
(6-2) Iteration in C II
H&K Chapter 5

Instructor – Beiyu Lin
CptS 121 (May 21st, 2019)
Washington State University

C. Hundhausen, A. O’Fallon, B. Lin2

Don’t Forget About Flowcharts!

l Recall: flowcharts provide visual
representations of algorithms and/or
processes

l Excellent tool for verifying logical
flow

Graph is from: https://www.geeksforgeeks.org/loops-in-c-and-cpp/

C. Hundhausen, A. O’Fallon3

General Structure of Flowchart for
Loops

Process body
of loop

Condition?

Yes or
T

No or
F

C. Hundhausen, A. O’Fallon, B. Lin4

Iteration Constructs

l We'll discuss several loop patterns:
– Counter loops

l (e.g. calculate a student’s GPA based on 3 courses)

– Conditional loops
l (e.g. calculate accumulated GPA as long as the tuition < $12000)
l Tuition = class1 * credits1 + class2*credits2 + …..

– Sentinel-controlled loops
l (e.g. user tells to stop the loop, such as enter “n” to stop the loop).

– End-of-file controlled loops
l (e.g. read to the end of the file)

– Flag-controlled loops
l (e.g. make sure the data enter in a certain format.)

C. Hundhausen, A. O’Fallon5

Conditional Loops

l In the previous lecture, we considered loops
whose number of iterations was known at
the time the loop started

l In practice, we don’t always know in
advance how many times a loop will
execute!
– Often, the loop body itself determines whether

another execution is necessary

C. Hundhausen, A. O’Fallon, B. Lin6

Conditional Loops (2)
l Consider, for example, the following extension to the Tollbooth

application:
– Suppose that, there is a restriction that a student can not take

more courses when the total credits in that semester reach 18.

– Suppose that you want to read in grades and course information
(credit, course ID) from a file to calculate the accumulated GPA.

– When the maximum credits has been reached, not more data are
read from file.

– The program prints out a message reporting
l the tuition for that semester
l the number and total credits of all classes for a student in that

semester.
(Pseudo code was written on the white board.)
(Live coding results are uploaded to the course website.)

C. Hundhausen, A. O’Fallon, B. Lin7

Conditional Loops (4)

l A possible sequence of questions that can guide loop design,
applied to previous example

Question Answer Implications for
design

1. What are the inputs? Class ID, credit,
grade

Input vars:
class_id,
credit, grade

2. What are the outputs? Total credits; number
of classes; Tuition for
that semester

Output vars:
total_credits,
number_classes;
tuitioins;

C. Hundhausen, A. O’Fallon8

Conditional Loops (5)

l A possible sequence of questions that can guide loop design,
applied to previous example (cont.)

Question Answer Implications for design
3. Is there repetition? Yes! We repeatedly Program variable

needed:
MAX_CREDITS;

C. Hundhausen, A. O’Fallon9

Conditional Loops (6)

l A possible sequence of questions that can guide loop design,
applied to previous example (cont.)

Question Answer Implications for design
4. Do I know in advance
how many steps will be
repeated?

No. Loop will NOT be
controlled by counter

5. How do I know how long
to keep repeating steps?

As long as the total
credits of the semester
is below the maximum

The loop repetition
condition is
total_credits
<MAX_CREDITS;

C. Hundhausen, A. O’Fallon, B. Lin10

Sentinel-Controlled Loops (1)

l Often we want to continue looping until a certain
value, called a “sentinel,” is encountered

l For example, suppose we change the requirements
of the Tollbooth application slightly:

– There is no maximum on the total credits of the semester
that a student can take.

– We will read in the data of classes interactively
– The user will tell us that there are no more classes for the

semester by entering ‘n’ when asked whether there is
another class that needs to cross (‘n’ = “No” the sentinel
value)

(Pseudo code was written on the white board.)
(Live coding results are uploaded to the course website.)

C. Hundhausen, A. O’Fallon, B. Lin11

Endfile-Controlled Loops (1)

l Often, as in the original GPA application, we
read input data in from a file

l We want to continue processing data until
there is no more data to process

l In other words, we want to continue
processing data until the end of the file is
encountered

l We can use the end-of-file-controlled loop
pattern to do this

C. Hundhausen, A. O’Fallon, B. Lin12

Endfile-Controlled Loops (2)

l For example, suppose that we change the
requirements of the GPA calculation again

– We will read the input values from a text file
– We will continue reading class information and

credits until we reach the end of the file
– Let's look at the implementation…

(Pseudo code was written on the white board.)
(Live coding results are uploaded to the course website.)

C. Hundhausen, A. O’Fallon13

Endfile-Controlled Loops (3)
l fscanf actually returns a value indicating the number of

items it successfully reads in
l If it encounters the end of the file, it returns as its result the

value of the standard constant EOF (which is a negative
integer)

l We can thus redesign read_num_axles to return EOF if it
encounters the end of the file:
int read_num_axles(FILE *infile) {

int num_axles, input_status;
input_status = fscanf(infile,”%d”,&num_axles);
if (input_status != EOF)
return (num_axles);

else
return input_status;

}

C. Hundhausen, A. O’Fallon14

Flag-Controlled Loops (1)

l In the previous examples, we have assumed that
input data are always in the proper format:

– When we ask for the number of axles, we will obtain an
integer (either interactively from the user, or from the input
file)

– When we ask for the weight, we will obtain a double
(either interactively from the user, or from the input file)

l In the real world, this assumption is faulty
– People enter invalid data all the time
– Files contain invalid data all the time

l Flag-controlled loops ensure that valid data are
read in

C. Hundhausen, A. O’Fallon, B. Lin15

Flag-Controlled Loops (2)

l Recall that the fscanf function returns EOF when the end of the
file is encountered

l Likewise fscanf and scanf return the value 0 when at least
one the data values it reads in could not be converted to the
specified type

– For example, assume the following scanf statement
–

int my_int, input_status;
printf("Please enter an integer: ");
input_status = scanf("%d",&my_int);

If the user were to type in "wow" here, input_status would
be assigned the value 0, since "wow" cannot be converted
to an int

(Example in class: read in the date type “dd/mm/yyyy”.
pseudo code was on the white board, including usig do while loop.
Live coding results is on the course website.)

C. Hundhausen, A. O’Fallon16

Flag-Controlled Loops (3)

l The final C interative construct, the do-while loop,
can be used to trap this situation and re-prompt the
user:

int my_int, input_status;
char skip_ch;
do {

printf("Please enter an integer: ");
input_status = scanf("%d",&my_int);
do { /* nested do-while skips rest of data line */

scanf("%c", skip_ch);
} while (skip_ch != '\n');

} while (input_status == 0);

Notice that, unlike the while and for loop constructs, the
do-while loop construct is guaranteed to execute at
least once.

C. Hundhausen, A. O’Fallon17

References

l J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8th Ed.), Addison-
Wesley, 2016

l P.J. Deitel & H.M. Deitel, C How to Program
(7th Ed.), Pearson Education , Inc., 2013.

C. Hundhausen, A. O’Fallon, B. Lin18

Collaborators

l Chris Hundhausen
l Andrew O'Fallon

http://eecs.wsu.edu/~hundhaus/
https://www.eecs.wsu.edu/~aofallon/

