
(14-2) Dynamic Data Structures II
H&K Chapter 13

Instructor – Beiyu Lin
CptS 121 (June 10th, 2019)
Washington State University

C. Hundhausen, A. O’Fallon, B. Lin2

Dynamic Data Structures Revisited

int num = 10;

/* dynamically allocation some memory for an
array*/
int* arr = calloc(num, sizeof(*arr));
//Do whatever you need to do with arr
int i = 0;
for (i = 0; i < 5; i++)
{

arr[i] = i;
printf("arr value is %d\n", arr[i]);

}

free(arr);

int num = 10;

/* dynamically allocation some
memory for a variable */

int * nump = malloc(sizeof(int));

C. Hundhausen, A. O’Fallon3

Dynamic Data Structures Revisited

l Recall dynamic data structures expand and
contract at program runtime

l We generally use malloc() to allocate one
or more blocks of memory and free() to
de-allocate blocks of memory

C. Hundhausen, A. O’Fallon4

Why Should we Allocate Memory
Dynamically?

l To allocate exact number of bytes required
by our program at any particular point during
execution of the program

l To eliminate allocating unnecessarily large
amounts of unused memory (i.e. like with an
array[MAX_SIZE])

C. Hundhausen, A. O’Fallon, B. Lin5

l Let’s define each item as part of a “node”
l A “node” is defined as follows:

typedef struct node
{

int * data;
struct node *next;

} Node;

Graphs are from:
https://www.programiz.com/c-programming/c-arrays
https://www.geeksforgeeks.org/data-structures/linked-list/

Introduction of Linked List

https://www.programiz.com/c-programming/c-arrays

C. Hundhausen, A. O’Fallon, B. Lin6

Grocery Store List Design

Linked List v.s. Array

Not contiguously located contiguous locations of elements
Dynamic size can also be dynamic size
Ease of insertion/deletion difficulty to insert/delete
Random access is not allowed Random access allowed
Extra memory space for a pointer

Let us create a simple linked list with 3 nodes (live coding).

Graphs are from:
https://www.programiz.com/c-programming/c-arrays
https://www.geeksforgeeks.org/data-structures/linked-list/

https://www.programiz.com/c-programming/c-arrays

C. Hundhausen, A. O’Fallon7

Applying Dynamic Memory to an
Example – Grocery Store List

l Let’s say we want to build a program that
keeps track of our list of grocery store items

l The program must allow the user to add and
remove items from the list while shopping

l Items may only be added and removed from
the front of the list

C. Hundhausen, A. O’Fallon, B. Lin8

l Let’s define each item as part of a “node”
l A “node” is defined as follows:

typedef struct node
{

char * grocery_item;
struct node *next_ptr;

} Node;

Graphs are from:
https://www.programiz.com/c-programming/c-arrays

Introduction of Linked List

https://www.programiz.com/c-programming/c-arrays

C. Hundhausen, A. O’Fallon9

Grocery Store List Implementation (1)

l How do we allocate memory for a node?

Node * make_node (char * item)
{

Node *mem_ptr = NULL;

// No error checking for malloc () is provided
mem_ptr = (Node *) malloc (sizeof (Node));

mem_ptr -> grocery_item = (char *) malloc (sizeof (char) * (strlen (item) + 1));
strcpy (mem_ptr -> grocery_item, item);

mem_ptr -> next_ptr = NULL;

return mem_ptr;
}

C. Hundhausen, A. O’Fallon10

Reflection on make_node () (1)

l make_node () required the use of malloc ()
twice
– Once to allocate memory for a Node, which

consists of a pointer to a character (char *) and a
pointer to another node (struct node *)

– Another to allocate memory to store a copy of the
grocery item string passed in as a parameter
l In this case, since we did not define the grocery_item (in

Node) as an array, but instead as a pointer, we needed
to allocate enough memory to store a string

C. Hundhausen, A. O’Fallon11

Reflection on make_node () (2)

l make_node () returns a pointer to a block of
memory that is dynamically allocated;
however the pointer is not placed into any
“context” like a list yet

C. Hundhausen, A. O’Fallon12

Grocery Store List Implementation (2)

l How do we insert a node into the beginning of a list?

void insert_at_front (Node **start_ptr, char *item)
{

Node *mem_ptr = NULL;

// Assuming enough memory is available
mem_ptr = make_node (item);

// Be sure not to lose the rest of the list!
mem_ptr -> next_ptr = *start_ptr;
*start_ptr = mem_ptr;

}

C. Hundhausen, A. O’Fallon13

Reflection on insert_at_front ()

l insert_at_front () requires a Node **
parameter in order to retain changes made to
the list
– If only a Node * is passed in to the function then

changes will not be retained - Why?
l In order to add nodes to a list, only the start

of the list is required

C. Hundhausen, A. O’Fallon14

Grocery Store List Implementation (3)

l How do we delete a node from the front of
the list?

l How do we print a list?
– Can you implement this function recursively?

l Try to implement these functions on your
own…

C. Hundhausen, A. O’Fallon15

References

l J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8th Ed.), Addison-
Wesley, 2016

l P.J. Deitel & H.M. Deitel, C How to Program
(7th Ed.), Pearson Education , Inc., 2013.

C. Hundhausen, A. O’Fallon16

Collaborators

l Chris Hundhausen

http://eecs.wsu.edu/~hundhaus/

