
(13-1) Bits and Operations
H&K Appendix C

Instructor – Beiyu Lin
CptS 121 (June 5th, 2019)
Washington State University

C. Hundhausen, A. O’Fallon, B. Lin2

Basic Memory Concepts (1)

C. Hundhausen, A. O’Fallon, B. Lin3

Basic Memory Concepts (1)

https://www.alamy.com/binary-code-data-bit-screen-display-on-laptop-computer-screen-matrix-of-data-flow-rise-of-the-big-data-ai-age-
artificial-intelligence-data-transfer-image207314809.html

C. Hundhausen, A. O’Fallon, B. Lin4

Basic Memory Concepts (1)

l Recall when a variable is declared, memory is
allocated based on its data type

l Recall some of the major data types in C include:
– Char (1 byte), int (4 bytes), and double (8 bytes)

l A basic English character (char) requires less
memory than an integer (int)

l An integer (int) requires less memory than a double
precision floating-point value (double)

l sizeof (char) < sizeof (int) < sizeof (double)
– Recall sizeof () in C returns the number of bytes allocated

for a variable or data type
We already talked about ”sizeof” to calculate the
length of an array!
Thank you for your questions!

C. Hundhausen, A. O’Fallon, B. Lin 5

Basic Memory Concepts (2)

l All information is stored in memory as bit(s) of data
– Bit is derived from binary digit
– A binary digit or bit has two possible values; 0 or 1

l A sequence of 4-bits is called a nibble
– One example of a nibble of data is 11112

l This is the number 15 in decimal
l Note the leftmost 1 is referred to as the most significant bit

(msb) and the rightmost 1 is the least significant bit (lsb)
l A sequence of 8-bits is called a byte (8 bits => a byte)

‘A’ is a char => 1 Byte => 8 bits

“A” can be represented as: 0100 00012
(This is the number 65 in decimal)

C. Hundhausen, A. O’Fallon6

Number Systems (1)

l Decimal and binary systems are called positional
number systems

l A digit from one of these systems has a weight
dependent upon its position or location within the
string of digits

l Each position is weighted as the base of the system
to a power

– Decimal is base 10
– Binary is base 2

l A binary number consists of one or more bits

C. Hundhausen, A. O’Fallon, B. Lin7

Number Systems (2)

l A decimal number 12310 actually means the
following:

– 102 101 100

– 1 2 3
l The 1 is in the hundreds or 102 position
l The 2 is in the tens or 101 position
l The 3 is in the ones or 100 position

l To evaluate a number in a positional number
system; pick each digit and multiply by its weighted
position and compute the sum

– 1 * 102 + 2 * 101 + 3 * 100 = 12310

Details and examples were written on the white board

C. Hundhausen, A. O’Fallon, B. Lin8

How Do We Convert from Decimal to
Binary? (1)

Details and examples were written on the white board.

Given the decimal
number 29410
<=>
1001001102 in binary

Example is from: https://www.electronics-tutorials.ws/binary/bin_2.html

https://www.electronics-tutorials.ws/binary/bin_2.html

C. Hundhausen, A. O’Fallon, B. Lin9

How Do We Convert from Decimal to
Binary? (1) -- Coding

Part 1:
- A number % 2; store the remainder
- update the number by the division

int num, bi_arr[32], i;
while(num> 0)
{

bi_arr[i] = num % 2;
num = num / 2;
i++;

}

Example is from: https://www.electronics-tutorials.ws/binary/bin_2.html

Part 2:
- print out in the reversed order

int j;
for (j = 31; j > -1; j --)

{
printf(”%d ”, bi_arr[j]);

}

https://www.electronics-tutorials.ws/binary/bin_2.html

C. Hundhausen, A. O’Fallon, B. Lin 10

How Do We Convert from Decimal to
Binary? (1)

l Let’s convert 12310 to a binary number represented
by one byte or 8-bits:

– First note we need the following weights for an 8-bit number
l 27 26 25 24 23 22 21 20

– Then determine if the largest power of 2 (27 in this case)
goes into 12310

l No it does not! Recall 27 is 12810; so place a 0 in the 27

position
– Next determine if 26 goes into 12310

l Yes it does! Recall 26 is 6410; so place a 1 in the 26 position
l Subtract 6410 from 12310; result is 5910

Details and examples were written on the white board

C. Hundhausen, A. O’Fallon11

How Do We Convert from Decimal to
Binary? (2)

– Next determine if 25 goes into 5910
l Yes it does! Recall 25 is 3210; so place a 1 in the 25

position
l Subtract 3210 from 5910; result is 2710

– Let’s try one more; does 24 go into 2710
l Yes it does! Recall 24 is 1610; so place a 1 in the 24

position
l Subtract 1610 from 2710; result is 1110

C. Hundhausen, A. O’Fallon, B. Lin12

How Do We Convert from Decimal to
Binary? (3)

l Can you finish the rest of the process?

l The binary number should be:
– 27 26 25 24 23 22 21 20

– 0 1 1 1 1 0 1 12

– Note the digit in the 20 position is 1; this means
the number is odd; otherwise it would be 0

Details and examples were written on the white board

C. Hundhausen, A. O’Fallon13

How Do We Convert From Binary to
Decimal?

l Let’s convert a nibble 10102 to a decimal number:
– First note we need the following weights for a 4-bit number

l 23 22 21 20, where the leftmost or msb 1 is in the 23 position,
and the rightmost or lsb 0 is in the 20 position

– Next pick off the each digit from the binary number and
multiply by its corresponding positional weight

l 1 * 23 = 810
l 0 * 22 = 010
l 1 * 21 = 210
l 0 * 20 = 010

– Lastly, sum up each individual result
l 810 + 010 + 210 + 010 = 1010

– The final result is 1010

C. Hundhausen, A. O’Fallon14

Getting Started with Bitwise Operations in C

l The C language supports several bit
operations – i.e. operations that are applied
to each individual bit in a number
– These include: left shift (<<), right shift (>>),

negation (~), bitwise AND (&), bitwise OR (|), and
exclusive OR, also known as XOR, (^)

C. Hundhausen, A. O’Fallon15

Applying Bitwise Operators (1)

l 10112 << 2; means shift each bit in the
number to the left by two positions and rotate
in zeros
– The result is 11002 if only a nibble of memory is

available; otherwise it’s 1011002

l 10112 >> 1; means shift each bit in the
number to the right by one position and
rotate in zeros
– The result is 01012; note the lsb is lost in the

result

C. Hundhausen, A. O’Fallon16

Applying Bitwise Operators (2)

l 10102 & 00112; means AND each bit in each
corresponding position
– The result is 00102

l 10102 | 00112; means OR each bit in each
corresponding position
– The result is 10112

C. Hundhausen, A. O’Fallon17

Applying Bitwise Operators (3)

l 10102 ^ 00112; means XOR each bit in each
corresponding position
– The result is 10012

l ~10102; means negate or “flip” each bit
– The result is 01012

C. Hundhausen, A. O’Fallon18

Why Apply Bitwise Operators? (1)

l Each position shifted to the left with a binary
number indicates multiplication by 2
– i.e. 810 << 3 results in 6410

l Each position shifted to the right with a binary
number indicates division by 2
– i.e. 410 >> 1 results in 210

l Shift operations are much more efficient than
multiplication and division operations!

C. Hundhausen, A. O’Fallon19

Why Apply Bitwise Operators? (2)

l Bitwise AND may be used to clear bits; AND
any bit with 0, the result is 0

l Bitwise OR may be used to set bits; OR any
bit with 1, the result is 1

l XOR may be used to toggle bits; XOR any bit
with 1, the result is the negation of the bit
– 0 à 1 or 1 à 0, where à represents “becomes”

C. Hundhausen, A. O’Fallon, B. Lin20

Basic Bit Manipulation

C. Hundhausen, A. O’Fallon21

How to Interpret Bits?

l A bit may represent the state of a physical light
switch

– i.e. 1 means the light switch is on; 0 means the light switch
is off

l A bit may also represent the state of an operation
– i.e. is x == y? 1 means yes; 0 means no

l Can bitwise operators be used to encrypt/decrypt
data?

l Many other interpretations exist. Be creative!

C. Hundhausen, A. O’Fallon22

Next Lecture…

l Dynamic memory allocation

C. Hundhausen, A. O’Fallon23

References

l J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8th Ed.), Addison-
Wesley, 2016

l P.J. Deitel & H.M. Deitel, C How to Program
(7th Ed.), Pearson Education , Inc., 2013.

C. Hundhausen, A. O’Fallon24

Collaborators

l Chris Hundhausen
l Andrew O’Fallon

http://eecs.wsu.edu/~hundhaus/

