(14-2) Dynamic Data Structures Il
H&K Chapter 13

Instructor — Beiyu Lin
CptS 121 (June 11, 2019)
Washington State University

WASHINGTON STATE
Ea [UNIVERSITY
¥

2D Pointers and Dynamic
Allocation

Double Pointer

int var = 10; Po@ntertof e actual variable
int *otr1 pointer of var ointer to var with a value
in
P } int *ptr1 = &var; T T
ptr1 = &var; ptr2 ptr1
4020

int **ptr2; #3096~
ptr2 = &ptr1; ;.

address of ,/ address of ,/ address of var
pointer pt2 pointer pt1 : ”}"f -
| FAS

printf(“var is %d \n”, var);
printf(“the value of ptr1 pointed to is %d \n” , *ptr1);
printf(“the value of ptr2 pointed to is %d\n”, **ptr2);

*ptr1 = 100;

2 C. Hundhaus en, A. O’Fall on, B. Lin Graphs are from: https://www.geeksforgeeks.org/double-pointer-pointer-pointer-c/

2D Pointers and Dynamic
Allocation

num = 3;

charxx tic_tac_toe_board = NULL;
tic_tac_toe_board = malloc(num % sizeof(charx));
int t =0, k = 0;

SN oS WN =

for (t = 0;t < num; t++)

{
}

tic_tac_toe_board[t] = malloc(num *x sizeof(char));

for (t = 0; t < num; t++)
{
for (k = 0; k < num; k++)

{

((tic_tac_toe_board+t)+k) = 'X';

}

for (t = 03t < num; t++)

for (k = 0; k < num; k++)

{

}
printf('\n");

printf("%c'", tic_tac_toe_board[t] [k]);

Graphs are from: https://www.techiedelight.com/dynamically-allocate-memory-for-2d-

C. Hundhausen, A. O’Fallon, B. Lin array/

Introduction of Linked List
«

e Let’'s define each item as part of a “node”
e A “node’ is defined as follows:

Arraysize -5

typedef struct node

{ |

. * Indices — 0 l Z ‘73 ll
int * data;

struct node *next;
} Node; Head

|_A/ —)I B —)l C —)‘ D

Data Next

Graphs are from:
4 ,) https://www.programiz.com/c-programming/c-arrays
C. Hundhausen, A. O’Fallon, B. Lin https://www.geeksforgeeks.org/data-structures/linked-list/

https://www.programiz.com/c-programming/c-arrays

Introduction of Linked List

A
A 3| B

O
A
)

_) NULL

N\

Data Next

A linked list is representeDy a pointer to the first nodedf the linked list. The first

~

node is called head. If the linked list 1S empty, then value of head is NULL

Each node in a list consists of at least two parts

1) data

pointer to the next node

Graphs are from:
https://www.geeksforgeeks.org/linked-list-set-1-introduction/
https://lwww.geeksforgeeks.org/data-structures/linked-list/

5 C. Hundhausen, A. O’Fallon, B. Lin

https://www.geeksforgeeks.org/linked-list-set-1-introduction/

Introduction of Linked List

Linked List V.S. Array
read . Arraysize -5 N

Indices — 0] ¢ ‘73 ll'

Not contiguously located contiguous locations of elements
Dynamic size can also be dynamic size

Ease of insertion/deletion difficulty to insert/delete

Random access is not allowed Random access allowed

Extra memory space for a pointer

» Like arrays. Linked List i1s a linear data structure

» Unlike arrays, linked list elements are not stored at contiguous locatic

elements are linked using pointers

Graphs are from:
,) https://www.programiz.com/c-programming/c-arrays
C. Hundhausen, A. O’Fallon, B. Lin https://www.geeksforgeeks.org/data-structures/linked-list/

https://www.programiz.com/c-programming/c-arrays

Applying Dynamic Memory to an
Example — Grocery Store List

7

e Let's say we want to build a program that
keeps track of our list of grocery store items

e [he program must allow the user to add and
remove items from the list while shopping

e Iltems may only be added and removed from
the front of the list

C. Hundhausen, A. O’Fallon

Introduction of Linked List
«

e Let’'s define each item as part of a “node”

e A “node’” is defined as follows:

{‘

char * grocery_item;

struct node *next_ptr;

} Node; Head
‘ A _)l B _)I c _)l D
Data Next
8) Graphs are from:
C. Hundhausen, A. O’Fallon, B. Lin https://www.programiz.com/c-programming/c-arrays

https://www.programiz.com/c-programming/c-arrays

Grocery Store List Implementation (1)
S

e How do we allocate memory for a node?

Node * make_node (char * item)

{
Node *mem_ptr = NULL,;
I/l No error checking for malloc () is provided
mem_ptr = (Node *) malloc (sizeof (Node));
mem_ptr -> grocery_item = (char *) malloc (sizeof (char) * (strlen (item) + 1));
strcpy (mem_ptr -> grocery_item, item);
mem_ptr -> next_ptr = NULL,;
return mem_ ptr;
}

9 C. Hundhausen, A. O’Fallon

Reflection on make node () (1)
S

e make node () required the use of malloc ()
twice

- Once to allocate memory for a Node, which
consists of a pointer to a character (char *) and a
pointer to another node (struct node *)

- Another to allocate memory to store a copy of the

grocery item string passed in as a parameter

e In this case, since we did not define the grocery_item (in
Node) as an array, but instead as a pointer, we needed
to allocate enough memory to store a string

1 O C. Hundhausen, A. O’Fallon

Reflection on make node () (2)
S

e make node () returns a pointer to a block of
memory that is dynamically allocated,
however the pointer is not placed into any
“context” like a list yet

11 C. Hundhausen, A. O’Fallon

Grocery Store List Implementation (2)
S

e How do we insert a node into the beginning of a list?

void insert_at_front (Node **start_ptr, char *item)

{
Node *mem_ptr = NULL;

// Assuming enough memory is available
mem_ptr = make node (item);

/| Be sure not to lose the rest of the list!

mem_ptr -> next_ptr = *start_ptr;
*start_ptr = mem_ptr;

12 C. Hundhausen, A. O’Fallon

Reflection on insert_at_front ()
c-

e insert_at front () requires a Node **
parameter in order to retain changes made to
the list

- If only a Node * is passed in to the function then
changes will not be retained - Why?

e |In order to add nodes to a list, only the start
of the list is required

1 3 C. Hundhausen, A. O’Fallon

Grocery Store List Implementation (3)
. 00000

e How do we delete a node from the front of
the list?

e How do we print a list?
- Can you implement this function recursively?

e Try to implement these functions on your
own...

14 C. Hundhausen, A. O’Fallon

References
-

e J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8" Ed.), Addison-
Wesley, 2016

e P.J. Deitel & H.M. Deitel, C How to Program
(7™ Ed.), Pearson Education , Inc., 2013.

1 5 C. Hundhausen, A. O’Fallon

Collaborators
o<

e Chris Hundhausen
e Andrew O’Fallon

1 6 C. Hundhausen, A. O’Fallon

http://eecs.wsu.edu/~hundhaus/

