
(14-2) Dynamic Data Structures II
H&K Chapter 13

Instructor – Beiyu Lin
CptS 121 (June 11th, 2019)
Washington State University

C. Hundhausen, A. O’Fallon, B. Lin2

2D Pointers and Dynamic
Allocation

Graphs are from: https://www.geeksforgeeks.org/double-pointer-pointer-pointer-c/

int var = 10;
int *ptr1;
ptr1 = &var;

int **ptr2;
ptr2 = &ptr1;

printf(“var is %d \n”, var);
printf(“the value of ptr1 pointed to is %d \n” , *ptr1);
printf(“the value of ptr2 pointed to is %d\n”, **ptr2);

int *ptr1 = &var;

*ptr1 = 100;

C. Hundhausen, A. O’Fallon, B. Lin3

2D Pointers and Dynamic
Allocation

Graphs are from: https://www.techiedelight.com/dynamically-allocate-memory-for-2d-
array/

tic_tac_toe_board

C. Hundhausen, A. O’Fallon, B. Lin4

l Let’s define each item as part of a “node”
l A “node” is defined as follows:

typedef struct node
{

int * data;
struct node *next;

} Node;

Graphs are from:
https://www.programiz.com/c-programming/c-arrays
https://www.geeksforgeeks.org/data-structures/linked-list/

Introduction of Linked List

https://www.programiz.com/c-programming/c-arrays

C. Hundhausen, A. O’Fallon, B. Lin5

Introduction of Linked List

Graphs are from:
https://www.geeksforgeeks.org/linked-list-set-1-introduction/
https://www.geeksforgeeks.org/data-structures/linked-list/

https://www.geeksforgeeks.org/linked-list-set-1-introduction/

C. Hundhausen, A. O’Fallon, B. Lin6

Introduction of Linked List

Linked List v.s. Array

Not contiguously located contiguous locations of elements
Dynamic size can also be dynamic size
Ease of insertion/deletion difficulty to insert/delete
Random access is not allowed Random access allowed
Extra memory space for a pointer

Graphs are from:
https://www.programiz.com/c-programming/c-arrays
https://www.geeksforgeeks.org/data-structures/linked-list/

https://www.programiz.com/c-programming/c-arrays

C. Hundhausen, A. O’Fallon7

Applying Dynamic Memory to an
Example – Grocery Store List

l Let’s say we want to build a program that
keeps track of our list of grocery store items

l The program must allow the user to add and
remove items from the list while shopping

l Items may only be added and removed from
the front of the list

C. Hundhausen, A. O’Fallon, B. Lin8

l Let’s define each item as part of a “node”
l A “node” is defined as follows:

typedef struct node
{

char * grocery_item;
struct node *next_ptr;

} Node;

Graphs are from:
https://www.programiz.com/c-programming/c-arrays

Introduction of Linked List

char pointer to declare/define a string

https://www.programiz.com/c-programming/c-arrays

C. Hundhausen, A. O’Fallon9

Grocery Store List Implementation (1)

l How do we allocate memory for a node?

Node * make_node (char * item)
{

Node *mem_ptr = NULL;

// No error checking for malloc () is provided
mem_ptr = (Node *) malloc (sizeof (Node));

mem_ptr -> grocery_item = (char *) malloc (sizeof (char) * (strlen (item) + 1));
strcpy (mem_ptr -> grocery_item, item);

mem_ptr -> next_ptr = NULL;

return mem_ptr;
}

C. Hundhausen, A. O’Fallon10

Reflection on make_node () (1)

l make_node () required the use of malloc ()
twice
– Once to allocate memory for a Node, which

consists of a pointer to a character (char *) and a
pointer to another node (struct node *)

– Another to allocate memory to store a copy of the
grocery item string passed in as a parameter
l In this case, since we did not define the grocery_item (in

Node) as an array, but instead as a pointer, we needed
to allocate enough memory to store a string

C. Hundhausen, A. O’Fallon11

Reflection on make_node () (2)

l make_node () returns a pointer to a block of
memory that is dynamically allocated;
however the pointer is not placed into any
“context” like a list yet

C. Hundhausen, A. O’Fallon12

Grocery Store List Implementation (2)

l How do we insert a node into the beginning of a list?

void insert_at_front (Node **start_ptr, char *item)
{

Node *mem_ptr = NULL;

// Assuming enough memory is available
mem_ptr = make_node (item);

// Be sure not to lose the rest of the list!
mem_ptr -> next_ptr = *start_ptr;
*start_ptr = mem_ptr;

}

C. Hundhausen, A. O’Fallon13

Reflection on insert_at_front ()

l insert_at_front () requires a Node **
parameter in order to retain changes made to
the list
– If only a Node * is passed in to the function then

changes will not be retained - Why?
l In order to add nodes to a list, only the start

of the list is required

C. Hundhausen, A. O’Fallon14

Grocery Store List Implementation (3)

l How do we delete a node from the front of
the list?

l How do we print a list?
– Can you implement this function recursively?

l Try to implement these functions on your
own…

C. Hundhausen, A. O’Fallon15

References

l J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8th Ed.), Addison-
Wesley, 2016

l P.J. Deitel & H.M. Deitel, C How to Program
(7th Ed.), Pearson Education , Inc., 2013.

C. Hundhausen, A. O’Fallon16

Collaborators

l Chris Hundhausen
l Andrew O’Fallon

http://eecs.wsu.edu/~hundhaus/

