(3-2) File Processing with
Functions

Instructor — Beiyu Lin
CptS 121 (May 13th, 2019)
Washington State University

WASHINGTON STATE
@ [UNIVERSITY
g

Review — Functions
7

e What is a function?
e Functions w/o input arguments
e Functions w/ input arguments

e What is a pointer?
e Read in file functions with pointers

2 C. Hundhausen, A. O’Fallon, B. Lin

Review — Functions w/o input
-

#include<stdio.h> /* starting with including libraries*/
#include<stdlib.h>
double get_grade point(void); /*declare a function®/

double get_grade_p
{

double grade_point = 0.0;

printf(“Please enter your grade point for your course:”);
scanf(“%lf’, &grade_point);

return grade_point;

3 C. Hundhausen, A. O’Fallon, B. Lin

Review — Functions w/ input

4

#include<stdio.h> /* starting with including libraries*/
#include<stdlib.h>
double get _grade point(void):

*

nction®*/

int sum__

{

dit(int cred_class1, int cred_class2, int cred_class3

int sum_all_credit = 0;
sum_all_credit = cred_class1 + cred_class2 + cred_class3;
return sum_all_credit;

C. Hundhausen, A. O’Fallon, B. Lin

Review — Pointer
]

e \What is a pointer?

e Example
inti, k; e ipis avariable name
int *ip; e ip is type “pointer to type int”
- e.g. char *charPtr;
ip = &i;
i =100;
K = *ip; e &: reference operator -> returns pointer
k=k+ 2 (address)
i = *(&k)', e *: dereference operator -> returns
“(&k) = 200: contents at address

5 C. Hundhausen, A. O’Fallon, B. Lin ‘

Review - File Pointers

e File Pointers:
- Toread data from and write data to files
-~ Data does not disappear when the program stops running

e C uses the data structure FILE for working with files
- Working with files, use pointers to them, FILE *

e Most common file input/output (I/O) functions:
- fopen()

e / -

FILE* infile = NU
infile = foper(" pa file.txt m *open the file and read the file*/

- fclose(), fgetc(), fputc(), fread
— fwrite()

6 C. Hundhausen, A. O’Fallon, B. Lin

Why Files?
N

e Need to store data and information outside of
a program

e Most real applications need to create,
update, and/or delete data and information

e Easy to process and manipulate

7 C. Hundhausen, A. O’Fallon ‘

Files and Streams in C (1)
-

e C views each file as a sequential stream of
bits (1's and 0’s) or bytes

e Each file ends with an end-of-file marker
(EOF)

e Once a file is opened a stream is associated
with it

8 C. Hundhausen, A. O’Fallon ‘

Files and Streams in C (2)
-

e \When a program starts execution, three files and
associated streams are automatically opened
- standard input (allows for us to get data from keyboard)
— standard output (allows for us to write to the screen)
- standard error

e Streams provide communication channels between
files and programs

9 C. Hundhausen, A. O’Fallon ‘

File Processing Algorithm
-

e Step 1: open the desired file

— Opening is based on filename and permissions (read, write, or
append

— Creates a new stream
e Step 2: process the file

- Read data from the file
e Does not affect file
- Write data to the file
e Completely overwrites existing file

- Add data to the end of the file
e Retains previous information in file

e Step 3: close the file
— Destroys the stream

1 0 C. Hundhausen, A. O’Fallon ‘

How to Get Started with Files in C?
]

e Before files may be manipulated, they must first be
opened

- Opening a file creates a communication channel between
the file and the program

e Once a file is opened, several standard library
functions are available to process file data and
information

e Once all information and data associated with the file
IS no longer needed, it should be closed

1 1 C. Hundhausen, A. O’Fallon ‘

File Functions in C
]

e Located in <stdio.h>
e Open afile:

- fopen () — returns a file handle to opened file
e Read from afile:

- fscanf ()

e \Write to a file:
— fprintf ()

e Close afile:
- fclose () — closes file based on file handle

1 2 C. Hundhausen, A. O’Fallon

Review - File Pointers
]

on file input/output (I/O) functions:
e.g. Infile = fopen("gpa_file.txt", "r"); /* infile is a file pointer*/
- fgetc()
File pointer must be open for reading
e.g. char ch = fgetc(infile);
- fputc()
Writes or appends the specified character to the pointed-to file.

e.g. fputc(“A”, infile); /*write character A to the file*/

- fscanf()
Reads data from the the file

— fwritei i

1 3 C. Hundhausen, A. O’Fallon, B. Lin

Review — Read in file functions
with pointers

[*define the function®/
void get_grade_point_infile(FILE* infile, int* class_id, int* class_credit, double* class_grade)

{
@inﬁle, "%d", class_id); /*similar as scanf*/ >
anf(infile, "%d", class_credit); /*similar as scanf*/
fscanf(infile, "%IT", Class_grade); 7 simiiar as scanf*/
}
int main(void)
{

infile = NULL;
infile = fopen("gpa_file.txt", "r"); /*open the file and read the file*/

int class_ ; —
double class_grade = 0.0;

/* L.UIIJ‘II
ﬁiﬁg‘;\;nt_inﬁle(inﬁle, &class_id, &class_credit, &class_@
fclose(infile);

}
14 C. Hundhausen, A. O’Fallon, B. Lin ‘

Problem Solving Example Revisited (1)
|

15

Problem Statement: Write a program that computes your
grade point average after completion of 3 courses.
Inputs from a file:

-~ Grade point and number of credits for course 1

-~ Grade point and number of credits for course 2

-~ Grade point and number of credits for course 3
Outputs to a file:

— Grade point average (GPA)

Relevant formula: GPA = ((grade_point1 * num_credits1) +
(grade_point2 * num_credits2) + (grade_point3 *
num_credits3)) / total num_credits

C. Hundhausen, A. O’Fallon ‘

16

Problem Solving Example (2)
-

e |[nitial algorithm

C. Hundhausen, A. O’Fallon

Open the data files

Get the grade points earned for each class from input file
Get the credit hours for each class from input file
Compute the average of the grade points

Write the results to output file

Close the files

Problem Solving Example (3)
—

e Refined algorithm

- Open the data files
e Open one file with read permissions (input file)
e Open one file with write permissions (output file)

- Get the grade points earned for each class from input file
- Get the credit hours for each class from input file
- Compute the total number of credits

total_num_credits = num_credits1 + num_credits2 + num_credits3;
- Compute the credits hours earned

weighted_credits = (grade_point1 * num_credits1) + (grade_point2 * num_credits2) +
grade_point3 * num_credits3);
- Compute the average of the grade points
gpa = weighted_credits / total_num_credits;
- Write the results to output file
e Write total_num_credits
e Write weighted_credits
e \Write gpa
-~ Close the files
e Close the input file
e Close the output file

1 7 C. Hundhausen, A. O’Fallon

Problem Solving Example (4)

) The GPA example revisited (now with file processing)

double get_grade_point (FILE *infile);

int get_credits (FILE *infile);

int compute_total_num_credits (int num_credits1, int num_credits2, int num_credits3);

double compute_weighted_credits (double grade_point1, double grade_point2, double grade_point3,

int num_credits1, int num_credits2, int num_credits3);
double compute_gpa (double weighted_credits, int total_num_credits);

void display_gpa (FILE * ouffile, double weighted_credits, int total_num_credits, double gpa);

int main (void)
{
int num_credits1 = 0, num_credits2 = 0, num_credits3 = 0;
double grade_point1 = 0.0, grade_point2 = 0.0, grade_point3 = 0.0,
weighted_credits = 0.0, total_num_credits = 0.0, gpa = 0.0;
FILE * infile = NULL, *outfile = NULL; /* Variables that will allow for manipulation of our file streams */

/* Need to open an input file and output file */
infile = fopen (“input.txt”, “r”); /* Input file opened with read permisions “r” */

outfile = fopen (“output.txt”, “w”); /* Output file opened with write permissions “w” */

/* Get the grade points and credits from the input file */

/* The input file, “input.txt”, stores the grade point and number of credits for a class on separate lines */
grade_point1 = get_grade_point (infile);

num_credits1 = get_credits (infile);

grade_point2 = get_grade_point (infile);
num_credits2 = get_credits (infile);

grade_point3 = get_grade_point (infile);
num_credits3 = get_credits (infile);

1 8 C. Hundhausen, A. O’Fallon

Problem Solving Example (5)
S

/* Sum up the credits for each course */
total_num_credits = compute_total_num_credits (hum_credits1, num_credits2,
num_credits3);

/* Compute credit hours earned */
weighted_credits = compute_weighted_credits (grade_point1, grade_point2, grade_point3,
num_credits1, num_credits2, num_credits3);

/* Compute gpa */
gpa = compute_gpa (weighted_credits, total_num_credits);

/* Write the results to output file, “output.txt” */
display_gpa (outfile, weighted_credits, total_num_credits, gpa);

/* Don’t forget to close your files! */
fclose (infile);
fclose (outfile);

return O;

1 9 C. Hundhausen, A. O’Fallon

Problem Solving Example (6)
—

e Definition of get grade point ()
/* Reads a grade point earned for a class from a file */

double get _grade point (FILE *infile)

{
double grade point = 0.0;
fscanf (infile, "%If", &grade_point);
return grade_point;

}

20 C. Hundhausen, A. O’Fallon

Problem Solving Example (7)
-

e Definition of get credits ()

[* Reads the number of credits earned for a class from a file.
Precondition: the file referred to by infile must already be open.*/

int get_credits (FILE *infile)

{
int num__credits = 0;
fscanf (infile, "%d", &num_credits);
return num_ credits;

}

21 C. Hundhausen, A. O’Fallon

Problem Solving Example (8)
—

e Definition of compute total num credits ()

/* Sums up the total number of credits earned for 3 courses */

Int compute_total num_credits (int num_credits1, int num_credits2,
int num__credits3)

{
int total_num__credits = 0;
total num_credits = num_credits1 + num_credits2 + num_ credits3;
return total num_ credits;

}

22 C. Hundhausen, A. O’Fallon

Problem Solving Example (9)
—

e Definition of
compute weilghted credits ()

double compute weighted_credits (double grade point1, double grade point2,
double grade_point3, int num_credits1, int num_credits2, int num_credits3)

{
double weighted_credits = 0.0;
weighted_credits = (grade_point1 * num_credits1) + (grade_point2 *
num_credits2) + (grade_point3 * num_credits3);
return weighted_credits;
}

23 C. Hundhausen, A. O’Fallon ‘

Problem Solving Example (10)
—

e Definition of compute gpa ()

double compute_gpa (double weighted_credits, int total num_ credits)

{
double gpa = 0.0;

gpa = weighted_credits / total num_credits;

return gpa;

24 C. Hundhausen, A. O’Fallon

Problem Solving Example (11)
c]

e Definition of display gpa ()

/* Outputs the calculated values to a file */

void display_gpa (FILE *outfile, double weighted credits,
int total_num_ credits, double gpa)

{
fprintf (outfile, “Weighted Credits: %.2If\n
Total Credits: %d\n
GPA: %.2I\n", weighted_credits,
total_num_ credits, gpa);
}

25 C. Hundhausen, A. O’Fallon

Closing Thoughts on Files
-

e Files are required for many applications

e C has no direct support for random-access to
data in files

- Must handle data in files sequentially

e Files may be created and manipulated in any
manner appropriate for an application

26 C. Hundhausen, A. O’Fallon ‘

References
7

e J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8" Ed.), Addison-
Wesley, 2016

27 C. Hundhausen, A. O’Fallon ‘

Collaborators
]

e Chris Hundhausen

28 C. Hundhausen, A. O’Fallon

http://eecs.wsu.edu/~hundhaus/

