
(2-1) Numeric Expressions in C
H&K Chapter 2

Instructor – Beiyu Lin
CptS 121 (May 8th, 2019)
Washington State University

C. Hundhausen, A. O’Fallon, B. Lin2

Review --- General Form in C
#include<stdio.h> /* starting with including libraries*/
#include<stdlib.h>

int main(void)
{

Instructions for the machine to execute

return 0;
}

Instructions include:

1. Declare a variable / user-defined identifier:
e.g. int height = 0, volume = 0;
e.g. char char_variable;
e.g. double radius = 0.0;

2. Programming assignment:
e.g. volume = ((double) 1/3) *height*radius*radius;

3. Input and output statements:
e.g. printf(“the calculated volume is %f”, volume);
e.g. scanf(“%c”, &char_variable);

C. Hundhausen, A. O’Fallon, B. Lin3

Review – Possible Errors

l Rarely will you write a program that is free of errors
l You'll need to diagnose and correct three kinds of

errors:
– Syntax errors (code violates syntax rules for a proper C

program)
l Detected at compile time
l An executable file will not be generated unless they’re

corrected
l Examples:

– Missing semi-colon
– Unmatched brace
– Undeclared identifiers
– Failure to close a comment properly

l Note: Removing one error may make others disappear (the
compiler gets confused easily) – Always start with the first
error listed by the compiler!

4

l Rarely will you write a program that is free of errors
l You'll need to diagnose and correct three kinds of

errors:
– Syntax errors (code violates syntax rules for a proper C

program)
l Detected at compile time
l An executable file will not be generated unless they’re

corrected
l Examples:

– Missing semi-colon
– Unmatched brace
– Undeclared identifiers
– Failure to close a comment properly

l Note: Removing one error may make others disappear (the
compiler gets confused easily) – Always start with the first
error listed by the compiler!

C. Hundhausen, A. O’Fallon, B. Lin

Review – Possible Errors

5

Programming Errors (2)

– Run-time errors
l Commonly called "bugs"
l Cause the program to "crash": an error is reported, and

control is turned over to the operating system
l Examples

– Division by zero
– Referencing a memory cell that's out of range
– Getting into an infinite loop, which may ultimately cause

a "stack overflow"
– Referencing a null pointer (more on this later…)

C. Hundhausen, A. O’Fallon, B. Lin

6

Arithmetic Expressions

l Most programming problems require arithmetic
expressions as part of solution; including problems
related to:

– Mechanics
– Kinematics
– Materials science
– Electronics
– Many others…

l Require numerical operands
l Form: operand1 operator operand2
l Type of result dependent on operand types

C. Hundhausen, A. O’Fallon, B. Lin

7

Arithmetic Operators in C (1)

Operator Representation Example

+ Addition 10 + 5 = 15
1.55 + 13.3 = 14.85
3 + 100.7 = 103.7

- Subtraction 10 – 5 = 5
5.0 – 10.0 = -5.0
10 – 5.0 = 5.0

* Multiplication 1 * 5 = 5
1.000 * 10.0 = 10.0
5 * 5.0 = 25.0

C. Hundhausen, A. O’Fallon, B. Lin

8

Arithmetic Operators in C (2)

Operator Representation Example

/ Division 2 / 3 = 0
10.0 / 4.0 = 2.5
10 / 3.0 = 3.3333

% Modulus 5 % 2 = 1
2 % 5 = 2
6 % 0 = undefined
6.0 % 3 = won’t compile

C. Hundhausen, A. O’Fallon, B. Lin

9

Mixed-Type Expressions

l Types of operands in expression are different
– An integer value and a double value

l The result is always the more precise data
type
– 10 (an int) + 25.5 (a double) = 35.5 (a double)

C. Hundhausen, A. O’Fallon, B. Lin

10

Mixed-Type Assignment Statements

l Evaluated from right-to-left
l Expression is first evaluated (what’s on right-hand-

side) and then assigned to variable (what’s on left-
hand-side)

l Examples:
int result_int, op1_int = 5, op2_int = 42;
double result_double, op1_double = 5.5;
result_int = op1_int + op1_double; /* mixed expression, integer

assignment, result_int = 10 (truncation occurs) */
result_double = op1_int + op2_int; /* integer expression, double

assignment, result_double = 47.0*/
result_double = op1_int + op1_double; /* mixed expression, double

assignment, result_double = 10.5*/

C. Hundhausen, A. O’Fallon, B. Lin

11

Type Conversions & Type Casts

l Changing one entity of a data type into another
l Two kinds exist:

– Implicit
– Explicit

l Implicit type conversion example:
int num1 = 12;
double num2;
num2 = num1; /* num1 implicitly casted to type double, 12.0 */

l Explicit type conversion example:
double num1;
num1 = ((double) 1 / 5); /* integer 1 explicitly casted to type double,

1.0 */

C. Hundhausen, A. O’Fallon, B. Lin

12

Multiple Operator Expressions

l May contain unary and binary operators
l Unary operators consists of one operand
l Binary operators require two operands
l Example:

y = -x + x * x / 10; /* -x applies the unary sign
operator for negation */

C. Hundhausen, A. O’Fallon, B. Lin

13

Operator Precedence (1)

l Operator Precedence
– How is x – y / z evaluated?

l (x – y) / z ?
l x – (y / z) ?

– Important to understand operator precedence rules:
l Evaluation proceeds left to right
l Subexpressions in parentheses are evaluated first
l In cases where no parentheses are used, *, /, and % take

precedence over + and –
– So x – y / z is evaluated as x – (y / z), because / takes

precedence over –
– Note: The unary operators + and – are used to indicate the sign

of a number (e.g., +5, -3.0). They take precedence over all
binary operators, and are evaluated right to left:
l Example: -3 + 5 * 4 would be evaluated as (-3) + (5 * 4) = 17.

– Recommendation: Liberally use parentheses to avoid confusion
and unexpected results!

C. Hundhausen, A. O’Fallon, B. Lin

14

Operator Precedence (2)

l Operator Precedence Example (H & K p. 80)

C. Hundhausen, A. O’Fallon, B. Lin

15

Formatting Numbers (1)

l C defines "default" output style for each data type
– No leading blanks for int and double
– double displayed with default number of digits to right of

decimal point (how many?)
l You can override these defaults by specifying

custom format strings to printf function
int x;
double y;
x = 3;
y = 2.17;
printf("x is %3d. y is %5.1f.",x,y);

Output:
x is 3. y is 2.2.

C. Hundhausen, A. O’Fallon, B. Lin

16

Formatting Numbers (2)

l Notes:
– For double output, format string is of form
%n.mf, where n is total width (number of
columns) of formatted number, and m is the
number of digits to the right of decimal point to
display.

– It is possible to omit n. In that case, no leading
spaces are printed. m can still specify the
number of decimal places (e.g., %.2f)

C. Hundhausen, A. O’Fallon, B. Lin

17

Formatting Numbers (3)

l You try it:
– If the values of the variables a, b, and c are 504,

302.558, and -12.31, write a statement that will

display the following line (□is used to denote a
blank):

□□504□□□□□302.56□□□□-12.3

printf(“%5d%11.2f%9.1f”,a,b,c);

C. Hundhausen, A. O’Fallon, B. Lin

18

Programming Errors (3)

– Logic Errors
l Cause the program to compute incorrect results
l Often go unnoticed, at least at first
l Examples

– Your algorithm is wrong because you misunderstand the
problem

– You do not obtain input data properly, so your computations
work on the wrong data. For example:

int year;
char first, middle, last;
printf("Enter the current year and press return: ");
scanf("%d", &year);
printf("Type in 3 initials and press return: ");
scanf("%c%c%c", &first, &middle, &last);

What goes wrong here?

C. Hundhausen, A. O’Fallon, B. Lin

19

Next Lecture…

l Top-Down Design and Functions

C. Hundhausen, A. O’Fallon, B. Lin

20

References

l J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8th Ed.), Addison-
Wesley, 2016

C. Hundhausen, A. O’Fallon, B. Lin

21

Collaborators

l Chris Hundhausen
l A. O’Fallon

C. Hundhausen, A. O’Fallon, B. Lin

http://eecs.wsu.edu/~hundhaus/

