(13-1) Bits and Operations
H&K Appendix C

Instructor — Beiyu Lin
CptS 121 (June 5", 2019)
Washington State University

WASHINGTON STATE
Ea [UNIVERSITY
¥

Basic Memory Concepts (1)

Pictures are from:
2 , . https://catborrow.wordpress.com/2011/04/17/hello-world/ t
C. Hundhausen, A. O’Fallon, B. Lin i Lclo-cdo- zati

Basic Memory Concepts (1)

=
-0 o
~-Nmommo O
— O = - -
(=]
OO0 OC OrrmemOO~
O~ D0 O OO —e=— C
o —
—O~0D 0O OCOr—0O0—0O —
o S —O
— -~ o8 —
— O OO0 O OO0 —
= —— O — O OO0 O =0 —v—— O (

& @oc o : S ¢ B __ =
]]OO]OO].lom o — DY e — O

000090
117

000000
01

1

-

o OO — OO.'T.l

- = m\
—— O — O O — O — —

—ODO0O0 O0OO0O—000OB8O oo~ Of—8———
COPLOCOOr=r—0O08 — 011HUO¢“1| Q=0
— — — — - PO OCO OWABOOO
COPOCO D= OO0—8 — DR~ O — O — -« OO
- O — -0 o D> O~ @O

1-0Av°nvnv‘1'°nv° |A.-I|- on00.0|-|nU0
OCO0=~0~0~PO O~ "000“00‘0
- o o -0 -—

°"'..".."'‘|||° .

, 0000 .ll'
. .
.:'.;".Afhg A'.Z. - S -

- =
v

* ..Cc ¢.4.‘4
»

v » @
..‘_.A- L A .v&A'. »
S .

https://www.alamy.com/binary-code-data-bit-screen-display-on-laptop-computer-screen-matrix-of-data-flow-rise-of-the-big-data-ai-age-

artificial-intelligence-data-transfer-image207314809.html

C. Hundhausen, A. O’Fallon, B. Lin

3

Basic Memory Concepts (1)
c-

e Recall when a variable is declared, memory is
allocated based on its data type

e Recall some of the major data types in C include:
— Char (1 byte), int (4 bytes), and double (8 bytes)

e A basic English character (char) requires less
memory than an integer (int)

e An integer (int) requires less memory than a double
precision floating-point value (double)

sizeof (charp< sizeof (int) < sizeof (double)

ecallsizeof () in C returns the number of bytes allocated
for a vayiable or data type

We already talked about "sizeof” to calculate the
length of an array!

Thank you for your questions! :
4 C. Hundhausen, A. O’Fallon, B. Lin

Basic Memory Concepts (2)
c-

e All information is stored in memory as bit(s) of data
— Bit is derived from binary digit
— A binary digit or bit has two possible values; 0 or 1

e A sequence of 4-bits is called a nibble

- One example of a nibble of data is 1111,
e This is the number 15 in decimal

e Note the leftmost 1 is referred to as the most significant bit
(msb) and the rightmost 1 is the least significant bit (Isb)

e A sequence of 8-bits is called a byte (8 bits => a byte)
‘A’ is a char => 1 Byte => 8 bits

“A” can be represented as: 0100 0001,
(This is the number 65 in decimal)

5 C. Hundhausen, A. O’Fallon, B. Lin ‘

Number Systems (1)
-

e Decimal and binary systems are called positional
number systems
e A digit from one of these systems has a weight
dependent upon its position or location within the
string of digits
e Each position is weighted as the base of the system
to a power
— Decimal is base 10
— Binary is base 2

e A binary number consists of one or more bits

6 C. Hundhausen, A. O’Fallon t

Number Systems (2)
-

e A decimal number 1234, actually means the

following:
- 102 107 100
- 2 3

e The 1 is in the hundreds or 102 position
e The 2 is in the tens or 10" position
e The 3 is in the ones or 109 position

e [0 evaluate a number in a positional number
system; pick each digit and multiply by its weighted
position and compute the sum

- 1*102+2* 10"+ 3 * 100 = 123,

Details and examples were written on the white board

7 C. Hundhausen, A. O’Fallon, B. Lin t

How Do We Convert from Decimal to
Binary? (1)

divide by 2

result| 147 | remainder | Q (LSB)
divide by 2

result| 73 | remainder |1
divide by 2

result| 36 | remainder |1
divide by 2

result| 18 | remainder | Q

Given the decimal
humber 294,,

<=>

100100110, in binary

divide by 2
result remainder | Q
divide by 2
result remainder | 1
divide by 2
result remainder | Q
divide by 2
result remainder | Q
divide by 2
result remainder | 1 (MSB)

Details and examples were written on the white board.

C. Hundhausen, A. O’Fallon, B. Lin

Example is from: https://www.electronics-tutorials.ws/binary/bin_2.html

https://www.electronics-tutorials.ws/binary/bin_2.html

How Do We Convert from Decimal to
Binary? (1) -- Coding
«

Part 1: Part 2:
- A number % 2; store the remainder | | - print out in the reversed order
- update the number by the division
int j;
int num, bi_arr[32], i; for(j=31;j>-1;j--)
while(num> 0) {
{ printf("%d ”, bi_arr[j]);
bi_arr[i] = num % 2; }
num = num / 2;
i++;
}
9 C. Hundhausen, A. O’Fallon, B. Lin

Example is from: https://www.electronics-tutorials.ws/binary/bin_2.html

https://www.electronics-tutorials.ws/binary/bin_2.html

How Do We Convert from Decimal to
Binary? (1)
«

e Let's convert 123, to a binary number represented
by one byte or 8-bits:

- First note we need the following weights for an 8-bit number
o 2726 252423222120
- Then determine if the largest power of 2 (27 in this case)
goes into 12349
e No it does not! Recall 27 is 128,,; so place a 0 in the 27
position
- Next determine if 26 goes into 123,
e Yes it does! Recall 2% is 64 4,; so place a 1 in the 2° position
e Subtract 64, from 123,,; result is 594,

Details and examples were written on the white board

1 O C. Hundhausen, A. O’Fallon, B. Lin t

How Do We Convert from Decimal to
Binary? (2)
«

- Next determine if 2° goes into 59,

e Yes it does! Recall 2°is 324; so place a 1 in the 2°
position

e Subtract 32, from 59,; result is 274,
- Let’s try one more; does 24 go into 27,

e Yes it does! Recall 24 is 16,4; so place a 1 in the 24
position
e Subtract 16,y from 27,,; result is 114,

11 C. Hundhausen, A. O’Fallon t

How Do We Convert from Decimal to
Binary? (3)
«

e Can you finish the rest of the process?

e The binary number should be:
— 271262524 23222120
-011 110 11,

- Note the digit in the 2° position is 1; this means
the number is odd; otherwise it would be 0

Details and examples were written on the white board

12 C. Hundhausen, A. O’Fallon, B. Lin t

How Do We Convert From Binary to
Decimal?

e Let's convert a nibble 1010, to a decimal number:

- First note we need the following weights for a 4-bit number

o 23222120 where the leftmost or msb 1 is in the 23 position,
and the rightmost or Isb 0 is in the 2° position

- Next pick off the each digit from the binary number and
multiply by its corresponding positional weight

o 1*23=8,,
e 0*22=04
e 1*21=2,,
e 0*20=0,,
— Lastly, sum up each individual result
® 819+ 010+ 210+ 049 =104
— The final resultis 104

1 3 C. Hundhausen, A. O’Fallon t

Getting Started with Bitwise Operations in C
S

e The C language supports several bit
operations — I.e. operations that are applied
to each individual bit in a number

- These include: left shift (<<), right shift (>>),
negation (~), bitwise AND (&), bitwise OR (]), and
exclusive OR, also known as XOR, (")

14 C. Hundhausen, A. O’Fallon t

Applying Bitwise Operators (1)
S

e 1011, << 2; means shift each bit in the
number to the left by two positions and rotate
In zeros

- The result is 1100, if only a nibble of memory is
available; otherwise it's 101100,

e 1011, >> 1; means shift each bit in the
number to the right by one position and
rotate in zeros

- The result is 0101,; note the Isb is lost in the
result

1 5 C. Hundhausen, A. O’Fallon t

Applying Bitwise Operators (2)
S

e 1010, & 0011,; means AND each bit in each
corresponding position
— The result is 0010,

e 1010, | 0011,; means OR each bit in each
corresponding position
- The result is 1011,

16 ~¢

C. Hundhausen, A. O’Fallon

Applying Bitwise Operators (3)
c-

e 1010, # 0011,; means XOR each bit in each
corresponding position

- The result is 1001,

e ~1010,; means negate or “flip” each bit
— The result is 0101,

1 7 C. Hundhausen, A. O’Fallon t

Why Apply Bitwise Operators? (1)
S

e Each position shifted to the left with a binary
number indicates multiplication by 2

- 1.e. 849 << 3 results in 64,

e Each position shifted to the right with a binary
number indicates division by 2

- 1.e.4,,>> 1results in 24

e Shift operations are much more efficient than
multiplication and division operations!

1 8 C. Hundhausen, A. O’Fallon t

Why Apply Bitwise Operators? (2)
S

e Bitwise AND may be used to clear bits; AND
any bit with O, the resultis 0

e Bitwise OR may be used to set bits; OR any
bit with 1, the result is 1

e XOR may be used to toggle bits; XOR any bit
with 1, the result is the negation of the bit

- 0> 1o0or1->0, where 2 represents “becomes”

1 9 C. Hundhausen, A. O’Fallon t

Basic Bit Manipulation
c-

e SetunionA|B

e Setintersection A &B

e Set subtraction A & ~B

 Set negation ALL_BITS * A or ~A

 Extract last bit A&-A or A&~(A-1) or x"(x&(x-1))
* Remove last bit A&(A-1)

e Get all 1-bits ~0

20 C. Hundhausen, A. O’Fallon, B. Lin

How to Interpret Bits?
c-

e A bit may represent the state of a physical light
switch

- i.e. 1 means the light switch is on; 0 means the light switch
is off

e A bit may also represent the state of an operation
~- i.e.is x ==y? 1 means yes; 0 means no

e Can bitwise operators be used to encrypt/decrypt
data?

e Many other interpretations exist. Be creative!

21 C. Hundhausen, A. O’Fallon t

Next Lecture...
]

e Dynamic memory allocation

22 C. Hundhausen, A. O’Fallon

References
-

e J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8" Ed.), Addison-
Wesley, 2016

e P.J. Deitel & H.M. Deitel, C How to Program
(7™ Ed.), Pearson Education , Inc., 2013.

23 C. Hundhausen, A. O’Fallon t

Collaborators
o<

e Chris Hundhausen
e Andrew O’Fallon

24 C. Hundhausen, A. O’Fallon

http://eecs.wsu.edu/~hundhaus/

