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Dynamic Data Structures Revisited

int num = 10;

/* dynamically allocation some memory for an 
array*/
int* arr = calloc(num, sizeof(*arr));
//Do whatever you need to do with arr
int i = 0;
for (i = 0; i < 5; i++)
{

arr[i] = i;
printf("arr value is %d\n", arr[i]);

}

free(arr);

int num = 10;

/* dynamically allocation some 
memory for a variable */

int * nump = malloc(sizeof(int));
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Dynamic Data Structures Revisited

l Recall dynamic data structures expand and 
contract at program runtime

l We generally use malloc() to allocate one 
or more blocks of memory and free() to 
de-allocate blocks of memory
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Why Should we Allocate Memory 
Dynamically?

l To allocate exact number of bytes required 
by our program at any particular point during 
execution of the program

l To eliminate allocating unnecessarily large 
amounts of unused memory (i.e. like with an 
array[MAX_SIZE])
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l Let’s define each item as part of a “node”
l A “node” is defined as follows:

typedef struct node
{

int * data;
struct node *next;

} Node;

Graphs are from: 
https://www.programiz.com/c-programming/c-arrays
https://www.geeksforgeeks.org/data-structures/linked-list/

Introduction of Linked List

https://www.programiz.com/c-programming/c-arrays
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Grocery Store List Design

Linked List               v.s.                 Array

Not contiguously located contiguous locations of elements
Dynamic size                                    can also be dynamic size
Ease of insertion/deletion                 difficulty to insert/delete
Random access is not allowed         Random access allowed
Extra memory space for a pointer 

Let us create a simple linked list with 3 nodes (live coding).

Graphs are from: 
https://www.programiz.com/c-programming/c-arrays
https://www.geeksforgeeks.org/data-structures/linked-list/

https://www.programiz.com/c-programming/c-arrays
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Applying Dynamic Memory to an 
Example – Grocery Store List

l Let’s say we want to build a program that 
keeps track of our list of grocery store items

l The program must allow the user to add and 
remove items from the list while shopping

l Items may only be added and removed from 
the front of the list
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l Let’s define each item as part of a “node”
l A “node” is defined as follows:

typedef struct node
{

char * grocery_item;
struct node *next_ptr;

} Node;

Graphs are from: 
https://www.programiz.com/c-programming/c-arrays

Introduction of Linked List

https://www.programiz.com/c-programming/c-arrays
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Grocery Store List Implementation (1)

l How do we allocate memory for a node?

Node * make_node (char * item)
{

Node *mem_ptr = NULL;

// No error checking for malloc ( ) is provided
mem_ptr = (Node *) malloc (sizeof (Node));

mem_ptr -> grocery_item = (char *) malloc (sizeof (char) * (strlen (item) + 1));
strcpy (mem_ptr -> grocery_item, item);

mem_ptr -> next_ptr = NULL;

return mem_ptr;
}



C. Hundhausen, A. O’Fallon10

Reflection on make_node ( ) (1)

l make_node ( ) required the use of malloc ( ) 
twice
– Once to allocate memory for a Node, which 

consists of a pointer to a character (char *) and a 
pointer to another node (struct node *)

– Another to allocate memory to store a copy of the 
grocery item string passed in as a parameter
l In this case, since we did not define the grocery_item (in 

Node) as an array, but instead as a pointer, we needed 
to allocate enough memory to store a string
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Reflection on make_node ( ) (2)

l make_node ( ) returns a pointer to a block of 
memory that is dynamically allocated; 
however the pointer is not placed into any 
“context” like a list yet
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Grocery Store List Implementation (2)

l How do we insert a node into the beginning of a list?

void insert_at_front (Node **start_ptr, char *item)
{

Node *mem_ptr = NULL;

// Assuming enough memory is available
mem_ptr = make_node (item);

// Be sure not to lose the rest of the list!
mem_ptr -> next_ptr = *start_ptr;
*start_ptr = mem_ptr;

}
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Reflection on insert_at_front ( )

l insert_at_front ( ) requires a Node ** 
parameter in order to retain changes made to 
the list
– If only a Node * is passed in to the function then 

changes will not be retained - Why?
l In order to add nodes to a list, only the start 

of the list is required
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Grocery Store List Implementation (3)

l How do we delete a node from the front of 
the list?

l How do we print a list?
– Can you implement this function recursively?

l Try to implement these functions on your 
own… 
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