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Iterative Constructs (1)

l Recall that algorithms are composed of 
three different kinds of statements:
– Sequence: the ability to execute a series of 

instructions, one after the other.
– Conditional: the ability to execute an instruction 

contingent upon some condition.
– Iteration: the ability to execute one or more 

instructions repeatedly.
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Iterative Constructs (2)

Count the number of people each day in the 
room Sloan 138 for the month of May:
- Only count on weekday
- For each weekday, only count at 11am
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Iterative Constructs (3)

l How to decide when a loop is needed
Are any steps repeated? 

– No à No loop required
– Yes à Do you know in advance 

how many steps are repeated?
l No à Use a conditional loop
l Yes à Use a counting loop

Graph is from: https://www.geeksforgeeks.org/loops-in-c-and-cpp/
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Iteration Constructs (3)

l We'll discuss several loop patterns:
– Counter loops 

l ( e.g. calculate a student’s GPA based on 3 courses)

– Conditional loops 
l (e.g. stop calculating GPA if the grade of a course < 80)

– Sentinel-controlled loops
l (e.g. calculate accumulated GPA as long as the tuition < $12000)
l Tuition = class1 * credits1 + class2*credits2 + ….. 

– End-of-file controlled loops
l (e.g. read to the end of the file)

– Flag-controlled loops
l (e.g. use a flag status)
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Iterative Constructs (3)

l Kinds of loops
– Counting loop (for or while): executes a fixed number of 

times)
– Sentinel-controlled or Endfile-Controlled loop (for or 

while):  (process data until a special value is 
encountered, e.g., end-of-file)

– Input validation loop (do-while): Repeatedly accept 
interactive input until a value within a specified range is 
entered

– General conditional loop (while, for): Repeatedly 
process data until a desired condition is met
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Counter Loops

l Implementing Counter Loops: the while loop
while (<repetition-condition>) 

{

<body>
}

=================================================================================

e.g. Calculate the monthly payment.

(pseudo code was written on the white board.)

(The living coding results in class was uploaded on the course website. )

Simple example: 

int i = 0;

while(i<3)
{

printf(“Hello”); 
i++;

}
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Counter Loops

l Another alternative for implementing Counter 
Loops: the for loop
for (<initialization>; <repetition-condition>;<update-expression>) 

{

<body>

}
==============================================================

( detailed examples/pseudocode were written on the whiteboard.)

Simple example:

for (i = 0; i< 3; i++)

{

printf(“Hello”);
}
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Counter Loops (3)

l Notes on while loops:
– <repetition-condition> is evaluated at beginning of 

loop. If it evaluates to true, the loop body is executed. If it 
evaluates to false, control shifts to first statement after 
loop body

– <body> contains one or more C statements
– After last statement in <body> is executed, control is 

shifted back to beginning of loop, and <repetition-
condition> is re-evaluated.

– “Progress” must be made within the loop. That is, 
something must be done so that <repetition-
condition> eventually evaluates to false. Otherwise we 
have an “infinite loop”
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Counter Loops (6)

l Notes on for loops:
– <initialization> statement initializes the loop control 

variables before loop is executed the first time
– <repetition-condition> is tested at beginning of 

loop. If it is true, loop <body> is executed.
– <body> contains one or more C statements
– After last statement in <body> is executed, control is 

shifted back to beginning of loop. Then, <update-
expression> is executed. Finally, <repetition-
condition> is re-evaluated.

– As with while loops, the <update-expression> must 
define “progress.” That is, something must be done so that 
<repetition-condition> eventually evaluates to 
false. Otherwise we have an “infinite loop”
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Aside: Compound Assignment 
Operators

l Notice that the <update-expression>s in loops are 
often of the form:
count = count + 1

l C defines special assignment operators to define 
statements of this form more compactly:
– count += 1 is equivalent to count = count + 1
– count -= increment is equivalent to count = count 

– increment
– product *= product is equivalent to product = 

product * product
– sum /= divisor is equivalent to sum = sum/divisor
– remainder %= 2 is equivalent to remainder = 

remainder % 2
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Aside: Increment and Decrement 
Operators (1)

l The ++ and -- operators take a single variable as 
their operands. The side effect of the operator is to 
increment or decrement its operand by one:
– count++ has the effect of count = count + 1
– count-- has the effect of count = count – 1

l Note: ++ and -- can be placed either before or 
after their variable operator:

– Pre-increment or pre-decrement (e.g., ++count, 
--count ): value of expression is value of variable after
the increment or decrement is applied

– Post-increment of post-decrement (e.g., count++,
count--): value of expression is value of variable before
the increment or decrement is applied
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Aside: Increment and Decrement 
Operators (2)

l You try it: What are the values of i, j, and k after 
each of the following statements is executed?
int i, j, k;
i = 2;
j = 3 + i++; 
k = 3 + ++i; 
i *= ++k + j--; 
i /= k-- + ++j; 

l Let’s do the coding for GPA calculation using what 
we learned today!
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Next Lecture…

l We'll discuss several additional loop 
patterns:
– Conditional loops
– Sentinel-controlled loops
– Endfile-controlled loops
– Flag-controlled loops
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