
(4-2) Selection Structures in C
H&K Chapter 4

Instructor – Beiyu Lin 
CptS 121 (May 14th, 2019)
Washington State University



C. Hundhausen, A. O’Fallon, B. Lin2

Agile Methodology – Software 
Development

Goal! Sprint 0 Sprint 1 

Sprint 2 Sprint 3 



C. Hundhausen, A. O’Fallon, B. Lin3

Agile Methodology – Sprint Planning



C. Hundhausen, A. O’Fallon4

Control Structures

l Recall that algorithms are composed of 
three different kinds of statements:
– Sequence: the ability to execute a series of 

instructions, one after the other.
– Conditional: the ability to execute an instruction 

contingent upon some condition.
– Iteration: the ability to execute one or more 

instructions repeatedly.
l This week, we'll learn about conditionals: the 

ability to execute some code IF some 
condition is true.



C. Hundhausen, A. O’Fallon5

Conditions (1)

l Conditional statements rely on a Boolean 
condition, which evaluates to either true or 
false

l In C, the true and false values are actually 
represented numerically:
– False: 0
– True: any number except 0 (usually 1)

l Relational operators are used to build 
Boolean conditions:
– < (less than), > (greater than), <= (less than or 

equal to), >= (greater than or equal to), ==
(equal to), != (not equal to)



C. Hundhausen, A. O’Fallon6

Conditions (2)

l Examples
– Assume x = 3, y = 4, max = 100, min 
= 0, and ch = 'c'

– Then what do the following evaluate to?
x <= 0

x == y

max >= min
ch < 'a'

max

min != 0

max == 99 + 1

min – 50 < 0



C. Hundhausen, A. O’Fallon7

Conditions (3)

l Logical operators
– We can combine relational operators with logical 

operators to construct general Boolean 
expressions in C:
l AND: && (A single '&' is 
different.)

l OR: || (A single '|' is different.)
l NOT: !

– Examples
l Assume that temp = 50, MAX_TEMP = 90, precip 
= 2.0, num_votes = 20, votes_needed = 20, 
and elected = 0;

l Then evaluate these:
(temp < MAX_TEMP) && (precip > 0)
(num_votes >= votes_needed) || (!elected)



C. Hundhausen, A. O’Fallon8

Conditions (4)

l Operator precedence
– Just like numeric operators (+, -, /, *), logical operators 

have precedence rules that determine order of evaluation
– From highest to lowest, the precedences are as follows: 

[Most are left-to-right; but not assignment]
function calls (highest)
!, +, -, & (unary operators)
*, /, %

+, -

<, <=, >=, >

==, !=

&&

||

= (assignment) (lowest)



C. Hundhausen, A. O’Fallon9

Conditions (5)

l Operator precedence (cont.)
– When in doubt, parenthesize!

l How will the expression

x + y < z – a

evaluate?
l Answer: (x + y) < (z – a)

l Nonetheless, it's a good idea to parenthesize as above 
in order to make the order of evaluation clear

l However, over-parenthesizing may decrease code 
readability



C. Hundhausen, A. O’Fallon10

Conditions (6)

l Operator precedence (cont.)
– Consider the expression
!flag || (y + z >= x – z)

– Here's how it's evaluated, assuming
flag = 0, y = 4.0, z = 2.0, and x = 3.0:



C. Hundhausen, A. O’Fallon11

Conditions (7)

l Short-circuit evaluation
– Notice that, in case of && (and), if the first part of 

expression is false, the entire expression must 
be false
l Example: (5 < 3) && (4 > 3)

– Likewise, in case of || (or), if the first part of 
expression is true, the entire expression must be 
true
l Example: (4 > 2) || (2 > 3)

– In these two cases, C short-circuits evaluation
l Evaluation stops after first part of expression is 

evaluated



C. Hundhausen, A. O’Fallon12

Conditions (8)

l Logical assignment
– It is possible to assign a logical expression to 

an int variable
– Example:

int temp; /* input, the current temperature */
int below_freezing /* temperature state */
scanf("%d",&temp);
below_freezing = (temp < 32); /* Sets temperature 

state variable */

– The below_freezing variable can then be 
involved in logical expressions, for example:

below_freezing && (dew_point < 32)



C. Hundhausen, A. O’Fallon13

Conditions (9)

l Complementing conditions
– The complement of a condition can be obtained 

by applying the ! operator
– Example: The complement of temp > 32 is
!(temp > 32), which can also be written as 
temp <= 32

– Example: The complement of temp == 32 is 
!(temp == 32), which can also be written as 
(temp != 32)



C. Hundhausen, A. O’Fallon14

Conditions (10)

l Complementing conditions (cont.)
– Use DeMorgan's laws to complement compound logical 

expressions:
l The complement of X && Y is !X || !Y
l The complement of X || Y is !X && !Y
l Example:
(temp > 32) && (skies == 'S' || skies == 'P')

would be complemented as follows:
(temp <= 32) || (skies != 'S' && skies != 'P')

Assuming that 'S' stands for sunny and 'P' stands for partly cloudy, 
the original condition is true if the temperature is above freezing and 
the skies are either sunny or partly cloudy. The complemented 
condition is true if the temperature is at or below freezing, and the 
skies are neither sunny nor partly cloudy.



C. Hundhausen, A. O’Fallon15

The if Statement

l The if statement supports conditional execution in C:
if <test>
{
<body>

}
l <test> must be an expression that can be evaluated 

to either true or false (non-zero or zero)
l <body> is one or more C statements.
l Although it is not required in cases where body has 

exactly one statement, it is better style to always 
enclose <body> in curly braces



C. Hundhausen, A. O’Fallon16

The if-else statement

l C also defines an ‘if-else’ statement:
if <test>
{

<body-if-test-is-true>
}
else
{

<body-if-test-is-false>
}
l Note that only one of the two <body> blocks can be 

executed each time through this code. In other 
words, they are “mutually exclusive”.

l Also note else has no <test> condition.



C. Hundhausen, A. O’Fallon17

Modeling

l A large part of software engineering is modeling
l We will define modeling as the practice of 

abstracting details to make software development 
more comprehendible

l Helps with designing and quality
l Models are usually visual/diagrams
l A flowchart is a model representing a process



C. Hundhausen, A. O’Fallon18

Flowcharts (1)

l Diagram that uses boxes and arrows to show the 
step-by-step execution of a control structure

l Diamond shapes represent decisions
l Always one path into a decision and two going out

– The paths are a result of false and true conditions
l We should construct flowcharts as part of our design 

of algorithms before implementation



C. Hundhausen, A. O’Fallon, B. Lin19

Flowcharts (2)

l Below is an example of a flowchart:



C. Hundhausen, A. O’Fallon, B. Lin20

Flowcharts (3)

l What does the associated C code look like for the previous 
flowchart?

…
if (temperature > 32)
{

printf (“It’s warm out!\n”);
}
else
{

printf (“It’s freezing out!\n”);
}



C. Hundhausen, A. O’Fallon21

Flowcharts (3)

l What does the associated C code look like for the previous 
flowchart?



C. Hundhausen, A. O’Fallon22

You Try It
l What does this do? (Careful!) The condition is always evaluated to 3. 

We want x == 3!
int x = 0;
if (x = 3)
{

printf(“x is small\n”);
}

l What does this do?
int x = y = z = 0;
y = y + 4;
z = z * x;
if (z > y)
{

printf(“Z: %d.\n”, z + 1);
}
else
{

printf(“X: %d.\n“, x - 1);
}



C. Hundhausen, A. O’Fallon23

Example Application (1)

lBuild a payroll system that
– prompts for employee pay rate,
– prompts for first week’s work hours,
– prompts for second week’s work hours,
– prompts for third week’s work hours, and
– displays the employee’s paycheck amount
– Special conditions:

lOvertime (> 40 hours) is time-and-a-half.
lIssue warning whenever prior two weeks’ overtime exceeds 
30 hours.



C. Hundhausen, A. O’Fallon24

Example Application (2)

l Example execution

Enter hourly pay rate: 8.00
Enter week1 hours: 40

Paycheck is: 320.00
Enter week2 hours: 60

Paycheck is: 560.00
Enter week3 hours: 60

Paycheck is: 560.00
Warning! Overtime is: 40



C. Hundhausen, A. O’Fallon25

Example Application (3)

l Analysis/Data Requirements
– Inputs:

l hourly_rate (double)
l week1_hours (double)

l week2_hours (double)

l week3_hours (double)

– Outputs
l Paycheck_amount

l Warning if two consecutive weeks’ overtime hours 
exceed 30



C. Hundhausen, A. O’Fallon26

Example Application (4)
l Design

– Initial algorithm
l Get employee pay rate and weekly hours
l Calculate paycheck amount
l Display paycheck amount
l Display warning

– Refined algorithm
l Get employee pay rate and weekly hours
l For each week of pay

– Calculate paycheck amount 
l If hours > 40 

overtime = hours – 40
else
overtime = 0

l If overtime = 0 then
pay = pay_rate * hours

else
pay = pay_rate * 40 + (1.5 * pay_rate * overtime)

– Display warning
l If overtime for two consecutive weeks > 30 then

display warning



C. Hundhausen, A. O’Fallon27

Example Application (5)

l Structure chart
Compute pay amount of an 

employee

Get employee 
data

Compute pay 
amount

get_payrate
get_hours

compute_paycheck_amount()
compute_overtime()

Display paycheck 
amount

display_paycheck_amount()
display_warning()



C. Hundhausen, A. O’Fallon28

Example Application (6)
/*** Computes the paycheck amount of an employee. ***/
#include <stdio.h> /* printf, scanf defs */

/*** Function prototypes ***/
double get_employee_payrate(void); /* prompts and reads in payrate */
double get_employee_hours(int) /* prompts and reads in weekly hours */
double compute_paycheck_amount(double, double); /* computes weekly pay */
double compute_overtime(double); /* computes hours of overtime */
void display_paycheck_amount(double); /* displays the pay amount */
void display_warning(double); /* displays a warning message if */

/* overtime exceeds 30.0 hours */
int main(void)
{

char *name;
double pay_rate, hours1, hours2, hours3, overtime1, overtime2, overtime3,

pay1, pay2, pay3;
overtime1 = overtime2 = overtime3 = 0.0;
pay_rate =  get_payrate();
hours1 = get_hours(1);
pay1 = compute_paycheck_amount(hours1,pay_rate);
overtime1 = compute_overtime(hours1);
display_paycheck_amount(pay1);



C. Hundhausen, A. O’Fallon29

Example Application (7)
hours2 = get_hours(2);

pay2 = compute_weekly_pay(hours2,pay_rate);

overtime2 = compute_overtime(hours2); 
display_paycheck_amount(pay2);
display_warning(overtime1 + overtime2); // displays warning only

// if overtime exceeds 30

hours3 = get_employee_hours(3);
pay3 = compute_weekly_pay(hours3,pay_rate);
overtime3 = compute_overtime(hours3);

display_paycheck_amount(pay3);
display_warning(overtime2 + overtime3); // displays warning only

// if overtime exceeds 30
}

/*** Your function definitions go here ... ***/



Common Mistakes with if Statements 

l Using = (assignment) instead of == (logical 
equality) 
– The compiler will NOT catch this mistake!

l Using if-else when if-if should be used
– Remember else does not have an explicit 

condition associated with it
l Using logical AND (&&) instead of logical OR 

(||) and vice versa
– Also single & and | will perform bitwise 

operations!
C. Hundhausen, A. O’Fallon30



C. Hundhausen, A. O’Fallon31

Next Lecture…

l Nested if-else statements
l switch statements
l Another example



C. Hundhausen, A. O’Fallon32

References

l J.R. Hanly & E.B. Koffman, Problem Solving 
and Program Design in C (8th Ed.), Addison-
Wesley, 2016

l P.J. Deitel & H.M. Deitel, C How to Program 
(7th Ed.), Pearson Education , Inc., 2013.



C. Hundhausen, A. O’Fallon33

Collaborators

l Chris Hundhausen
l Andrew O’Fallon

http://eecs.wsu.edu/~hundhaus/

