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What is an array?

Graphs are from: 
https://michaelscodingspot.com/array-iteration-vs-parallelism-in-c-net/
https://www.programiz.com/c-programming/c-arrays

https://michaelscodingspot.com/array-iteration-vs-parallelism-in-c-net/
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What is an array?

l A sequence of items that are contiguously 
allocated in memory

l All items in the array are of the same data 
type and of the same size

l All items are accessed by the same name, 
but a different index
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More About Arrays

l An array is a data structure
– A data structure is a way of storing and organizing 

data in memory so that it may be accessed and 
manipulated efficiently
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Uses for Arrays?

l Store related information
– Student ID numbers
– Names of players on the Seattle Mariners roster
– Scores for each combination in Yahtzee

Battleship Game

Graphs are from: 
https://www2.cs.arizona.edu/classes/cs120/fall17/ASSIGNMENTS/assg06/example-battleship.html
https://www.thoughtco.com/probability-of-rolling-a-yahtzee-3126593

https://www2.cs.arizona.edu/classes/cs120/fall17/ASSIGNMENTS/assg06/example-battleship.html


C. Hundhausen, A. O’Fallon, B. Lin6

The Many Dimensions of an Array

l A single dimensional array is logically viewed 
as a linear structure

l A two dimensional array is logically viewed 
as a table consisting of rows and columns

Graphs are from: https://study.com/academy/lesson/declaring-one-dimensional-arrays-definition-example.html
https://beginnersbook.com/2014/01/2d-arrays-in-c-example/
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Declaring a Single Dimensional Array 
(1)

l Arrays are declared in much the same way as 
variables:

int a[6];
declares an array a with 6 cells that hold integers:

Notice that array indexing begins at 0.

10 12 0 89 1 91

a[0] a[1] a[2] a[3] a[4] a[5]
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Declaring a Single Dimensional Array 
(2)

l We can declare arrays alongside simple 
variables:
int students[100], count, teachers[50];

double gpa[100], average;

char ch, name[100]; /* name is actually a string */
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Manipulating Array Cells

l Assuming the previous array:

all of the following statements are valid:
a[0] = 4; /* changes the value of a[0] from 10 to 4 */
a[2] += 2; /* sets the value of a[2] to 2 */
a[5] = a[3] – a[4]; /* sets the value of a[5] to 88 */

10 12 0 89 1 91

a[0] a[1] a[2] a[3] a[4] a[5]
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Initializing Arrays

l We can initialize arrays at the time we declare them
Just as

int count = 0;

is valid, so too is
int student_id[] = {3423, 8794, 4595, 1423, 

4311,
5153, 9182, 1481, 1253, 

1222,
2521, 2251, 2111};

Notice how you can omit the size of the array; the 
compiler deduces the size from the number of 
values listed. 
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Array Subscripts

l We can do arithmetic on array subscripts! Assume this array:

Then all of the following are valid:
int x = 2;

printf("%d",a[x + 2]);      /* a[4] == 1 */

printf("%d",a[2 * x – 1]);  /* a[3] == 89 */

printf("%d",a[x] – a[x-1]); /* -12 */
printf("%d",a[++x]);        /* a[3] == 89; x == 3 */

a[x – 1] = a[x – 2];        /* assigns 12 to a[2] */

printf("%d",a[x + 4]); /* Does a[7] exist? */

10 12 0 89 1 91

a[0] a[1] a[2] a[3] a[4] a[5]
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You Try It (1)

Write a segment of code that creates an 
array of 10 double values, populates the 
array with the values 1.0 through 10.0, and 
finally exchanges the 1st and 10th values.
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You Try It (2)

Solution:
double array[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0

7.0, 8.0, 9.0, 10.0};

double temp;

temp = array[9];

array[9] = array[0];

array[0] = temp;
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Using Loops to Access Array Elements (1)

l We often need to process each element of 
an array in turn
– Example: Computing the average, minimum, 

and maximum of a group of values (sound 
familiar?)

l We can accomplish this with a for loop that 
goes from 0 to one less than the array size
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Find Minimum Review

int num1= 2, num2=3, num3=10, num4=1;
int temp = num1;
if (num2 < temp)
{

temp = num2;
}
If (num3< temp)
{

temp = num3;
}
If (num4 < temp)
{

temp = num4;
}

int nums[] = {2,3,10,1};
min_num = nums[0];
int i = 0;
length_arr= sizeof(nums)/sizeof(int);

for (i = 0; i<length_arr; i ++)
{

if (nums[i] < min_num)
{

min_num = nums[i];
}

}

Using Array
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Using Loops to Access Array Elements (2)

int scores [] = {56,78,12,90,85,74,95,80,40,95};
int count = 10, i, sum = 0, max = 0, min = 100;
double average;
for (i = 0; i < count; ++i) /* we loop from 0 to 9 */
{

sum += scores[i];
if (scores[i] > max)

max = scores[i];
if (scores[i] < min)

min = scores[i];
}
average = (double) sum / (double) count;
printf("average: %.2f\n",average);
printf("maximum: %d\n",max);
printf("minimum: %d\n",min);
/* Could also display a differences table here, just as

the book does (see Fig. 8.3, p. 377 */
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Passing Arrays as Parameters

l The previous example would exhibit better top-
down design if it broke the problem down into 
functions:
– get_scores /* Let's assume that the scores

should be read from an input
file */

– compute_stats /* Given an array of
values, computes the
high, low, and average */

– display_stats /* Displays the high, low, and
average */

– display_differences_table /* displays a table of
the values read in 
and the difference 
between each value 
and the mean */
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Next Lecture…

l We'll continue our exploration of arrays:
– Searching and sorting algorithms
– Multidimensional arrays
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