
(2-2) Functions I
H&K Chapter 3

Instructor – Beiyu Lin
CptS 121 (May 9th, 2019)
Washington State University

C. Hundhausen, A. O’Fallon, B. Lin2

Review -- Functions
#include<stdio.h> /* starting with including libraries*/
#include<stdlib.h>
double get_grade_point(void);

int main(void)
{ /*Instructions for the machine to execute*/

double grade1 = 0.0;
grade1 = get_grade_point();

return 0;
}

double get_grade_point(void)
{

double grade_point = 0.0;
printf(“Please enter your grade point for your course:”);
scanf(“%lf”, &grade_point);
return grade_point;

}

C. Hundhausen, A. O’Fallon3

Problem Solving Example (1)

l Problem Statement: Write a program that computes your
grade point average after completion of 3 courses.

l Inputs:
– Grade point and number of credits for course 1
– Grade point and number of credits for course 2
– Grade point and number of credits for course 3

l Outputs
– Grade point average (GPA)

l Relevant formula: GPA = ((grade_point1 * num_credits1) +
(grade_point2 * num_credits2) + (grade_point3 *
num_credits3)) / total_num_credits

C. Hundhausen, A. O’Fallon4

Problem Solving Example (2)

l Initial algorithm
– Get the grade points earned from each class
– Get the credit hours for each class
– Compute the average of the grade points

– Display the results

l Refined algorithm
– Get the grade points earned from each class
– Get the credit hours for each class
– Compute the grade point weighted by credits hours

weighted_gp = (grade_point1 * num_credits1) + (grade_point2 * num_credits2) +
(grade_point3 * num_credits3);

– Total the credits across the classes
– Compute the average of the grade points

gpa = weighted_gp / total_num_credits;
– Display the results

C. Hundhausen, A. O’Fallon5

Problem Solving Example (3)
l Implementation
#include <stdio.h>

int main (void)
{

int num_credits1 = 0, num_credits2 = 0, num_credits3 = 0;
double grade_point1 = 0.0, grade_point2 = 0.0, grade_point3 = 0.0,

weighted_gp = 0.0, total_num_credits = 0.0, gpa = 0.0;

/* Get the grade points and credits */
printf ("Please enter your grade point for computer science course 1: ");
scanf ("%lf", &grade_point1);
printf ("Please enter the number of credits possible for computer science course 1: ");
scanf ("%d", &num_credits1);

printf ("Please enter your grade point for calculus course 2: ");
scanf ("%lf", &grade_point2);
printf ("Please enter the number of credits possible for calculus course 2: ");
scanf ("%d", &num_credits2);

printf ("Please enter your grade point for physics course 3: ");
scanf ("%lf", &grade_point3);
printf ("Please enter the number of credits possible for physics course 3: ");
scanf ("%d", &num_credits3);

C. Hundhausen, A. O’Fallon6

Problem Solving Example (4)
/* Compute grade point weighted by credit hours */
weighted_gp = (grade_point1 * num_credits1) + (grade_point2 * num_credits2)
+ (grade_point3 * num_credits3);

l /* Total the credits across the classes */
total_num_credits = num_credits1 + num_credits2 + num_credits3;

/* Compute gpa */
gpa = weighted_gp / total_num_credits;

/* Display results */
printf ("GPA: %.2lf\n", gpa);

return 0;
}

C. Hundhausen, A. O’Fallon7

Notes on Example

l It’s redundant!
– We’re using the exact same sequence of

commands (printf, scanf) to obtain the three
grade points and credits

l Is there a better (less redundant, easier to
read, more concise) way to approach this
problem?

C. Hundhausen, A. O’Fallon8

Top-Down Design (1)

l Allows us to manage the complexity of a problem by
decomposing it into smaller, less complex
subproblems

l A divide and conquer approach
l By solving each subproblem and combining

solutions, we solve the overall problem
l We only need to solve each subproblem once,

rather than having to “reinvent the wheel” each time

C. Hundhausen, A. O’Fallon9

Top Down Design (2)

l Example: Compute and display the gpa
Compute gpa

Get the grade
point for each

class and
credits

Compute gpa Display the gpa

get_grade_point()

get_credits ()

compute_weighted_gp ()

compute_gpa ()

display_gpa ()

C. Hundhausen, A. O’Fallon10

Functions (1)

l Enable us to implement top-down design
l Self-contained “mini-programs” that solve a problem
l General rule-of-thumb

– 1 function = 1 task = 1 algorithm
l You already have some practical understanding of

functions from your mathematical background
– f(x) = x2 - 4x + 4
– In C, we pass the value of x into a function called “f” and

get a result back

C. Hundhausen, A. O’Fallon11

Functions (2)

l May have “input arguments” (also called “input
parameters”)

– The inputs to the function
l May return results in two ways:

– Function result: the return statement specifies this
– “output arguments” (also called “output parameters”):

arguments into which the function places values to be
passed back to the caller (more advanced; we’ll look at
these later)

C. Hundhausen, A. O’Fallon12

Functions (3)

l Anatomy of a function prototype:

void display_gpa (double gpa);

Return
value

Function
name

Function argument list;
should be “void” if function

has no arguments

C. Hundhausen, A. O’Fallon13

Functions (4)
l The GPA example revisited
double get_grade_point (void);
int get_credits (void);
double compute_weighted_gp (double grade_point1, double grade_point2, double grade_point3,

int num_credits1, int num_credits2, int num_credits3);
double compute_gpa (double weighted_credits, int total_num_credits);
void display_gpa (double gpa);

int main (void)
{

int num_credits1 = 0, num_credits2 = 0, num_credits3 = 0;
double grade_point1 = 0.0, grade_point2 = 0.0, grade_point3 = 0.0,

weighted_gp = 0.0, total_num_credits = 0.0, gpa = 0.0;

/* Get the grade points and credits */
grade_point1 = get_grade_point ();
num_credits1 = get_credits ();

grade_point2 = get_grade_point ();
num_credits2 = get_credits ();

grade_point3 = get_grade_point ();
num_credits3 = get_credits ();

/* Compute credit hours earned */
weighted_gp = compute_weighted_credits (grade_point1, grade_point2, grade_point3,

num_credits1, num_credits2, num_credits3);
l /* Should we have a new function for the sum? If so what would it look like?

total_num_credits = num_credits1 + num_credits2 + num_credits3;
/* Compute gpa */
gpa = compute_gpa (weighted_gp, total_num_credits);

/* Display results */
display_gpa (gpa);

return 0;
}

C. Hundhausen, A. O’Fallon14

Functions (5)

l Definition of get_grade_point ()
/* Prompts the user for a grade point earned for a course */

double get_grade_point (void)
{

double grade_point = 0.0;
printf ("Please enter your grade point for your course: ");
scanf ("%lf", &grade_point);
return grade_point;

}

C. Hundhausen, A. O’Fallon15

Functions (6)

l Definition of get_credits ()
/* Prompts the user for the number of credits for a course */

int get_credits (void)
{

int num_credits = 0;

printf ("Please enter the number of credits possible for your course: ");
scanf ("%d", &num_credits);

return num_credits;
}

C. Hundhausen, A. O’Fallon16

Functions (7)

l Definition of compute_weighted_gp ()

double compute_weighted_gp (double grade_point1, double grade_point2, double
grade_point3, int num_credits1, int num_credits2, int num_credits3)

{
double weighted_gp = 0.0;

weighted_gp = (grade_point1 * num_credits1) + (grade_point2 *
num_credits2) + (grade_point3 * num_credits3);

return weighted_gp;
}

C. Hundhausen, A. O’Fallon17

Functions (8)

l Definition of compute_gpa ()

double compute_gpa (double weighted_gp, int total_num_credits)
{

double gpa = 0.0;

gpa = weighted_gp / total_num_credits;

return gpa;
}

C. Hundhausen, A. O’Fallon18

Functions (9)

l Definition of display_gpa ()
/* Outputs the calculated gpa to the screen */

void display_gpa (double gpa)
{

printf ("GPA: %.2lf\n", gpa);
}

C. Hundhausen, A. O’Fallon19

Functions (10)

l How Functions are compiled
– Function prototypes tell compiler what functions are

defined
– When a function call is encountered within main, the

compiler is already aware of it
– After compilation of main function, each function is

compiled
l Machine language statement inserted at end of each function

that transfers control back to caller (in main)
l How functions are executed

– When a function is called, memory for local variables is
allocated

– Memory is released upon completion of function execution
(à local function variables do not “outlive” function)

C. Hundhausen, A. O’Fallon20

Functions (11)
l Example 1: What happens when a function is called

display_gpa (3.4);

void display_gpa (double gpa)
{

printf ("GPA: %.2lf\n", gpa);
}

Actual
argument

Formal
parameter

C. Hundhausen, A. O’Fallon21

Functions (12)

l Why Use Functions: A Summary of
Advantages
– Break a large, complex solution into logical units

l Individual members of a programming team can work
on each unit independently

– Procedural abstraction
l The main function need not be aware of the details of

how a function works—just what it does
l Thus, during high-level problem solving activities, we

won’t get bogged down in detail
l We can defer the details until we’re ready to write the

individual functions

C. Hundhausen, A. O’Fallon22

Functions (13)

l Why Use Functions: A Summary of
Advantages (cont.)
– Reuse

l Recall our comment on the original version of the
program to compute and display the gpa of classes

– Redundant: Much code was duplicated
l Why re-write sections of code that have already been

written and tested?
l Functions allow us to package up a solution into a bite-

size chunk that can be reused over and over

C. Hundhausen, A. O’Fallon23

Functions (14)

l Why Use Functions: A Summary of
Advantages (cont.)
– Testing

l Allows for more efficient testing and “bug” resolution
l Each function is tested as it is implemented

C. Hundhausen, A. O’Fallon24

C Math Functions

l The C math library <math.h> defines
numerous useful mathematical functions

l This library is an excellent example of the
power of functions
– Commonly-used mathematical operations are

packaged up in functions that can be re-used
over and over

C. Hundhausen, A. O’Fallon25

C Math Functions

l Some C Math Library Functions
– int abs(int x) (<stdlib.h>)
– double ceil(double)
– double floor(double)
– double cos(double)
– double sin(double)
– double tan(double)
– double exp(double)
– double fabs(double)
– double log(double)
– double log10(double)
– double pow(double,double)
– double sqrt(double)

C. Hundhausen, A. O’Fallon26

Next Lecture…

l More examples of top-down design involving
– Functions with and without input arguments
– Functions with and without output values

l The use of test drivers to verify that
functions work

l Common programming errors

C. Hundhausen, A. O’Fallon27

References

l J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8th Ed.), Addison-
Wesley, 2016

C. Hundhausen, A. O’Fallon28

Collaborators

l Chris Hundhausen

http://eecs.wsu.edu/~hundhaus/

