bytes)

e A basic English character (char) requires less
memory than an integer (int)

e An integer (int) requires less memory than a double
precision floating-point value (double)

sizeof (charp< sizeof (int) < sizeof (double)

ecallsizeof () in C returns the number of bytes allocated
for a vayiable or data type

We already talked about "sizeof” to calculate the
length of an array!

Thank you for your questions! :
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Basic Memory Concepts (2)
c-

e All information is stored in memory as bit(s) of data
— Bit is derived from binary digit
— A binary digit or bit has two possible values; 0 or 1

e A sequence of 4-bits is called a nibble

- One example of a nibble of data is 1111,
e This is the number 15 in decimal

e Note the leftmost 1 is referred to as the most significant bit
(msb) and the rightmost 1 is the least significant bit (Isb)

e A sequence of 8-bits is called a byte ( 8 bits => a byte)
‘A’ is a char => 1 Byte => 8 bits

“A” can be represented as: 0100 0001,
(This is the number 65 in decimal)
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Number Systems (1)
-

e Decimal and binary systems are called positional
number systems
e A digit from one of these systems has a weight
dependent upon its position or location within the
string of digits
e Each position is weighted as the base of the system
to a power
— Decimal is base 10
— Binary is base 2

e A binary number consists of one or more bits

6 C. Hundhausen, A. O’Fallon t



Number Systems (2)
-

e A decimal number 1234, actually means the

following:
- 102 107 100
- 2 3

e The 1 is in the hundreds or 102 position
e The 2 is in the tens or 10" position
e The 3 is in the ones or 109 position

e [0 evaluate a number in a positional number
system; pick each digit and multiply by its weighted
position and compute the sum

- 1*102+2* 10"+ 3 * 100 = 123,

Details and examples were written on the white board
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How Do We Convert from Decimal to
Binary? (1)

divide by 2

result| 147 | remainder | Q (LSB)
divide by 2

result| 73 | remainder |1
divide by 2

result| 36 | remainder |1
divide by 2

result| 18 | remainder | Q

Given the decimal
humber 294,,

<=>

100100110, in binary

divide by 2
result remainder | Q
divide by 2
result remainder | 1
divide by 2
result remainder | Q
divide by 2
result remainder | Q
divide by 2
result remainder | 1 (MSB)

Details and examples were written on the white board.
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https://www.electronics-tutorials.ws/binary/bin_2.html

How Do We Convert from Decimal to
Binary? (1) -- Coding
«

Part 1: Part 2:
- A number % 2; store the remainder | | - print out in the reversed order
- update the number by the division
int j;
int num, bi_arr[32], i; for(j=31;j>-1;j--)
while(num> 0) {
{ printf("%d ”, bi_arr[j]);
bi_arr[i] = num % 2; }
num = num / 2;
i++;
}
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https://www.electronics-tutorials.ws/binary/bin_2.html

How Do We Convert from Decimal to
Binary? (1)
«

e Let's convert 123, to a binary number represented
by one byte or 8-bits:

- First note we need the following weights for an 8-bit number
o 2726 252423222120
- Then determine if the largest power of 2 (27 in this case)
goes into 12349
e No it does not! Recall 27 is 128,,; so place a 0 in the 27
position
- Next determine if 26 goes into 123,
e Yes it does! Recall 2% is 64 4,; so place a 1 in the 2° position
e Subtract 64, from 123,,; result is 594,

Details and examples were written on the white board
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How Do We Convert from Decimal to
Binary? (2)
«

- Next determine if 2° goes into 59,

e Yes it does! Recall 2°is 324; so place a 1 in the 2°
position

e Subtract 32, from 59,; result is 274,
- Let’s try one more; does 24 go into 27,

e Yes it does! Recall 24 is 16,4; so place a 1 in the 24
position
e Subtract 16,y from 27,,; result is 114,
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How Do We Convert from Decimal to
Binary? (3)
«

e Can you finish the rest of the process?

e The binary number should be:
— 271262524 23222120
-011 110 11,

- Note the digit in the 2° position is 1; this means
the number is odd; otherwise it would be 0

Details and examples were written on the white board
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How Do We Convert From Binary to
Decimal?

e Let's convert a nibble 1010, to a decimal number:

- First note we need the following weights for a 4-bit number

o 23222120 where the leftmost or msb 1 is in the 23 position,
and the rightmost or Isb 0 is in the 2° position

- Next pick off the each digit from the binary number and
multiply by its corresponding positional weight

o 1*23=8,,
e 0*22=04
e 1*21=2,,
e 0*20=0,,
— Lastly, sum up each individual result
® 819+ 010+ 210+ 049 =104
— The final resultis 104
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Getting Started with Bitwise Operations in C
S

e The C language supports several bit
operations — I.e. operations that are applied
to each individual bit in a number

- These include: left shift (<<), right shift (>>),
negation (~), bitwise AND (&), bitwise OR (]), and
exclusive OR, also known as XOR, (")
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Applying Bitwise Operators (1)
S

e 1011, << 2; means shift each bit in the
number to the left by two positions and rotate
In zeros

- The result is 1100, if only a nibble of memory is
available; otherwise it's 101100,

e 1011, >> 1; means shift each bit in the
number to the right by one position and
rotate in zeros

- The result is 0101,; note the Isb is lost in the
result
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Applying Bitwise Operators (2)
S

e 1010, & 0011,; means AND each bit in each
corresponding position
— The result is 0010,

e 1010, | 0011,; means OR each bit in each
corresponding position
- The result is 1011,

16 ~¢
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Applying Bitwise Operators (3)
c-

e 1010, # 0011,; means XOR each bit in each
corresponding position

- The result is 1001,

e ~1010,; means negate or “flip” each bit
— The result is 0101,
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Why Apply Bitwise Operators? (1)
S

e Each position shifted to the left with a binary
number indicates multiplication by 2

- 1.e. 849 << 3 results in 64,

e Each position shifted to the right with a binary
number indicates division by 2

- 1.e.4,,>> 1results in 24

e Shift operations are much more efficient than
multiplication and division operations!
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Why Apply Bitwise Operators? (2)
S

e Bitwise AND may be used to clear bits; AND
any bit with O, the resultis 0

e Bitwise OR may be used to set bits; OR any
bit with 1, the result is 1

e XOR may be used to toggle bits; XOR any bit
with 1, the result is the negation of the bit

- 0> 1o0or1->0, where 2 represents “becomes”
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Basic Bit Manipulation
c-

e SetunionA|B

e Setintersection A &B

e Set subtraction A & ~B

 Set negation ALL_BITS * A or ~A

 Extract last bit A&-A or A&~(A-1) or x"(x&(x-1))
* Remove last bit A&(A-1)

e Get all 1-bits ~0
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How to Interpret Bits?
c-

e A bit may represent the state of a physical light
switch

- i.e. 1 means the light switch is on; 0 means the light switch
is off

e A bit may also represent the state of an operation
~- i.e.is x ==y? 1 means yes; 0 means no

e Can bitwise operators be used to encrypt/decrypt
data?

e Many other interpretations exist. Be creative!
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Next Lecture...
]

e Dynamic memory allocation
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