
(3-2) File Processing with
Functions

Instructor – Beiyu Lin
CptS 121 (May 13th, 2019)
Washington State University

C. Hundhausen, A. O’Fallon, B. Lin2

Review – Functions

l What is a function?
l Functions w/o input arguments
l Functions w/ input arguments

l What is a pointer?
l Read in file functions with pointers

3

Review – Functions w/o input

#include<stdio.h> /* starting with including libraries*/
#include<stdlib.h>
double get_grade_point(void); /*declare a function*/

double get_grade_point(void)
{

double grade_point = 0.0;
printf(“Please enter your grade point for your course:”);
scanf(“%lf”, &grade_point);
return grade_point;

}

C. Hundhausen, A. O’Fallon, B. Lin

4

Review – Functions w/ input

#include<stdio.h> /* starting with including libraries*/
#include<stdlib.h>
double get_grade_point(void); /*declare a function*/

int sum_credit(int cred_class1, int cred_class2, int cred_class3)
{

int sum_all_credit = 0;
sum_all_credit = cred_class1 + cred_class2 + cred_class3;
return sum_all_credit;

}

C. Hundhausen, A. O’Fallon, B. Lin

5

Review – Pointer

l What is a pointer?
l Example

int i, k;
int *ip;

ip = &i;
i = 100;
k = *ip;
k = k + 2;
i = *(&k);
*(&k) = 200;

l ip is a variable name
l ip is type “pointer to type int”

– e.g. char *charPtr;

l &: reference operator -> returns pointer
(address)

l *: dereference operator -> returns
contents at address

C. Hundhausen, A. O’Fallon, B. Lin

6

Review – File Pointers

l File Pointers:
– To read data from and write data to files
– Data does not disappear when the program stops running

l C uses the data structure FILE for working with files
– Working with files, use pointers to them, FILE *

l Most common file input/output (I/O) functions:
– fopen()

For example:

FILE* infile = NULL;
infile = fopen("gpa_file.txt", "r"); /*open the file and read the file*/

– fclose(), fgetc(), fputc(), fread(),
– fwrite()

C. Hundhausen, A. O’Fallon, B. Lin

file name

Operation: “r” => read;
“w” => write (over write);
“a” => append at the end;

C. Hundhausen, A. O’Fallon7

Why Files?

l Need to store data and information outside of
a program

l Most real applications need to create,
update, and/or delete data and information

l Easy to process and manipulate

C. Hundhausen, A. O’Fallon8

Files and Streams in C (1)

l C views each file as a sequential stream of
bits (1’s and 0’s) or bytes

l Each file ends with an end-of-file marker
(EOF)

l Once a file is opened a stream is associated
with it

C. Hundhausen, A. O’Fallon9

Files and Streams in C (2)

l When a program starts execution, three files and
associated streams are automatically opened

– standard input (allows for us to get data from keyboard)
– standard output (allows for us to write to the screen)
– standard error

l Streams provide communication channels between
files and programs

C. Hundhausen, A. O’Fallon10

File Processing Algorithm

l Step 1: open the desired file
– Opening is based on filename and permissions (read, write, or

append)
– Creates a new stream

l Step 2: process the file
– Read data from the file

l Does not affect file
– Write data to the file

l Completely overwrites existing file
– Add data to the end of the file

l Retains previous information in file
l Step 3: close the file

– Destroys the stream

C. Hundhausen, A. O’Fallon11

How to Get Started with Files in C?

l Before files may be manipulated, they must first be
opened

– Opening a file creates a communication channel between
the file and the program

l Once a file is opened, several standard library
functions are available to process file data and
information

l Once all information and data associated with the file
is no longer needed, it should be closed

C. Hundhausen, A. O’Fallon12

File Functions in C

l Located in <stdio.h>
l Open a file:

– fopen () – returns a file handle to opened file
l Read from a file:

– fscanf ()
l Write to a file:

– fprintf ()
l Close a file:

– fclose () – closes file based on file handle

13

Review – File Pointers

l Most common file input/output (I/O) functions:
– fopen()
e.g. FILE* infile = fopen("gpa_file.txt", "r"); /* infile is a file pointer*/

– fgetc()
File pointer must be open for reading
e.g. char ch = fgetc(infile);

– fputc()
Writes or appends the specified character to the pointed-to file.
e.g. fputc(“A”, infile); /*write character A to the file*/

– fscanf()
Reads data from the the file

– fwrite()
– fclose()

C. Hundhausen, A. O’Fallon, B. Lin

14

Review – Read in file functions
with pointers

/*define the function*/
void get_grade_point_infile(FILE* infile, int* class_id, int* class_credit, double* class_grade)
{

fscanf(infile, "%d", class_id); /*similar as scanf*/
fscanf(infile, "%d", class_credit); /*similar as scanf*/
fscanf(infile, "%lf", class_grade); /*similar as scanf*/

}

int main(void)
{

FILE* infile = NULL;
infile = fopen("gpa_file.txt", "r"); /*open the file and read the file*/

int class_id = 0, class_credit = 0;
double class_grade = 0.0;

/*call the function*/
get_grade_point_infile(infile, &class_id, &class_credit, &class_grade);

fclose(infile);
}
C. Hundhausen, A. O’Fallon, B. Lin

1

2

3

C. Hundhausen, A. O’Fallon15

Problem Solving Example Revisited (1)

l Problem Statement: Write a program that computes your
grade point average after completion of 3 courses.

l Inputs from a file:
– Grade point and number of credits for course 1
– Grade point and number of credits for course 2
– Grade point and number of credits for course 3

l Outputs to a file:
– Grade point average (GPA)

l Relevant formula: GPA = ((grade_point1 * num_credits1) +
(grade_point2 * num_credits2) + (grade_point3 *
num_credits3)) / total_num_credits

C. Hundhausen, A. O’Fallon16

Problem Solving Example (2)

l Initial algorithm
– Open the data files
– Get the grade points earned for each class from input file
– Get the credit hours for each class from input file
– Compute the average of the grade points
– Write the results to output file
– Close the files

C. Hundhausen, A. O’Fallon17

Problem Solving Example (3)

l Refined algorithm
– Open the data files

l Open one file with read permissions (input file)
l Open one file with write permissions (output file)

– Get the grade points earned for each class from input file
– Get the credit hours for each class from input file
– Compute the total number of credits

total_num_credits = num_credits1 + num_credits2 + num_credits3;
– Compute the credits hours earned

weighted_credits = (grade_point1 * num_credits1) + (grade_point2 * num_credits2) +
(grade_point3 * num_credits3);

– Compute the average of the grade points
gpa = weighted_credits / total_num_credits;

– Write the results to output file
l Write total_num_credits
l Write weighted_credits
l Write gpa

– Close the files
l Close the input file
l Close the output file

C. Hundhausen, A. O’Fallon18

Problem Solving Example (4)
l The GPA example revisited (now with file processing)
double get_grade_point (FILE *infile);
int get_credits (FILE *infile);
int compute_total_num_credits (int num_credits1, int num_credits2, int num_credits3);
double compute_weighted_credits (double grade_point1, double grade_point2, double grade_point3,

int num_credits1, int num_credits2, int num_credits3);
double compute_gpa (double weighted_credits, int total_num_credits);
void display_gpa (FILE * outfile, double weighted_credits, int total_num_credits, double gpa);

int main (void)
{

int num_credits1 = 0, num_credits2 = 0, num_credits3 = 0;
double grade_point1 = 0.0, grade_point2 = 0.0, grade_point3 = 0.0,

weighted_credits = 0.0, total_num_credits = 0.0, gpa = 0.0;
FILE * infile = NULL, *outfile = NULL; /* Variables that will allow for manipulation of our file streams */

/* Need to open an input file and output file */
infile = fopen (“input.txt”, “r”); /* Input file opened with read permisions “r” */
outfile = fopen (“output.txt”, “w”); /* Output file opened with write permissions “w” */

/* Get the grade points and credits from the input file */
/* The input file, “input.txt”, stores the grade point and number of credits for a class on separate lines */
grade_point1 = get_grade_point (infile);
num_credits1 = get_credits (infile);

grade_point2 = get_grade_point (infile);
num_credits2 = get_credits (infile);

grade_point3 = get_grade_point (infile);
num_credits3 = get_credits (infile);

C. Hundhausen, A. O’Fallon19

Problem Solving Example (5)
/* Sum up the credits for each course */
total_num_credits = compute_total_num_credits (num_credits1, num_credits2,

num_credits3);

/* Compute credit hours earned */
weighted_credits = compute_weighted_credits (grade_point1, grade_point2, grade_point3,

num_credits1, num_credits2, num_credits3);

/* Compute gpa */
gpa = compute_gpa (weighted_credits, total_num_credits);

/* Write the results to output file, “output.txt” */
display_gpa (outfile, weighted_credits, total_num_credits, gpa);

/* Don’t forget to close your files! */
fclose (infile);
fclose (outfile);

return 0;
}

C. Hundhausen, A. O’Fallon20

Problem Solving Example (6)

l Definition of get_grade_point ()
/* Reads a grade point earned for a class from a file */

double get_grade_point (FILE *infile)
{

double grade_point = 0.0;

fscanf (infile, "%lf", &grade_point);

return grade_point;
}

C. Hundhausen, A. O’Fallon21

Problem Solving Example (7)

l Definition of get_credits ()
/* Reads the number of credits earned for a class from a file.

Precondition: the file referred to by infile must already be open.*/

int get_credits (FILE *infile)
{

int num_credits = 0;

fscanf (infile, "%d", &num_credits);

return num_credits;
}

C. Hundhausen, A. O’Fallon22

Problem Solving Example (8)

l Definition of compute_total_num_credits ()
/* Sums up the total number of credits earned for 3 courses */

Int compute_total_num_credits (int num_credits1, int num_credits2,
int num_credits3)

{
int total_num_credits = 0;

total_num_credits = num_credits1 + num_credits2 + num_credits3;

return total_num_credits;
}

C. Hundhausen, A. O’Fallon23

Problem Solving Example (9)

l Definition of
compute_weighted_credits ()

double compute_weighted_credits (double grade_point1, double grade_point2,
double grade_point3, int num_credits1, int num_credits2, int num_credits3)

{
double weighted_credits = 0.0;

weighted_credits = (grade_point1 * num_credits1) + (grade_point2 *
num_credits2) + (grade_point3 * num_credits3);

return weighted_credits;
}

C. Hundhausen, A. O’Fallon24

Problem Solving Example (10)

l Definition of compute_gpa ()

double compute_gpa (double weighted_credits, int total_num_credits)
{

double gpa = 0.0;

gpa = weighted_credits / total_num_credits;

return gpa;
}

C. Hundhausen, A. O’Fallon25

Problem Solving Example (11)

l Definition of display_gpa ()
/* Outputs the calculated values to a file */

void display_gpa (FILE *outfile, double weighted_credits,
int total_num_credits, double gpa)

{
fprintf (outfile, “Weighted Credits: %.2lf\n

Total Credits: %d\n
GPA: %.2lf\n", weighted_credits,
total_num_credits, gpa);

}

C. Hundhausen, A. O’Fallon26

Closing Thoughts on Files

l Files are required for many applications
l C has no direct support for random-access to

data in files
– Must handle data in files sequentially

l Files may be created and manipulated in any
manner appropriate for an application

C. Hundhausen, A. O’Fallon27

References

l J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8th Ed.), Addison-
Wesley, 2016

C. Hundhausen, A. O’Fallon28

Collaborators

l Chris Hundhausen

http://eecs.wsu.edu/~hundhaus/

