
(6-1) Iteration in C
H&K Chapter 5

Instructor – Beiyu Lin
CptS 121 (May 20th, 2019)
Washington State University

C. Hundhausen, A. O’Fallon, B. Lin2

Iterative Constructs (1)

l Recall that algorithms are composed of
three different kinds of statements:
– Sequence: the ability to execute a series of

instructions, one after the other.
– Conditional: the ability to execute an instruction

contingent upon some condition.
– Iteration: the ability to execute one or more

instructions repeatedly.

C. Hundhausen, A. O’Fallon, B. Lin3

Iterative Constructs (2)

Count the number of people each day in the
room Sloan 138 for the month of May:
- Only count on weekday
- For each weekday, only count at 11am

C. Hundhausen, A. O’Fallon, B. Lin4

Iterative Constructs (3)

l How to decide when a loop is needed
Are any steps repeated?

– No à No loop required
– Yes à Do you know in advance

how many steps are repeated?
l No à Use a conditional loop
l Yes à Use a counting loop

Graph is from: https://www.geeksforgeeks.org/loops-in-c-and-cpp/

C. Hundhausen, A. O’Fallon, B. Lin5

Iteration Constructs (3)

l We'll discuss several loop patterns:
– Counter loops

l (e.g. calculate a student’s GPA based on 3 courses)

– Conditional loops
l (e.g. stop calculating GPA if the grade of a course < 80)

– Sentinel-controlled loops
l (e.g. calculate accumulated GPA as long as the tuition < $12000)
l Tuition = class1 * credits1 + class2*credits2 + …..

– End-of-file controlled loops
l (e.g. read to the end of the file)

– Flag-controlled loops
l (e.g. use a flag status)

C. Hundhausen, A. O’Fallon6

Iterative Constructs (3)

l Kinds of loops
– Counting loop (for or while): executes a fixed number of

times)
– Sentinel-controlled or Endfile-Controlled loop (for or

while): (process data until a special value is
encountered, e.g., end-of-file)

– Input validation loop (do-while): Repeatedly accept
interactive input until a value within a specified range is
entered

– General conditional loop (while, for): Repeatedly
process data until a desired condition is met

C. Hundhausen, A. O’Fallon, B. Lin7

Counter Loops

l Implementing Counter Loops: the while loop
while (<repetition-condition>)

{

<body>
}

===

e.g. Calculate the monthly payment.

(pseudo code was written on the white board.)

(The living coding results in class was uploaded on the course website.)

Simple example:

int i = 0;

while(i<3)
{

printf(“Hello”);
i++;

}

C. Hundhausen, A. O’Fallon, B. Lin8

Counter Loops

l Another alternative for implementing Counter
Loops: the for loop
for (<initialization>; <repetition-condition>;<update-expression>)

{

<body>

}
==

(detailed examples/pseudocode were written on the whiteboard.)

Simple example:

for (i = 0; i< 3; i++)

{

printf(“Hello”);
}

C. Hundhausen, A. O’Fallon9

Counter Loops (3)

l Notes on while loops:
– <repetition-condition> is evaluated at beginning of

loop. If it evaluates to true, the loop body is executed. If it
evaluates to false, control shifts to first statement after
loop body

– <body> contains one or more C statements
– After last statement in <body> is executed, control is

shifted back to beginning of loop, and <repetition-
condition> is re-evaluated.

– “Progress” must be made within the loop. That is,
something must be done so that <repetition-
condition> eventually evaluates to false. Otherwise we
have an “infinite loop”

C. Hundhausen, A. O’Fallon10

Counter Loops (6)

l Notes on for loops:
– <initialization> statement initializes the loop control

variables before loop is executed the first time
– <repetition-condition> is tested at beginning of

loop. If it is true, loop <body> is executed.
– <body> contains one or more C statements
– After last statement in <body> is executed, control is

shifted back to beginning of loop. Then, <update-
expression> is executed. Finally, <repetition-
condition> is re-evaluated.

– As with while loops, the <update-expression> must
define “progress.” That is, something must be done so that
<repetition-condition> eventually evaluates to
false. Otherwise we have an “infinite loop”

C. Hundhausen, A. O’Fallon11

Aside: Compound Assignment
Operators

l Notice that the <update-expression>s in loops are
often of the form:
count = count + 1

l C defines special assignment operators to define
statements of this form more compactly:
– count += 1 is equivalent to count = count + 1
– count -= increment is equivalent to count = count

– increment
– product *= product is equivalent to product =

product * product
– sum /= divisor is equivalent to sum = sum/divisor
– remainder %= 2 is equivalent to remainder =

remainder % 2

C. Hundhausen, A. O’Fallon12

Aside: Increment and Decrement
Operators (1)

l The ++ and -- operators take a single variable as
their operands. The side effect of the operator is to
increment or decrement its operand by one:
– count++ has the effect of count = count + 1
– count-- has the effect of count = count – 1

l Note: ++ and -- can be placed either before or
after their variable operator:

– Pre-increment or pre-decrement (e.g., ++count,
--count): value of expression is value of variable after
the increment or decrement is applied

– Post-increment of post-decrement (e.g., count++,
count--): value of expression is value of variable before
the increment or decrement is applied

C. Hundhausen, A. O’Fallon, B. Lin13

Aside: Increment and Decrement
Operators (2)

l You try it: What are the values of i, j, and k after
each of the following statements is executed?
int i, j, k;
i = 2;
j = 3 + i++;
k = 3 + ++i;
i *= ++k + j--;
i /= k-- + ++j;

l Let’s do the coding for GPA calculation using what
we learned today!

C. Hundhausen, A. O’Fallon14

Next Lecture…

l We'll discuss several additional loop
patterns:
– Conditional loops
– Sentinel-controlled loops
– Endfile-controlled loops
– Flag-controlled loops

C. Hundhausen, A. O’Fallon15

References

l J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8th Ed.), Addison-
Wesley, 2016

l P.J. Deitel & H.M. Deitel, C How to Program
(7th Ed.), Pearson Education, Inc., 2013.

C. Hundhausen, A. O’Fallon16

Collaborators

l Chris Hundhausen
l Andrew O'Fallon

http://eecs.wsu.edu/~hundhaus/
https://www.eecs.wsu.edu/~aofallon/

