(9-2) Strings |
H&K Chapter 8

Instructor — Beiyu Lin
CptS 121 (May 29, 2019)
Washington State University

WASHINGTON STATE
Ea [UNIVERSITY
¥

String Fundamentals

e A string is a sequence of characters terminated by
the null character (\0’)

- “This is a string” is considered a string literal
- A string may include letters, digits, and special characters

e A string may always be represented by a character
array, but a character array is not always a string

e A string is accessed via a pointer to the first
character in it Index == o 1 2 3 4 5

Variable—> H é L L(6

v v v v v
Address.:> 0x2340 | 0x2341 | 0x2342 | 0x2343 | 0x2344 | 0x2345

2 C Hund hausen A O’Fallon B Lln Graph is from: https://simplesnippets.tech/cpp—strings-with-explanation-example"

String Basics (1)

3

e \Whether you realize it or not, you've been

working with C strings all semester:

string

printf ("CptS %d is fun!\n",121);

It's just that we haven't ever declared a string

variable. In C, a string is represented as an
array of characters:

char name [20]; /* declares a variable name that can hold a
string of length 20 */

Be sure to always account for the \0’ in your
array declarations

name[| may have up to 19 characters + 1 for the null
character

C. Hundhausen, A. O’Fallon, B. Lin t

String Basics (2)

e As with other data types, we can even initialize a
string when we declare it:

char name[20] = “Bill Gates";

char *name = “Bill Gates";

char name[] = {‘'B’, ‘i’, ‘1’, ‘1', Y ', ‘G’, ‘a’', ‘t', ‘te’,
‘s’, *\0’;}

// These are equivalent string declarations!
More examples were included in class both on the whiteboard and during live coding.

Here's what the memory allocated to name looks like

after either of the above is executed:
null character, (terminates all strings)

name [B:REE T R | G a t e s \0 2

012345678910111213141516171819:

4 C. Hundhausen, A. O’Fallon, B. Lin

String Basics (3)
S

e Notes on the null character

- When a string is initialized on the line it is declared, the
compiler automatically "null terminates” the string

- All of C's string handling functions work only with null-
terminated strings;

- any characters to the right of the null character are ignored;

|

Think about “return” in a function.

— The ASCII value of the null character is O

5 C. Hundhausen, A. O’Fallon, B. Lin t

String Basics (4)
S

e \When a variable of type char* is initialized

with a string literal, it may be placed in
memory where the string can’'t be modified

e If you want to ensure modifiability of a string

store it into a character array when initializing
it

6 C. Hundhausen, A. O’Fallon, B.Lin t

String Basics (5)
S

e Populating a string using scanf ()

char my_string [50];
I/l The address of operator (&) is not required because the name of the

/[array is an address

scanf (“%s”, my_string); “ int m;(rpo;/ d\n” &)
scanf("%d\n’, &num);

® Notes on scanf ():
® Using %s will automatically append a null character to the end of the string
® Reads character-by-character until whitespace is encountered, i.e. if the user enters:
Bill Gates, only “Bill” is read; however, “Gates” is still in the input stream

e Displaying a string using printf ()

printf (“%s\n”, my_string);

¢ Notes on printf ():
Using %s will display character-by-character until a null character is encountered; white space
and printable special characters will be displayed

® If a null character is missing from the end of the string, all contiguous memory will be printed
until a null character happens to be found in memory

7 C. Hundhausen, A. O’Fallon, B. Lin

String Basics (6)

S Arrays of Strings

Suppose we want to store a list of students in a class
- We can do this by declaring an array of strings, one row

for each student name:

#define NUM STUDENTS 5
#define MAX NAME LENGTH 31

char student names[NUM STUDENTS] [MAX NAME LENGTH];

of strings

- We can initialize an array of strings "in line":

char student names[NUM STUDENTS] [MAX NAME LENGTH]
"Sandra Connor",

{"John Doe", "Jane Smith",
"Metilda Cougar"};

Max length of
each string

"Damien White",

More details and examples were written on the white board during the class.

8 C. Hundhausen, A. O’Fallon, B. Lin

String Basics (6)

S Arrays of Strings

Suppose we want to store a list of students in a class
- We can do this by declaring an array of strings, one row

for each student name:

#define NUM STUDENTS 5
#define MAX NAME LENGTH 31

char student names[NUM STUDENTS] [MAX NAME LENGTH];

of strings

- We can initialize an array of strings "in line":

char student names[NUM STUDENTS] [MAX NAME LENGTH]
"Sandra Connor",

{"John Doe", "Jane Smith",
"Metilda Cougar"};

More details were written on the white board during the class.

9 C. Hundhausen, A. O’Fallon, B. Lin

Max length of
each string

"Damien White",

String Basics (7)

10

Integer

/* 2D array */
int num arr[2][3];

/*Counter variables */
int i, i;

for (i=0; 1<2; i++)
{
for (§=0;3<3; j++)
{

printf (“enter a number\n”);

scanf ("%d", &num arr[i] [j]);)

printf (“%d”, num arr[i][J]);

)

Strings

char str arr[2][3];
int 1i;
for (i = 0; 1 < 2; i++)
printf ("enter a string \n");

scanf ("%s",student names[i]);
printf (”“%s \n", str arr[i]);

Quick Review:

char temp_char;

scanf(“ %c”, &temp_char);

More details and examples were written on the white board during the class and during

the class live coding.

C. Hundhausen, A. O’Fallon, B. Lin

~¢

String Basics (8)
S

—- Just as is the case for doubles and ints, we
can specify a field width in a printf statement
involving a string ($s). By default, the string is
right justified within that field, e.g.,

printf ("string value: %$5s\n",my string);

/* string is right justified within field of 5 */

- If we want to left-justify the string, we specify a
negative field width, e.g.,

printf ("string value: %-5s\n",my string);
/* string is left justified within field of 5 */

Examples were written on the white board in the class.
11 C. Hundhausen, A. O’Fallon, B. Lin t

String Basics (9)
S

e Reading in multiple data types alongside the string
data type:

1. #include <stdio.h>

2.

3. #define STRING_LEN 10

4.

5. int

6. main(void)

7. {

8. char dept[STRING_LEN];

9. int course num;

10. char days[STRING_LEN];

11. int time;

12.

13. printf ("Enter department code, course number, days and ");
14. printf("time like this:\n> COSC 2060 MWF 1410\n> ");

1= scanf ("%s%d%s%d", dept, &course num, days, &time);

16. printf("%s %d meets %s at %d\n", dept, course_num, days, time);
U7/e

18. return (0);

19.

Enter department code, course number, days and time like this:
> COSC 2060 MWF 1410

> MATH 1270 TR 800

MATH 1270 meets TR at 800

Other examples were included during the live coding in class. >
12 C. Hundhausen, A. O’Fallon, B. Lin

String Basics (10)
S

e \When the previous program is run and the user enters the following
(which is not in the correct format):

MATH,1270,TR, 1800
The scanf call
scanf ("$s%d%s%d",dept, &course num,days, &time) ;

interprets this all as one string, storing it to dept (bad news!):

dept
[0] [4] [9] space not allocated for dept

M A T ’ || & 7 0 ' T | R ’ 5 | RS ORI RORS R0

Moral: We need a more robust way to read in multiple data types
(Stay tuned!)

Example were written on the white board.

1 3 C. Hundhausen, A. O’Fallon, B. Lin t

String Basics (11)
S

e Example problem:

- Write a segment of code that prompts the user
for a word of length 24 characters or less, and
prints a statement like this:

fractal starts with the letter £

Have the program process words until it

encounters a "word" beginning with the
character '9"'.

14 C. Hundhausen, A. O’Fallon t

String Basics (12)
S

e Solution:

#include <stdio.h>
#define STRING_LENGTH 25

int main ()
{
char name [STRING LENGTH];
int done;
do
{
done = 0;
printf ("Enter a name ('9') to quit: ");
scanf ("%s", name) ;
if (name[0] == '9")
done = 1;
else
printf ("%s starts with the letter %c.\n",
name,name[0]) ;
} while (!done);
return (0);

}

Similar example was illustrated in class.

1 5 C. Hundhausen, A. O’Fallon

What To Look Forward To...
-]

e More on Strings:
— String handling library functions
- Arrays of Pointers
- Character input/output and robust string input
— Character conversion
— String processing example

1 6 C. Hundhausen, A. O’Fallon t

References
-

e J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8" Ed.), Addison-
Wesley, 2016.

e P.J. Deitel & H.M. Deitel, C How to Program
(7™ Ed.), Pearson Education , Inc., 2013.

1 7 C. Hundhausen, A. O’Fallon t

Collaborators
o<

e Chris Hundhausen
e Andrew O’Fallon

1 8 C. Hundhausen, A. O’Fallon

http://eecs.wsu.edu/~hundhaus/

