
(8-1) Arrays I
H&K Chapter 7

Instructor – Beiyu Lin
CptS 121 (May 23rd, 2019)
Washington State University

C. Hundhausen, A. O’Fallon, B. Lin2

What is an array?

Graphs are from:
https://michaelscodingspot.com/array-iteration-vs-parallelism-in-c-net/
https://www.programiz.com/c-programming/c-arrays

https://michaelscodingspot.com/array-iteration-vs-parallelism-in-c-net/

C. Hundhausen, A. O’Fallon3

What is an array?

l A sequence of items that are contiguously
allocated in memory

l All items in the array are of the same data
type and of the same size

l All items are accessed by the same name,
but a different index

C. Hundhausen, A. O’Fallon4

More About Arrays

l An array is a data structure
– A data structure is a way of storing and organizing

data in memory so that it may be accessed and
manipulated efficiently

C. Hundhausen, A. O’Fallon, B. Lin5

Uses for Arrays?

l Store related information
– Student ID numbers
– Names of players on the Seattle Mariners roster
– Scores for each combination in Yahtzee

Battleship Game

Graphs are from:
https://www2.cs.arizona.edu/classes/cs120/fall17/ASSIGNMENTS/assg06/example-battleship.html
https://www.thoughtco.com/probability-of-rolling-a-yahtzee-3126593

https://www2.cs.arizona.edu/classes/cs120/fall17/ASSIGNMENTS/assg06/example-battleship.html

C. Hundhausen, A. O’Fallon, B. Lin6

The Many Dimensions of an Array

l A single dimensional array is logically viewed
as a linear structure

l A two dimensional array is logically viewed
as a table consisting of rows and columns

Graphs are from: https://study.com/academy/lesson/declaring-one-dimensional-arrays-definition-example.html
https://beginnersbook.com/2014/01/2d-arrays-in-c-example/

C. Hundhausen, A. O’Fallon7

Declaring a Single Dimensional Array
(1)

l Arrays are declared in much the same way as
variables:

int a[6];
declares an array a with 6 cells that hold integers:

Notice that array indexing begins at 0.

10 12 0 89 1 91

a[0] a[1] a[2] a[3] a[4] a[5]

C. Hundhausen, A. O’Fallon8

Declaring a Single Dimensional Array
(2)

l We can declare arrays alongside simple
variables:
int students[100], count, teachers[50];

double gpa[100], average;

char ch, name[100]; /* name is actually a string */

C. Hundhausen, A. O’Fallon9

Manipulating Array Cells

l Assuming the previous array:

all of the following statements are valid:
a[0] = 4; /* changes the value of a[0] from 10 to 4 */
a[2] += 2; /* sets the value of a[2] to 2 */
a[5] = a[3] – a[4]; /* sets the value of a[5] to 88 */

10 12 0 89 1 91

a[0] a[1] a[2] a[3] a[4] a[5]

C. Hundhausen, A. O’Fallon10

Initializing Arrays

l We can initialize arrays at the time we declare them
Just as

int count = 0;

is valid, so too is
int student_id[] = {3423, 8794, 4595, 1423,

4311,
5153, 9182, 1481, 1253,

1222,
2521, 2251, 2111};

Notice how you can omit the size of the array; the
compiler deduces the size from the number of
values listed.

C. Hundhausen, A. O’Fallon11

Array Subscripts

l We can do arithmetic on array subscripts! Assume this array:

Then all of the following are valid:
int x = 2;

printf("%d",a[x + 2]); /* a[4] == 1 */

printf("%d",a[2 * x – 1]); /* a[3] == 89 */

printf("%d",a[x] – a[x-1]); /* -12 */
printf("%d",a[++x]); /* a[3] == 89; x == 3 */

a[x – 1] = a[x – 2]; /* assigns 12 to a[2] */

printf("%d",a[x + 4]); /* Does a[7] exist? */

10 12 0 89 1 91

a[0] a[1] a[2] a[3] a[4] a[5]

C. Hundhausen, A. O’Fallon12

You Try It (1)

Write a segment of code that creates an
array of 10 double values, populates the
array with the values 1.0 through 10.0, and
finally exchanges the 1st and 10th values.

C. Hundhausen, A. O’Fallon13

You Try It (2)

Solution:
double array[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0

7.0, 8.0, 9.0, 10.0};

double temp;

temp = array[9];

array[9] = array[0];

array[0] = temp;

C. Hundhausen, A. O’Fallon14

Using Loops to Access Array Elements (1)

l We often need to process each element of
an array in turn
– Example: Computing the average, minimum,

and maximum of a group of values (sound
familiar?)

l We can accomplish this with a for loop that
goes from 0 to one less than the array size

C. Hundhausen, A. O’Fallon, B. Lin15

Find Minimum Review

int num1= 2, num2=3, num3=10, num4=1;
int temp = num1;
if (num2 < temp)
{

temp = num2;
}
If (num3< temp)
{

temp = num3;
}
If (num4 < temp)
{

temp = num4;
}

int nums[] = {2,3,10,1};
min_num = nums[0];
int i = 0;
length_arr= sizeof(nums)/sizeof(int);

for (i = 0; i<length_arr; i ++)
{

if (nums[i] < min_num)
{

min_num = nums[i];
}

}

Using Array

C. Hundhausen, A. O’Fallon16

Using Loops to Access Array Elements (2)

int scores [] = {56,78,12,90,85,74,95,80,40,95};
int count = 10, i, sum = 0, max = 0, min = 100;
double average;
for (i = 0; i < count; ++i) /* we loop from 0 to 9 */
{

sum += scores[i];
if (scores[i] > max)

max = scores[i];
if (scores[i] < min)

min = scores[i];
}
average = (double) sum / (double) count;
printf("average: %.2f\n",average);
printf("maximum: %d\n",max);
printf("minimum: %d\n",min);
/* Could also display a differences table here, just as

the book does (see Fig. 8.3, p. 377 */

C. Hundhausen, A. O’Fallon17

Passing Arrays as Parameters

l The previous example would exhibit better top-
down design if it broke the problem down into
functions:
– get_scores /* Let's assume that the scores

should be read from an input
file */

– compute_stats /* Given an array of
values, computes the
high, low, and average */

– display_stats /* Displays the high, low, and
average */

– display_differences_table /* displays a table of
the values read in
and the difference
between each value
and the mean */

C. Hundhausen, A. O’Fallon18

Next Lecture…

l We'll continue our exploration of arrays:
– Searching and sorting algorithms
– Multidimensional arrays

C. Hundhausen, A. O’Fallon19

References

l J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8th Ed.), Addison-
Wesley, 2016

l P.J. Deitel & H.M. Deitel, C How to Program
(7th Ed.), Pearson Education , Inc., 2013.

C. Hundhausen, A. O’Fallon20

Collaborators

l Chris Hundhausen
l Andrew O’ Fallon

http://eecs.wsu.edu/~hundhaus/

