
(13-1) Bits and Operations 
H&K Appendix C

Instructor – Beiyu Lin 
CptS 121 (June 5th, 2019)
Washington State University



C. Hundhausen, A. O’Fallon, B. Lin2

Basic Memory Concepts (1)
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Basic Memory Concepts (1)
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Basic Memory Concepts (1)

l Recall when a variable is declared, memory is 
allocated based on its data type

l Recall some of the major data types in C include:
– Char (1 byte), int (4 bytes), and double (8 bytes)

l A basic English character (char) requires less 
memory than an integer (int)

l An integer (int) requires less memory than a double 
precision floating-point value (double)

l sizeof (char) < sizeof (int) < sizeof (double)
– Recall sizeof ( ) in C returns the number of bytes allocated 

for a variable or data type
We already talked about ”sizeof” to calculate the 
length of an array! 
Thank you for your questions!
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Basic Memory Concepts (2)

l All information is stored in memory as bit(s) of data
– Bit is derived from binary digit
– A binary digit or bit has two possible values; 0 or 1

l A sequence of 4-bits is called a nibble
– One example of a nibble of data is 11112

l This is the number 15 in decimal
l Note the leftmost 1 is referred to as the most significant bit 

(msb) and the rightmost 1 is the least significant bit (lsb)
l A sequence of 8-bits is called a byte ( 8 bits => a byte)

‘A’ is a char => 1 Byte => 8 bits

“A” can be represented as: 0100 00012
(This is the number 65 in decimal)
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Number Systems (1)

l Decimal and binary systems are called positional
number systems

l A digit from one of these systems has a weight
dependent upon its position or location within the 
string of digits

l Each position is weighted as the base of the system 
to a power

– Decimal is base 10
– Binary is base 2

l A binary number consists of one or more bits
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Number Systems (2)

l A decimal number 12310 actually means the 
following:

– 102 101 100

– 1 2 3
l The 1 is in the hundreds or 102 position
l The 2 is in the tens or 101 position
l The 3 is in the ones or 100 position

l To evaluate a number in a positional number 
system; pick each digit and multiply by its weighted 
position and compute the sum

– 1 * 102 + 2 * 101 + 3 * 100 = 12310

Details and examples were written on the white board
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How Do We Convert from Decimal to 
Binary? (1)

Details and examples were written on the white board. 

Given the decimal 
number 29410
<=>
1001001102 in binary

Example is from: https://www.electronics-tutorials.ws/binary/bin_2.html

https://www.electronics-tutorials.ws/binary/bin_2.html
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How Do We Convert from Decimal to 
Binary? (1) -- Coding

Part 1: 
- A number % 2; store the remainder
- update the number by the division

int num, bi_arr[32], i;
while(num> 0)
{

bi_arr[i] = num % 2;
num = num / 2; 
i++;

}

Example is from: https://www.electronics-tutorials.ws/binary/bin_2.html

Part 2: 
- print out in the reversed order 

int j;
for (j = 31; j > -1; j --)

{
printf(”%d ”, bi_arr[j]);

}

https://www.electronics-tutorials.ws/binary/bin_2.html
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How Do We Convert from Decimal to 
Binary? (1)

l Let’s convert 12310 to a binary number represented 
by one byte or 8-bits:

– First note we need the following weights for an 8-bit number
l 27 26 25 24 23 22 21 20

– Then determine if the largest power of 2 (27 in this case) 
goes into 12310 

l No it does not! Recall 27 is 12810; so place a 0 in the 27

position
– Next determine if 26 goes into 12310

l Yes it does! Recall 26 is 6410; so place a 1 in the 26 position
l Subtract 6410 from 12310; result is 5910

Details and examples were written on the white board
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How Do We Convert from Decimal to 
Binary? (2)

– Next determine if 25 goes into 5910
l Yes it does! Recall 25 is 3210; so place a 1 in the 25

position
l Subtract 3210 from 5910; result is 2710

– Let’s try one more; does 24 go into 2710
l Yes it does! Recall 24 is 1610; so place a 1 in the 24

position
l Subtract 1610 from 2710; result is 1110
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How Do We Convert from Decimal to 
Binary? (3)

l Can you finish the rest of the process?

l The binary number should be:
– 27 26 25 24 23 22 21 20

– 0   1  1   1  1  0   1  12

– Note the digit in the 20 position is 1; this means 
the number is odd; otherwise it would be 0

Details and examples were written on the white board
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How Do We Convert From Binary to 
Decimal? 

l Let’s convert a nibble 10102 to a decimal number:
– First note we need the following weights for a 4-bit number

l 23 22 21 20, where the leftmost or msb 1 is in the 23 position, 
and the rightmost or lsb 0 is in the 20 position

– Next pick off the each digit from the binary number and 
multiply by its corresponding positional weight

l 1 * 23 = 810
l 0 * 22 = 010
l 1 * 21 = 210
l 0 * 20 = 010

– Lastly, sum up each individual result
l 810 + 010 + 210 + 010 = 1010

– The final result is 1010
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Getting Started with Bitwise Operations in C

l The C language supports several bit 
operations – i.e. operations that are applied 
to each individual bit in a number
– These include: left shift (<<), right shift (>>), 

negation (~), bitwise AND (&), bitwise OR (|), and 
exclusive OR, also known as XOR, (^)
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Applying Bitwise Operators (1)

l 10112 << 2; means shift each bit in the 
number to the left by two positions and rotate 
in zeros
– The result is 11002 if only a nibble of memory is 

available; otherwise it’s 1011002

l 10112 >> 1; means shift each bit in the 
number to the right by one position and 
rotate in zeros
– The result is 01012; note the lsb is lost in the 

result
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Applying Bitwise Operators (2)

l 10102 & 00112; means AND each bit in each 
corresponding position
– The result is 00102

l 10102 | 00112; means OR each bit in each 
corresponding position
– The result is 10112
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Applying Bitwise Operators (3)

l 10102 ^ 00112; means XOR each bit in each 
corresponding position
– The result is 10012

l ~10102; means negate or “flip” each bit 
– The result is 01012
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Why Apply Bitwise Operators? (1)

l Each position shifted to the left with a binary 
number indicates multiplication by 2
– i.e. 810 << 3 results in 6410

l Each position shifted to the right with a binary 
number indicates division by 2
– i.e. 410 >> 1 results in 210

l Shift operations are much more efficient than 
multiplication and division operations!
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Why Apply Bitwise Operators? (2)

l Bitwise AND may be used to clear bits; AND 
any bit with 0, the result is 0

l Bitwise OR may be used to set bits; OR any 
bit with 1, the result is 1

l XOR may be used to toggle bits; XOR any bit 
with 1, the result is the negation of the bit
– 0 à 1 or 1 à 0, where à represents “becomes”
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Basic Bit Manipulation
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How to Interpret Bits?

l A bit may represent the state of a physical light 
switch

– i.e. 1 means the light switch is on; 0 means the light switch 
is off

l A bit may also represent the state of an operation
– i.e. is x == y? 1 means yes; 0 means no

l Can bitwise operators be used to encrypt/decrypt 
data?

l Many other interpretations exist. Be creative!
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Next Lecture…

l Dynamic memory allocation
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