
(13-2) Dynamic Data Structures I
H&K Chapter 13

Instructor – Beiyu Lin
CptS 121 (Jan. 6th, 2019)
Washington State University

C. Hundhausen, A. O’Fallon, B. Lin2

Review – Swap two items

l If we want to swap the juices in the cup,
how can we do it?

1

2

3

Graphs are from:
https://www.vectorstock.com/royalty-free-vector/cartoon-glass-cup-of-lemon-fruit-juice-vector-17979355
https://www.alamy.com/stock-photo-grape-juice-in-a-glass-fresh-isolated-on-white-background-fruit-and-125939240.html
http://clipart-library.com/clipart/1971889.htm

https://www.vectorstock.com/royalty-free-vector/cartoon-glass-cup-of-lemon-fruit-juice-vector-17979355
https://www.alamy.com/stock-photo-grape-juice-in-a-glass-fresh-isolated-on-white-background-fruit-and-125939240.html

C. Hundhausen, A. O’Fallon, B. Lin3

Review – Swap two items

l If we want to swap two integer in an
array, how can we do it?

int temp;
temp = int_arr[i];
int_arr[i] = int_arr[j];
int_arr[j] = temp;1

2

3

Graphs are from:
https://www.vectorstock.com/royalty-free-vector/cartoon-glass-cup-of-lemon-fruit-juice-vector-17979355
https://www.alamy.com/stock-photo-grape-juice-in-a-glass-fresh-isolated-on-white-background-fruit-and-125939240.html
http://clipart-library.com/clipart/1971889.htm

https://www.vectorstock.com/royalty-free-vector/cartoon-glass-cup-of-lemon-fruit-juice-vector-17979355
https://www.alamy.com/stock-photo-grape-juice-in-a-glass-fresh-isolated-on-white-background-fruit-and-125939240.html

C. Hundhausen, A. O’Fallon, B. Lin4

Review – Bubble Sort

Graphs are from:
https://pngtree.com/freepng/blue-fish-blowing-bubbles_395239.html

https://pngtree.com/freepng/blue-fish-blowing-bubbles_395239.html

C. Hundhausen, A. O’Fallon, B. Lin5

Given 9, 5, 7, 2, 4, sort it in an increasing
order.

Review – Bubble Sort

Steps:
0. set the starting index as 0.
1. set the temp = the value of index 0;
2. find the minimum value from index 1-
index 4.
3. swap the value of index 0 and
minimum value
4. Increase the starting index, repeat
steps 1-3.

Code:
int int_arr[] = {9, 5, 7, 2, 4};
int k, j, temp;
For(k=0;k<5; k++)
{ temp = int_arr[k];

for (j = i+1; j< 5; j++)
{ if (int_arr[j] < temp)

{ int_arr[j] = temp;
int_arr[k] = int_arr[j];

}
}

}

C. Hundhausen, A. O’Fallon, B. Lin6

Given 9, 5, 7, 2, 4, sort it in an increasing order.

Review – Bubble Sort

Code:
int int_arr[] = {9, 5, 7, 2, 4};
int k, j, temp;
For(k=0;k<5; k++)
{ temp = int_arr[k];

for (j = i+1; j< 5; j++)
{ if (int_arr[j] < temp)

{ int_arr[j] = temp;
int_arr[k] = int_arr[j];

}
}

}

Swap two strings

Code:

/* swap two strings*/
char str1[20] = "today";
char str2[20] = "tomorrow";
char temp[20];
strcpy(temp, str1);
strcpy(str1, str2);
strcpy(str2, temp);
printf("%s\n", str1);

C. Hundhausen, A. O’Fallon7

Dynamic Data Structures (1)

l Structures that expand and contract as a
program executes

l Memory is allocated as needed (dynamically)
l We can use dynamic memory allocation to

dynamically allocate an array at runtime
– Thus, there's no need to constrain the maximum

size of an array at compile time

C. Hundhausen, A. O’Fallon8

Dynamic Data Structures (2)

l Memory can be allocated to store any of the
simple or structured data types described
throughout this course (i.e. structs, ints,
doubles, etc.)

l Separately allocated structured blocks are
called nodes

l These nodes can be used to form composite
structures that expand and contract while
the program executes

C. Hundhausen, A. O’Fallon, B. Lin9

l A pointer variable contains the address of another cell
containing a data value

l Note that a pointer is “useless” unless we make sure that it
points somewhere:
– int num = 3, int *nump = #

l The direct value of num is 3, while the direct value of nump is
the address (1000) of the memory cell which holds the 3

Pointer Review (1)

3

nump num

2000 1000

Recall functions with pointers.

C. Hundhausen, A. O’Fallon10

Pointer Review (2)

l The integer 3 is the indirect value of nump,
this value can be accessed by following the
pointer stored in nump

l If the indirection, dereferencing, or “pointer-
following” operator is applied to a pointer
variable, the indirect value of the pointer
variable is accessed

l That is, if we apply *nump, we are able to
access the integer value 3

l The next slide summarizes…

C. Hundhausen, A. O’Fallon11

Pointer Review (3)

3

nump num

2000 1000

Reference Explanation Value
num Direct value of num 3
nump Direct value of nump 1000
*nump Indirect value of nump 3
&nump Address of nump 2000

C. Hundhausen, A. O’Fallon12

Pointers as Function Parameters (1)

l Recall that we define an output parameter to a
function by passing the address (&) of the variable
to the function

l The output parameter is defined as a pointer in the
formal parameter list

l Also, recall that output parameters allow us to
return more than one value from a function

l The next slide shows a long division function which
uses quotientp and remainderp as pointers

C. Hundhausen, A. O’Fallon13

Pointers as Function Parameters (2)

l Function with Pointers as Output Parameters

#include <stdio.h>

void long_division (int dividend, int divisor, int *quotientp, int *remainderp);

int main (void)
{

int quot, rem;

long_division (40, 3, ", &rem);
printf ("40 divided by 3 yields quotient %d ", quot);
printf ("and remainder %d\n", rem);

return 0;
}

void long_division (int dividend, int divisor, int *quotientp, int *remainderp)
{

*quotientp = dividend / divisor;
*remainderp = dividend % divisor;

}

C. Hundhausen, A. O’Fallon14

Pointers Representing Arrays and
Strings (1)

l Consider representing two arrays as follows:
– double list_of_nums[20];
– char your_name[40];

l When we pass either of these arrays to
functions, we use the array name without a
subscript

l The array name itself represents the
address of the initial array element

C. Hundhausen, A. O’Fallon15

Pointers Representing Arrays and
Strings (2)

l Hence, when we pass the array name, we
are actually passing the entire array as a
pointer

l So, the formal parameter for the string name
may be declared in two ways:
– char name[]
– char *name

l Note that, in general, it is a good idea to
pass the maximum size of the array to the
function, e.g.:
– void func (char *name, int size);

C. Hundhausen, A. O’Fallon16

Pointers to Structures
l Recall that when we have a pointer to a structure, we can use

the indirect component selection operator -> to access
components within the structure
typedef struct
{

double x;
double y;

} Point;

int main (void)
{

Point p1, *struct_ptr;
p1.x = 12.3;
p1.y = 2.5;

struct_ptr = &p1;

struct_ptr->x; /* Access the x component in Point, i.e. 12.3 */
.
.
.

}

C. Hundhausen, A. O’Fallon17

Dynamic Memory Allocation

l Sometimes we need to allocate memory
according to an explicit program request

l The memory must be allocated dynamically
l To do this, we can use the function

malloc() found in <stdlib.h>

C. Hundhausen, A. O’Fallon18

malloc Function (1)

l malloc() has the following prototype:
– void *malloc (size_t size);

l The argument to malloc () is a number
indicating the amount of memory space
needed to be allocated

l We can apply the sizeof operator to a data
type to determine the number (the number
represents the number of bytes needed)

C. Hundhausen, A. O’Fallon19

malloc Function (2)

l The statement:

malloc (sizeof (int))

allocates exactly enough space to hold one integer
l A call to malloc returns a pointer to the block of

memory allocated (if no memory can be allocated,
NULL is returned)

l The return type is void * which is generic, thus we
need to assign the pointer to a specific type by
explicitly typecasting:

int *nump = (int *) malloc (sizeof (int));

C. Hundhausen, A. O’Fallon20

malloc Function (3)

l The area in which the dynamic memory is
allocated is called the heap

l The stack is the area that stores function
data when functions are entered
– Remember that the memory allocated for a

given function's data (on the stack) goes away
when the function is exited

C. Hundhausen, A. O’Fallon21

Accessing a Component of
Dynamically Allocated Structure

l Accessing a component of a dynamically
allocated structure is done in the same way
as accessing a component of a statically
allocated structure:
Point *struct_ptr =

(Point *) malloc (sizeof (Point));

struct_ptr->x

is equivalent to

(*struct_ptr).x

C. Hundhausen, A. O’Fallon22

Dynamic Array Allocation with calloc

l calloc() may be used to allocate
contiguous blocks of memory for array
elements

l The function is also found in <stdlib.h>
l The function prototype for calloc() is as

follows:

void *calloc (size_t nitems,
size_t size);

C. Hundhausen, A. O’Fallon23

calloc

l The two arguments to calloc() are the number of
array elements needed and the size of one element,
respectively

l As with malloc, calloc also returns a
void * to the beginning of the allocated blocks of
memory

l Thus, we can allocate 10 blocks of contiguous
memory as follows:
Point *struct_ptr = (Point *) calloc (10, sizeof

(Point));

l Note the above statement is similar to

Point array[10];

except that it is allocated dynamically, instead of
statically

C. Hundhausen, A. O’Fallon24

Applying Array Notation to Pointers

l If we executed the calloc statement on the
previous slide, we could then use array
notation to access each element in the block
of dynamically allocated memory:
– struct_ptr[0] would access the first element

in the array and struct_ptr[9] would access
the last element in the array

C. Hundhausen, A. O’Fallon25

Freeing Allocated Memory

l We need to be able to give up memory after we are done
using it

l We can use the function free() to return the allocated
memory to the heap

l For example:
free (struct_ptr);
returns the dynamically-allocated memory block
pointed to by struct_ptr

l "Memory leaks" occur if we do not free memory before the
local variable that accesses the allocated memory goes out of
scope

l Memory leaks are a common source of run-time program
bugs; they can also slow down a program's execution

C. Hundhausen, A. O’Fallon26

References

l J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8th Ed.), Addison-
Wesley, 2016.

l P.J. Deitel & H.M. Deitel, C How to Program
(7th Ed.), Pearson Education , Inc., 2013.

C. Hundhausen, A. O’Fallon27

Collaborators

l Chris Hundhausen
l Andrew O’Fallon

http://eecs.wsu.edu/~hundhaus/

