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PREDICTION OF INHABITANT ACTIVITIES

IN SMART ENVIRONMENTS

Abstract

by Bryan D. Minor, Ph.D.
Washington State University

August 2015

Co-Chairs: Diane J. Cook and Thomas R. Fischer

Human activity prediction is a challenging problem which poses a number of machine

learning challenges. Predicting occurrences of activities is valuable in understanding human

behavior and creating services that not only react to human activities, but proactively anticipate

and prepare for future activities in advance. We hypothesize that human activities can be

predicted from smart environment sensor data. In order to validate this hypothesis we introduce

machine learning-based methods to create an Activity Predictor (AP). AP learns a model

of inhabitant behavior from sensor observations of their daily lives. It then automatically

generates numeric predictions of the time until future occurrences of activities of interest.

These predictions can be used to facilitate a variety of smart environment services including

activity prompting and energy management systems.

We explore the utility of drawing contextual features from sensor event data in order to

inform the predictor. These features draw on the information provided in the temporal distri-

bution and the values of the sensor events. We further develop a method of using information

about activity relationships to provide joint activity prediction. These connections are estab-

lished through the use of prediction lag features which supplement other contextual information

in a recurrent model. We also propose a method of using a combination of independent and
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recurrent predictors in a two-pass fashion to further enhance activity learning.

We utilize data collected from several CASAS smart environment datasets to validate the

methods in support of our hypothesis. We also explore the use of various evaluation metrics

and underscore the importance of using a combination of metrics to fully understand activity

prediction performance. Our findings suggest that the proposed automated solutions are able

to predict human activities with reasonable accuracy. To further evaluate our methods we have

deployed them as part of two pilot tests of our CAFE prompting app. Predictions were found

to be less than 30 minutes in most cases and the prompts were found to have a noticeable effect

on participants’ behavior.
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CHAPTER 1. INTRODUCTION

Predicting human activities is an important component of services across a variety of

areas. In order to provide useful and meaningful interactions with human users, it is important

to be able to predict how they will act. Traffic management systems need to anticipate drivers’

movements to ensure the most efficient flow of vehicles in a city. Electrical distributors rely

on predictive systems to help them manage generation resources and meet peaks in demand.

Retailers make major business decisions based on predictions of consumer purchases throughout

the year. These and many other important systems rely on accurate predictions of human

behavior. They require knowing what will happen and when, with incorrect predictions leading

to results ranging from inconvenience to large economic losses.

However, despite the importance placed on activity prediction, it is often a difficult task

to do accurately. Data on human behavior can be scarce or difficult to keep updated. Humans’

behavior may also shift over time as their lives change, such that simple rule-based predictions

do not suffice. Although many human behaviors are cyclic in nature, they can vary in ways that

are difficult for algorithms to grasp. These and many other concerns make activity prediction

an important yet difficult challenge.

The goal of this project is to demonstrate the ability to predict human activities through

contextual information found in observations of their actions. In many situations where activity

prediction is warranted, sensor systems can be used to collect observations of users’ behavior

over time. These observations are rich in information that can be used to predict users’ future

activities. However, the challenge lies in extracting this information from the data and using it
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to form accurate predictions of future activities. In this dissertation we explore ways to address

this challenge.

Although prediction of human activities is important for a variety of domains, we examine

the problem in the context of predicting activities in smart environments. Many of the tech-

niques developed here are applicable to other prediction problems with similar characteristics,

however. A smart environment is defined by Cook and Das [1] as “one that is able to acquire

and apply knowledge about an environment and also adapt to its inhabitants in order to im-

prove their experience in that environment.” Smart environments utilize a variety of sensors

and actuators to monitor inhabitants’ behavior and improve their comfort, safety, and overall

wellbeing.

Much recent research has focused on utilizing smart environments to help adults “age in

place” by providing technologies that allow older adults to live independently in their own homes

longer. This is an important application: it is estimated that the population of United States

adults over age 64 will reach 88.5 million by 2050, twice the 2010 number of 40.2 million [2].

Many of these older adults will also be suffering from cognitive illnesses. The number of those

suffering from dementia is expected to increase from 18 million in 2004 to 34 million by 2025 [3].

Many of those suffering from cognitive illnesses will require increased care, leading to increasing

demand for healthcare services. The use of smart environments can help these adults live safely

in their homes and reduce some of the need for caregiver support.

One aspect of daily living that can be improved with a smart environment is the regular,

independent performance of activities of daily living (ADLs). ADLs consist of daily functional

tasks, such as cooking, eating, or taking medicine [4]. Many of those suffering from cognitive

impairments have difficulty initiating and completing ADLs in order to live independently. A
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smart environment can be utilized to provide monitoring and feedback to both inhabitants and

caregivers regarding performance of ADLs. However, a smart environment must be able to

effectively predict when activities will occur in order to provide these services.

To provide effective activity prediction in a smart environment (and many similar settings)

an activity prediction method should meet the following goals:

1. Predict the numeric time of activity occurrences. Many smart environment ser-

vices are dependent upon accurate knowledge of when future activities will occur. Activity

reminder prompts must be issued at the correct time to maximize effectiveness. Energy-

saving actions often require preparing in advance to adjust for expected activities in the

most efficient manner. Thus, it is important for the activity prediction method to provide

accurate numeric predictions indicating when activities are predicted to occur.

2. Utilize sensor data with minimal input from users. Inhabitant and caregiver time

is limited and therefore valuable. The activity prediction method should require as little

input as possible for initial setup. During operation, required input should be kept to

a minimum to avoid placing additional burden on inhabitants. To this end, the activity

prediction algorithm should be able to run autonomously without specific knowledge of

inhabitants’ schedules or preferences. Instead, it should utilize contextual information

from the smart environment sensor data to form activity predictions.

3. Model non-linear activity relationships. The relationships between sensor events

and activities is complex and often non-linear. The activity prediction method must be

able to model these non-linear relationships effectively.

4. Form predictions quickly. The predictions are often used in near-real-time situations
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as new sensor events are collected. In order to facilitate this, the prediction method

should be able to compute new predictions quickly.

We hypothesize that activity prediction can be automated and that by introducing ma-

chine learning and time series techniques to automate activity prediction these goals can be

met. In this dissertation we present activity prediction methods which validate this hypothesis.

These methods combine the extraction of useful features from smart environment data with

various regression learning techniques to form activity predictions.

The major contributions of this dissertation include:

1. Present a general framework for activity prediction using feature extraction and regression

learners to predict multiple activities in a smart environment.

2. Analyze various evaluation metrics and their effectiveness in describing activity prediction

performance.

3. Describe useful features for activity prediction and compare their effect on activity pre-

diction performance.

4. Explore ways in which predictions for various activities can be used jointly to improve

performance.

5. Evaluate the effectiveness of the predictions for use in prompting applications.

In the remainder of this dissertation we describe the problem of activity prediction and

our contributions to the field. We begin with a review of related work (Chapter 2). Then, we

formally describe the activity prediction problem (Chapter 3) and present our Activity Predic-

tor algorithms (Chapter 4). We review various metrics for evaluating performance (Chapter 5),
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then describe the CASAS smart home system, which is used to validate our proposed meth-

ods (Chapter 6). We then describe experiments to validate our proposed methods (Chapter 7).

Finally, we present results from two prompting applications (Chapter 8) and conclusions (Chap-

ter 9).
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CHAPTER 2. RELATED WORK

Previous research related to activity prediction has been performed across a number of

disciplines. Researchers have used activity prediction in fields such as power systems, economics,

and healthcare, sometimes for many decades. Solutions to the problem in the literature range

from sequential prediction to numeric time series forecasting methods.

In this chapter we first describe work in activity sequence prediction in smart homes

and works based on time series models. We then discuss previous works related to activity

prompting. Lastly, we examine works related to joint predictor models.

2.1 Sequence Prediction

Work on activity prediction has followed two general approaches. The first approach is

sequence prediction. The goal of this approach is to predict the next symbol in a sequence

given the symbols that occur before it. A predictor is trained on a sequence of symbols S =

s1, s, s2, . . . , st and is then used to predict the next symbol, st+1 at time t + 1. In activity

prediction, the sequence of symbols represents a sequence of consecutive activities. An expert

or activity recognition algorithm is used to determine a sequence of activities that occur from

a series of sensor events. The goal of the sequence predictor is to then predict which activity

will occur next.

Many sequence prediction techniques use derivatives of the LZ78 compression algorithm

[5]. This algorithm was adapted by Feder et al. for use in sequence prediction [6]. These models

analyze the sequence of symbols that occurs and forms a Markov model for predicting what
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symbol will be next. The model was further refined using an information-theoretic framework

for mobility tracking in cellular networks with LeZi-Update [7].

LZ78 was adapted for smart environment activity prediction with the Active LeZi algo-

rithm [8–10]. Active LeZi provides better prediction convergence by using a window of sequence

contexts, providing reasonable sequence prediction accuracy. A further refinement for smart

environment applications is the SPEED algorithm, which uses appliance usage patterns in the

home [11]. Information about activity relationships has also been used with Active LeZi [12].

Other sequence prediction algorithms use Markov models [13] or Bayesian networks [14]. Others

have explored sequence prediction for predicting human action from video observations [15–17]

and user locations [18]. The sequence prediction method was expanded to include predicting if

event sequences would happen within a specified time interval by [19].

While these sequence prediction algorithms are able to predict the next activity in a

sequence, they have two major drawbacks which limit their use. Firstly, they do not provide

any information about the timing of the next activity. The algorithms simply predict the next

activity in a sequence - but they do not indicate whether it might happen in a few minutes

or a few hours. This reduces their usability for prompting applications where knowledge of

activity times is important for ensuring prompt effectiveness. Lack of knowledge about the

time until predicted activities also hinders energy management applications where heating or

cooling systems must be adjusted in preparation for anticipated activities. A second problem

with many sequence prediction algorithms is that they do not predict activities beyond the

short-term sequence horizon. Activities which may occur further in the future may not be

easily predicted.

The activity prediction algorithms developed in this dissertation attempt to address these
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issues. They predict the time duration until each activity occurs, allowing prompts and other

time-sensitive items to be scheduled. Since all activities are predicted simultaneously, services

relying on the predictions are aware of the time until all activities of interest, regardless of the

time until they will occur. Furthermore, the features generated for the activity prediction and

the subsequent model-learning process allow temporal relationships between activities to be

learned.

2.2 Time-Based Prediction

Another approach to activity prediction is the use of time-based prediction models.

Rather than providing a discrete classification for the next activity in a sequence, they predict

the continuous-valued time until an activity will next occur. This allows these methods to

address some of the issues found in sequence prediction techniques.

Time-based prediction techniques have traditionally centered around time series forecast-

ing techniques. A wide variety of time series forecasting methods have been developed over

several decades, especially in the business domain [20–23]. Some of the most popular models

are the autoregressive moving average (ARMA) and autoregressive integrated moving average

(ARIMA) models [24]. These models have been widely studied in the literature for a variety of

applications [25–27]. However, they rely on the assumption that the process being modeled is

both linear and stationary. These assumptions do not necessarily hold in the case of activity

forecasting, as the activity relationships tend to be nonlinear and may change over time. Some

nonlinear time series models are available, such as heteroscedastic models [28]. Neural networks

are also popular amongst nonlinear methods [29,30].
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Additionally, many time series methods are univariate: they use previous values of the

variable to be predicted as the only inputs to the model. This can prove challenging in activity

prediction situations, as we usually do not know these previous values until after the activity

occurs. Univariate models also fail to take into account the rich context that can be obtained

from other information found in sensor event data. Inclusion of this data is useful for improving

the accuracy of activity predictions. While multivariate models are available [31,32], they have

not been studied as thoroughly and tend to overfit the data [20].

While time series methods have been studied extensively in the literature, little work

has been conducted in predicting human activities, particularly within smart homes. Some

have studied the use of time series techniques for predicting electrical demand [29, 30, 33–35].

Research into smart home activity prediction has generally been limited to the prediction

of inhabitant wellness [36–40]. These works focus on predicting the duration of inhabitant

activities over time to detect irregularities that may indicate health concerns. However, they

do not predict when those activities will occur during the day. Mozer [41] describes a system

to predict when an inhabitant will enter a room for lighting automation, but the predictions

are made only a few seconds in advance. Moutacalli et al. [42] use ARIMA models to model

the start times of activities and time offsets between activities to aid in activity recognition,

though they only use univariate models. Others have studied forecasting with more complex

models [43, 44], however these works include assumptions about the distribution of values or

the context in which they can be used.

Most work in predicting inhabitant activities in smart environments is focused on predict-

ing appliance usage. Some methods rely on discretization into time periods to predict appliance

usage based on historic patterns [45]. One method models the states and state transitions of
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human agents to optimize energy consumption [46]. This can be used to predict how long an

inhabitant will perform the activity at the current state and the time until they start the next

likely activity. (In some sense, it adapts sequence prediction by including information related

to activity duration and spacing.) Barbato et al. [47] describe an approach in which appliance

usage history is examined to determine if an appliance will be used on a given day. If so, the

historical usage patterns from previous days are used to predict the times and durations of

appliance usage on that day.

While these methods incorporate elements of inhabitant activity prediction, it is not the

focus of these works. To the best of our knowledge, the methods described in this dissertation

are among the first to numerically predict general activity times from environmental sensors

in smart environments. These methods do not rely on models of specific appliance usage, but

rather on the sensors available within the environment. They are also adaptable to predict

activities with different sensors and contexts, even outside the smart home.

2.3 Prompting

Reminder prompts for activity initiation are an important aspect of a smart environment

that can be used to help inhabitants live independently. Prompting systems have been de-

veloped using a variety of methods for many contexts. Many early systems were rule-driven

or required knowledge of users’ daily schedules. Lim et al. [48] use a rule-based system for

delivering medicine reminder prompts. The Autominder system relies on a pre-programmed

user schedule to find prompting rules based on a dynamic Bayesian network [49], reinforcement

learning [50], or a Markov decision process [51]. Markov decision processes have also been used
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to deliver prompts for the hand-washing process [52]. While these systems can adjust prompts

based on user activities, they require input of a user’s daily activities or predefined activity

steps. In recent years a large number of smart phone reminder apps have become available,

but most require self-programming of reminders and only provide time-based reminders rather

than using context.

Recent work has focused on automated approaches for issuing prompts, without relying

on predefined rules or schedules. The PUCK system [53] uses a variety of classification models

to classify situations to determine if a prompt should be issued. It utilizes data sampling

techniques to address the imbalance between prompt and non-prompt situations and improve

performance. However, it only analyzes recent events to decide if a prompt is needed, instead

of predicting future prompt times.

Holder and Cook [54] developed a system which learns the relationships between different

activities in order to determine prompt times. They examine the distribution of activity times

relative to each other and establish corresponding reference activities that are related to activ-

ities of interest. When an activity recognition algorithm detects that a reference activity has

occurred, a prompt can be scheduled based on the average time until the activity of interest

should occur. However, this model relies on the average relationships between activities, as

well as the accuracy of the activity recognition algorithm in detecting the reference activity.

The activity prediction methods we have developed allow for automatic discovery of action

relationships. They also allow for flexible prompt triggering mechanisms which can be based

on a number of factors, including the numeric time predictions for multiple activities.
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2.4 Joint Prediction

A key consideration in the development of prompting algorithms is determining the re-

lationship between different activities performed by the inhabitant. Basic activity prediction

algorithms can take into account general features about the sequence of sensor events to form

their predictions, and in fact we describe such an algorithm in this dissertation. However, these

simple features ignore the relationships between different activities, a potentially rich source of

contextual information. Instead, each activity is predicted independently of the others, based

solely on the sensor data features. In order to improve upon this, we would like to predict

activities jointly to incorporate information about their joint dynamics.

However, it is challenging to properly model the various interrelationships between ac-

tivities and how the collection of activities affects when all of the activities occur. One option

would be to use a graphical model, such as a Markov model or conditional random field [55],

to model the relationships between input and output variables. However, modeling all of these

relationships can lead to a highly complex graphical model, making it difficult to train and

draw inferences. Simplification attempts that attempt to make the model more tractable will

often lead to reductions in accuracy and performance. Heuristic solutions such as loopy belief

propagation could be used, but these solutions can be difficult to characterize and apply to new

problems.

As an alternative approach, we can instead use imitation learning to view the problem as

a supervised learning problem. Imitation learning has the goal of training a learner to imitate

the actions of an expert in a sequential decision-making task, such as playing a video game

or driving a vehicle. Usually, this is done by having the expert demonstrate the behavior to
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generate a series of trajectories to use as training data. Supervised learning is then used to train

a predictor from this training data, often with a common classification or regression learner.

We use a form of imitation learning called exact imitation learning. This method uses an

expert to generate training data (in this case lagged prediction values for each activity), which

the learner tries to imitate. In this way, the prediction model can learn about relationships

between activities, yet still use a standard regression learner without much added complexity.

This also allows us to utilize certain reductions and results from imitation learning to improve

prediction performance [56–66].

One potential drawback of an exact imitation learning scheme lies in error propagation.

Errors at the start of a prediction sequence may accumulate and amplify, causing large errors

later in the trajectory [59,67]. In order to address this issue, more advanced imitation learning

techniques could be utilized. One example of this is the DAgger algorithm [60], which iterates

through the training of multiple predictors. At each iteration, additional training data is

generated to address any errors, and a new predictor is learned on the aggregated training set.

Since DAgger can be seen as a no-regret online learning algorithm, it has nice properties that

assure its performance [60].

We have discussed the current state of activity prediction in a variety of fields and using

a variety of methods. Sequence prediction algorithms are popular for activity prediction in

a variety of contexts and are among the most well-studied methods for predicting inhabitant

activities in smart environments. However, they do not provide indications of the timing

of those activities, making them difficult to use for time-sensitive applications. A variety of

temporal techniques have been developed for generating prompts in a smart environment, but

many require coordination with the user. Our prediction algorithms improve upon these by
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providing information about activity timings and automatic learning of users’ activity habits.

We also incorporate imitation learning to simplify the challenge of jointly predicting multiple

interdependent user activities. In the next chapter we formally present the activity prediction

problem.
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CHAPTER 3. ACTIVITY PREDICTION PROBLEM

In this chapter we present a formal definition of the activity prediction problem. Activity

prediction is a useful concept in a number of disciplines and can be defined in a variety of ways.

We consider the prediction of activity occurrence times from a series of sensor events. Although

we predict inhabitant activities using smart environment sensor data, the methods described

are applicable to other contexts with a similar structure.

Consider the situation where we wish to predict when a user will initiate certain activities.

Let A = (a1, a2, . . . , aT ) be the set of activities that we wish to predict. We do not observe the

activities the user performs directly. Instead, we observe a sequence of sensor events generated

by sensors observing the user’s actions and their environment. We represent the sequence of

sensor events as Λ = (λ1, λ2, . . . , λN), where each event λi has a corresponding occurrence

time ti. Each sensor event has a known timestamp, along with information about what sensor

generated the event and the value observed by the sensor. These sensor events form a sequence

of observations related to the user’s activity. In activity prediction, we want to predict the

amount of time that will elapse before the next occurrence of an activity.

In order to form proper predictions, we must first determine what defines an activity

occurrence. We consider the situation where each sensor event has an associated activity label,

as shown in Table 3.1. These labels indicate what activity is believed to be occurring when the

sensor event is generated. Labels may be added to sensor events through human annotators or

through an automated activity recognition system. These methods are detailed in Section 6.3.

Based on these activity labels, the sensor events can be separated into activity “occur-
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Table 3.1: Labeled sensor events. Each event contains the date and time the event was gener-

ated, the sensor that generated it, and the sensor message sent. The activity labels generated

by activity recognition or human annotation are applied to each sensor event. The example

events are drawn from our CASAS smart home system, described in Chapter 6.

Date Time Sensor Message Activity

2012-07-20 06:36:25.8 M002 ON Bathe

2012-07-20 06:36:25.8 LS001 27 Bathe

2012-07-20 06:36:26.9 M001 ON Bathe

2012-07-20 06:36:27.1 M002 OFF Dress

2012-07-20 06:36:27.2 D003 OPEN Dress

2012-07-20 06:36:29.7 LS001 36 Dress

2012-07-20 06:36:31.0 M004 ON Personal Hygiene

2012-07-20 06:36:32.3 M001 ON Toilet

2012-07-20 06:36:32.9 M005 ON Personal Hygiene

2012-07-20 06:36:33.4 M004 OFF Personal Hygiene



17

Table 3.2: Sensor events segmented into activities. Sensor events from Table 3.1 are grouped

into “occurrences” based on consecutive events from the same activity. These occurrences are

separated here by the horizontal rules.

Date Time Sensor Message Activity

2012-07-20 06:36:25.8 M002 ON Personal Hygiene

2012-07-20 06:36:25.8 LS001 27 Personal Hygiene

2012-07-20 06:36:26.9 M001 ON Personal Hygiene

2012-07-20 06:36:27.1 M002 OFF Dress

2012-07-20 06:36:27.2 D003 OPEN Dress

2012-07-20 06:36:29.7 LS001 36 Dress

2012-07-20 06:36:30.1 M001 OFF Dress

2012-07-20 06:36:31.0 M004 ON Personal Hygiene

2012-07-20 06:36:32.3 M001 ON Toilet

2012-07-20 06:36:32.9 M005 ON Personal Hygiene

2012-07-20 06:36:33.4 M004 OFF Personal Hygiene



18

Predicted Output

    
Time t

Activity
Predictor

 

Ground Truth Output

 
     

     

Eating

   

Taking medicine

 

Sleeping

Activities

Sensor Event Data

Figure 3.1: Overview of the predictor process. The sensor events Λ are used as input. In this

example, we wish to predict the activities a1 (eating), a2 (taking medicine), and a3 (sleeping),

whose next occurrences start at times t1, t2, and t3, respectively. Given the current event λe at

time te, we wish to predict the times between te and the start of each activity, ti. That is, we

wish to predict the vector ŷ = (ŷ1, ŷ2, ŷ3), where ŷi is the predicted value of the ground-truth

yi = ti − te. The ground truth vector is y∗ = (y1, y2, y3).

rences”. An occurrence is simply a grouping of consecutive events with the same activity label.

It represents an individual instance of the inhabitant performing an activity. For example,

the sequence of labeled events from Table 3.1 can be segmented into occurrences as shown

in Table 3.2. Note that activity occurrences can be as short as one event in length. This is

particularly common occurrence when two activities are interwoven.

With this definition of an activity occurrence in mind, we wish to predict the time until

the next occurrence of the activity of interest. That is, we wish to predict the length of time



19

between any event λe at time te and the time of the first sensor event in the next occurrence of

the activity, ti. This leads to a ground truth vector of relative activity times y∗ = (y1, y2, . . . , yT )

where yi = ti − te is the relative occurrence time of activity ai. Note that, since we are always

predicting times of activities in the future, the values in y∗ are always zero or greater. We label

the predicted relative occurrence times ŷi, which form prediction vector ŷ = (ŷ1, ŷ2, . . . , ŷT ).

(ŷi ∈ < and yi ∈ <, so ŷ ∈ <T and y∗ ∈ <T .) This is shown graphically in Figure 3.1.

Using this definition of activity prediction, we can visualize the ground truth activity

occurrence times and predicted times. Figure 3.2 shows example predicted and actual times

for a “Bathe” activity. Note that the times approach zero around the time of the activity

occurrence, and then abruptly “jump” back up after the activity ends as we look forward to

the next occurrence. Based on these times, we can determine the error between the predicted

and actual activity times. Figure 3.3 shows the corresponding prediction error for our “Bathe”

activity.

In this chapter we defined the activity prediction problem and introduced notation to

describe it. This provides a specific framework within which activity prediction methods can be

considered. In the next chapter we will describe our proposed methods for predicting activities

within this framework.
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Figure 3.2: Example predicted and actual activity times for activity “Bathe”. The predicted

elapsed time until an activity will occur reaches zero when an activity occurs, then jumps up

after the activity ends. Figure 3.3 shows the corresponding error in predictions, with corre-

sponding points circled.
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difference between predicted and actual times. Circles correspond to points in Figure 3.2.
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CHAPTER 4. ACTIVITY PREDICTOR

In this chapter we present our activity prediction algorithm, called Activity Predictor

(AP). This algorithm uses information drawn from smart environment sensor events to form

automated activity predictions. First, we introduce the base AP method, Independent Predic-

tor, and describe the major components. We then describe extensions of the basic algorithm

to incorporate further information about the activities and improve performance. These exten-

sions result in the Recurrent Activity Predictor and Two-Pass Activity Predictor algorithms.

4.1 Independent Predictor

Our basic AP algorithm consists of two major components, as shown in Figure 4.1. The

first component is the feature extraction component, which uses the sensor data input to

generate useful feature values that relate information about the patterns and context in the

sensor data. These features are then passed to the regression learner, which uses a regression

model to form the numeric predictions. We term this version of the predictor the Independent

Predictor (IP), as it uses a separate regression model to predict each activity independently of

the others.

In its present form, IP performs feature extraction and outputs predictions for each sensor

event in the dataset. In other words, the numeric output of IP is the predicted amount of time

between the sensor event and the time when each activity will next occur. These predictions

are updated with each new sensor event, and can be used to form predictions as new events

are received in a live environment.
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Figure 4.1: Independent Predictor overview. The two major components are the feature ex-

traction and regression learner components, shown as boxes. IP uses sensor events from the

smart environment as input and outputs a numeric prediction for each activity time.

Features are only generated once for each sensor event and are then used by all activity

models for prediction. A separate regression learner is trained and used for each activity, rather

than having a single vector-output model. Thus, each activity is predicted separately, though

the forecasted times for all activities are generated for each observed event. Initially, this

leads to independent activity predictions, though interdependence can be added as described

in Section 4.2.

4.1.1 Feature Extraction

The feature extraction component draws useful contextual information from the sensor

event data in order to inform the regression learner. The component takes as input the sequence

of sensor events Λ = (λ1, λ2, . . . , λN). Recall that each event has an associated timestamp,
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sensor ID, and sensor message or value. Using the information from these fields, the feature

extraction component can generate features related to the timing of sensor events, frequencies

of various sensors, and sensor value statistics, among other things. These features are formed

into a vector of feature values, known as a feature vector.

Specifically, we have a feature function Φ that, for each sensor event λi, computes a d-

dimensional feature vector Φ(λi) ∈ <d. We label this feature vector x = (x1, x2, . . . , xd), such

that x = Φ(λi). The feature extraction uses a sliding window of recent sensor event information

from which it computes the features for each event. So, in effect, Φ is actually a function of

a window of recent sensor events terminating with the specific event λi. The size and shape

of these windows varies depending on the type of features being generated, as described in

following sections.

The features defined by Φ can be chosen using knowledge of the problem domain. They

should be designed such that they extract useful contextual information from the raw sensor

events in order to aid the regression learner in prediction. For example, for activity prediction,

we choose features that provide information about the timing and frequencies of sensor events,

as well as statistical value information. Features can also include information about past

predictions, as demonstrated in Section 4.2. Since the feature information is in the form of a

vector of scalar values, any features that can be represented in this form can be used. Although

a model specific to a certain feature set must be learned for regression, the underlying training

and use algorithms of the regression learner do not need to be changed in order to test different

context features.

A variety of features could be conceived of and used, but we use two primary sets of

features. The first, called discrete features, provide information about the temporal patterns in
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the sensor event data and the relative frequencies of different sensors within the sliding window.

The other set, called sampling features, consists of statistical values derived from a separate

sliding window of sampled sensor event values. These features provide information about the

values of the sensor events. We describe these two sets of features in the following subsections.

Discrete Features

The discrete features describe the time, location, and frequency of events. They help to

establish context for activity prediction from the temporal and spatial distribution of the in-

habitant’s activities. These features are listed in Table 4.1. The discrete features are generated

from a dynamic sliding window of recent sensor events. Features such as lastSensorEventHours,

lastSensorEventSeconds, and timestamp provide information about the time of day when the

most recent sensor event occurred. windowDuration and timeSincelastSensorEvent convey in-

formation about the temporal distribution of events within the window. The lastLocation,

lastSensorID, and sensorElTime features provide information about what sensors have been

active recently and give a sense of the location of recent activities. The dominant sensor and

sensorCount features describe which sensors have been most frequent in the recent window to

give a sense of the amount of activity occurring at each sensor. The laggedTimestamp features

help in understanding the temporal spacing of recent events.

The sliding window of recent events used for generating the discrete features is dynam-

ically changed based on the relationship between sensors and activities. In order to initialize

these windows for use, the feature extraction component uses the activity labels on sensor

events to calculate activity length frequencies during the training stage. Before generating

features from the training data, the feature extraction component first examines the sensor

data to determine the most likely window size for each activity. The length of each occurrence
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Table 4.1: Discrete features.

Discrete Feature Name Description

lastSensorEventHours Hour of the day when the current event occurred

lastSensorEventSeconds Time since beginning of the day in seconds for the

current event

windowDuration Duration of the window (seconds)

timeSinceLastSensorEvent Time since the previous sensor event (seconds)

prevDominantSensor1 Most frequent sensor ID in the previous window

prevDominantSensor2 Most frequent sensor ID in the window before that

lastSensorID Sensor ID of the current event

lastLocation Sensor ID for the most recent discrete sensor event

sensorCount* Number of events in the window from each sensor

sensorElTime* Time (seconds) since last event for each sensor

timeStamp Time since beginning of the day (seconds) normalized

by the total number of seconds in a day

laggedTimestamp* timeStamp feature value for previous event

*There is one sensorCount and one sensorElTime for each sensor in the smart

home. The lag values are created for the previous sensor events (for our

experiments, we use 12 lag values).
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Table 4.2: Discrete feature activity window length bins. During training, the length of each

activity occurrence is binned into one of the following bins (separated for each activity). Then,

the most frequent bin is determined for each activity, with the corresponding window size being

chosen for that activity.

Occurrence Length (Events) Window Size (Events)

≤ 5 5

5-10 10

10-20 20

> 20 30

of each activity in the training data is found, and these lengths are binned into one of four

bins based on the number of events in the occurrence. The bin sizes are listed in Table 4.2.

Next, the most frequent bin for each activity is determined and the resulting window size from

Table 4.2 is assigned for that activity. This window size represents the most probable activity

occurrence length for that activity.

After the activity window sizes are determined, the algorithm determines which activities

are most likely associated with each sensor. This is done by computing the number of times

sensor events from each sensor are labeled with a particular activity in the training data. The

most frequent activity for each sensor is then determined from these counts.

These activity window and sensor-activity frequencies are computed only once during the

training initialization process. After this point, the windows are set for the feature extraction

for both training and use of IP; activity labels are not needed when using the trained model.
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Figure 4.2: Discrete feature generation. The discrete features are generated based on the sliding

window which consists of a number of events up to and including the current event. The discrete

feature vector generated from this window is associated with the current event. Then, we move

to the next event, sliding the window forward one event (and changing its length if needed)

and repeat.

Once they are computed, the feature extraction process proceeds to generate the feature values,

a process which is performed the same for both training and testing of the IP model. The

algorithm waits until reaching a certain number of events in the dataset before generating

features in order to allow the maximum sliding window to be full. (In our experiments we
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wait until the 30th event.) For each event, the discrete features are computed based on the

sliding window and are stored as a feature vector x associated with that instance as illustrated

in Figure 4.2. Note that, in this discussion, each instance refers to a sequence of sensor events

leading up to and including the current sensor event. Then, the sliding window is moved

forward by one event (and its size adjusted if necessary) and the process is repeated. (The

feature vectors can be stored in a dataset when performing offline training and testing or

passed directly to the model tree for prediction in online use.)

Sampling Features

In addition to discrete features, IP can also utilize sampling features. While the discrete

features provide information about the timing and frequency of events, sampling features pro-

vide information about the values provided by the sensor events. These values include the light

level, temperature, and other values, as well as the status of the motion and door sensors. By

including these values in the features extracted, the IP algorithm is able to discern information

related to the duration and change of different sensor states and other useful context. This

is especially useful when the change in sensor values over time is important, such as when a

temperature sensor near the stove reports increasing temperatures during cooking.

These value-based features are called sampling features due to the way in which they are

computed. We borrow from the domain of signal processing, in which an analog value is often

sampled at regular intervals to turn it into a digital signal. In our case, we form a “sampling”

of the recent values of each sensor at regular time intervals. We consider the “state” of a

sensor to be the value of its most recent event. As sensor events are processed, the feature

extraction component of IP keeps track of the state of each sensor. At regular time intervals

the algorithm stores a vector of values representing the current state of all of the sensors at
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that time. This reflects the most recent value received from each sensor when the sample is

taken. The algorithm stores a number of these recent sample vectors from which it computes

the sampling features. The samples are made with a specific sampling interval in time, and

the amount of time’s worth of samples to keep is the sample lag.

The values from the light level, temperature, and battery sensor events are numeric values

that are directly used in the sample vectors. For the motion, door, and light switch events,

however, we receive binary messages about the sensor state (e.g, ON or OFF). In order to use

these in the sample vectors we map the values to binary numeric values (e.g, 1 for ON and 0

for OFF). In this way these binary sensor states can also be included in sampling features.

To illustrate the sampling process, consider the sensor events in Table 4.3. Consider

using a sampling interval of one second (i.e, create a sample vector of sensor states at each

second). The resulting sample vectors are shown in Table 4.4. The elements in the sample

vectors only change at a new sample time if an event from the corresponding sensor occurred

during the preceding interval. If the sample lag is four seconds, then any sampling features

generated between 06:36:30 and 06:36:31 will use the last four vectors in the table (starting

with 06:36:27).

The generated sample vectors are used to calculate the sampling features. The features

are created for each sensor event, just like the discrete features, and are included in the overall

feature vector x. Sampling features are computed based off the window of recent sample

vectors (defined by the sample lag), including the last sample vector before the current event.

These features are statistical measures of the values in the sample vectors. All of the sampling

features are calculated for each sensor using the sample values for that sensor, meaning there

are 34 ∗NumberOfSensors sampling features. The sample features used are described below.
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Table 4.3: Example CASAS sensor events for sampling vector demonstration.

Date Time Sensor Message

2012-07-20 06:36:25.8 M002 ON

2012-07-20 06:36:25.8 LS001 27

2012-07-20 06:36:26.9 M001 ON

2012-07-20 06:36:27.1 M002 OFF

2012-07-20 06:36:27.2 D003 OPEN

2012-07-20 06:36:29.7 LS001 36

Many are adapted from those suggested by Cook and Krishnan in [68]. Here, we use vi to

represent the value for the sensor of interest in the ith sample vector in the window, while L

represents the number of sample vectors in the window.

• sensorMaximumValue The maximum value of the sensor within the window:

sensorMaximumValue = max
1≤i≤L

(vi) (4.1)

• sensorMinimumValue The minimum value of the sensor within the window:

sensorMinimumValue = min
1≤i≤L

(vi) (4.2)

• sensorSum The mean of values of the sensor in the window:

sensorSum =
L∑
i=1

vi (4.3)
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Table 4.4: Example sampling vectors for the events in Table 4.3. The sampling interval is one

second. Values which change at each interval are in bold.

Sample Time M001 M002 D003 LS001

06:36:25 0 0 0 0

06:36:26 0 1 0 27

06:36:27 1 1 0 27

06:36:28 1 0 1 27

06:36:29 1 0 1 27

06:36:30 1 0 1 36

• sensorMean The mean value of the sensor in the window:

sensorMean = v =
1

L

L∑
i=1

vi (4.4)

• sensorMeanAbsoluteDeviation The average of the absolute difference between each

value and the mean:

sensorMeanAbsoluteDeviation =
1

L

L∑
i=1

|vi − v| (4.5)

• sensorMedianAbsoluteDeviation The average of the absolute difference between each

value and the median.

sensorMedianAbsoluteDeviation =
1

L

L∑
i=1

|vi −median(v)| (4.6)

This metric may be more useful than the mean absolute deviation in some cases.



33

• sensorStandardDeviation The standard deviation of the values:

sensorStandardDeviation = σv =

√√√√ 1

L

L∑
i=1

(vi − v)2 (4.7)

• sensorCoeffVariation The coefficient of variation of the values, which shows how the

standard deviation and mean relate.

sensorCoeffVariation =
σv
v

(4.8)

• sensorNumZeroCrossings The number of times the sensor value crosses the median of

the values within the window. This provides some indication of the amount of movement

within the values.

sensorNumZeroCrossings = |vi < median(v) < vi+1|+ |vi > median(v) > vi+1| (4.9)

• sensor25thPercentile / sensor50thPercentile / sensor75thPercentile The 25th,

50th, or 75th percentile of the values. These are a value below which the desired percent-

age of the values fall. They help in understanding the distribution of values.

• sensorSqSum25thPercentile / sensorSqSum50thPercentile /

sensorSqSum75thPercentile The square sum of values below the given percentile. For

example:

sensorSqSum25thPercentile =
∑
{v2i |vi < sensor25thPercentile} (4.10)

• sensorInterQuartileRange The interquartile range, or the difference between the 75th

and 25th percentiles:

sensorInterQuartileRange = sensor75thPercentile− sensor25thPercentile (4.11)
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• sensorBinCount There are 10 of these features. The values in the window are placed

into 10 bins that are equally spaced across the range of values (sensorMinimumValue to

sensorMaximumValue). The features are then the number of values in the corresponding

bins.

• sensorSkewness An indication of the symmetry of the values about the mean:

sensorSkewness =
1
L

∑L
i=1(vi − v)3

( 1
L

∑L
i=1(vi − v)2)

3
2

(4.12)

• sensorKurtosis An indication of how “peaked” the distribution of values is:

sensorKurtosis =
1
L

∑L
i=1(vi − v)4

( 1
L

∑L
i=1(vi − v)2)3

(4.13)

• sensorSignalEnergy Sum of the squares of the values, representing the area between

the value curve and the time axis:

sensorSignalEnergy =
L∑
i=1

v2i (4.14)

• sensorLogSignalEnergy Similar to signal energy, but summing the logarithms of squares

instead:

sensorLogSignalEnergy =
L∑
i=1

log10(v
2
i ) (4.15)

• sensorSignalPower The average signal energy over the window:

sensorSignalPower =
1

L

L∑
i=1

v2i (4.16)

• sensorPeakToPeak The amplitude between the maximum and minimum values of the

sensor (peak-to-peak):

sensorPeakToPeak = sensorMaximumValue− sensorMinimumValue (4.17)
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• sensorAvgTimeBtwnPeaks The average time between two local maximum values

(peaks) in the data. These local maxima are defined as points where vi−1 < vi > vi+1.

• sensorNumPeaks The count of the number of peaks in the values within the window.

We refer again to our previous example. If we have a sampling lag of four seconds and

thus use the last four vectors in Table 4.4, the sensorMaximumValue for D003 is 1 while it is

36 for LS001. The sensorMeanValue for D003 is 0.75 while it is 29.25 for LS001.

While these discrete and sampling features provide a useful amount of context for activity

prediction, other feature values could be used as well. These feature values should be drawn

from knowledge about the particular application in which the activity prediction will be used.

The features listed here provide information about the location, frequency, and state of actions

within a home, useful for smart environment predictions. However, other features may be useful

in different contexts, such as a fast Fourier transform of the values or information from user

feedback. When considering which features to use, it is important to take the strengths and

weaknesses of those features into account. For example, while the sampling features provide

useful information about the state of sensors, they can be computationally expensive to com-

pute. Thus, the requirements of the application should be taken into account when choosing a

set of features to use for activity prediction.

4.1.2 Regression Learner

The regression learner is a supervised learning algorithm that creates a model of the activ-

ity to be predicted, which can then be used to form predictions. We use a multi-output regres-

sion learner for this purpose. A multi-output regression learner is analogous to the multi-label
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classification problem [61], except with real-valued output labels instead of binary classifica-

tions. Although any multi-output regression learner could be used, we separate the multi-output

regression problem by learning a separate regression function for each activity. This technique

is inspired by the Binary Relevance classifier [61]. The separate regression functions are each

learned and used in a similar and cooperative manner to form a vector of predictions for all

activities from each sensor event.

Each regression learner is first trained using a set of training instances. These instances

consist of feature vectors xi drawn from labeled sensor events and the corresponding number

of time units until the activity occurs y∗i . These input-output pairs {xi,y
∗
i }Ni=1 form the set of

training instances used to learn the model. The regression learner learns a prediction model

in order to minimize a given loss function L over the set of training data. Once the model is

learned, it can be used with new feature vectors x to form predictions for new sensor events.

There are a variety of regression learners available that could be used. One of the sim-

plest options is linear regression, which simply learns a set of linear parameters to generate a

prediction. However, this model relies on a linearity assumption that may not be present in

the activity data. More advanced methods include logistic regression [69] or support vector

machines (e.g. SMOreg) [70, 71], among others. While these methods are able to model many

of the complexities in the activity patterns, they also can be computationally expensive to train

and use.

For this dissertation, we have chosen to use a model tree based on the M5 algorithm

[72, 73]. Model trees are able to model the nonlinear aspects of the activity relationships.

Further, although there is some cost associated with training the models, they are able to

quickly compute predictions in real-time during use. While multi-output regression models can
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be used, we instead use a separate regression model for each activity to predict, inspired by the

binary relevance classifier [74].

Model Tree

A model tree is a regression model that relies on a tree-like structure for generating

regression output. It is similar to a decision tree. The model tree consists of a hierarchical

structure of nodes, as shown in Figure 4.3. Each node references a particular feature xi (from the

available features x) and a corresponding threshold value. While a decision tree has particular

class labels at the leaf nodes, however, a model tree leaf node instead contains a multivariate

linear regression model. This model is of the form in Equation 4.18, where y is the prediction

output, wi are scalar weights, and ai are values of feature variables.

y = w0 + w1a1 + w2a2 + · · ·+ wkak (4.18)

When using the learned model on a new instance, we use the feature values of the instance

to traverse the tree. Starting at the root node, we compare the value of the feature specified

by that node against the node’s threshold value. If the feature value is below the threshold,

we move to the first child node; otherwise, we move to the other child node. We continue

doing this with the subsequent nodes until a leaf node is reached. We then use the linear

model contained in the leaf node with the feature vector for the instance to calculate the scalar

prediction output. (Only certain features from the vector are used; these are established during

the model training process.) The tree traversal and prediction computation can happen quickly,

making the model tree an effective algorithm for real-time prediction.

Model trees are sometimes also called regression trees. However, the term “regression

tree” is sometimes used to describe a slightly different model than the one described above. In
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Figure 4.3: Model tree diagram. The tree consists of nodes with split features at each node.

It is traversed by comparing the specified feature against a threshold at each node and taking

the resulting path. When a leaf node is reached, the linear model it contains (represented by

plots here) is used to form a prediction.

that model, the leaf nodes contain constant scalar values rather than linear regression models.

These values are usually taken from the training data (e.g, an average of label values at that

node). While this may simplify training and use, it also reduces the range and flexibility of the

model. In order to be clear, we will use the term “model tree” to denote the tree with linear

models that is used in this dissertation.
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Training

In order to use the model tree, it must first be trained using example data instances.

This training data will consist of pairs of feature vectors and label values {xi,y
∗
i }Ni=1. The

feature vectors are found using feature extraction from training sensor event data. The labels

y∗i are calculated using the activity labels on the sensor event data. For each sensor event (and

corresponding feature vector), the corresponding labels are the difference in time between the

sensor event being processed and the next event with the target activity label. These labels are

easily computed from the labeled sensor event data. They are usually found in units of seconds.

For example, in Table 3.2, the first event has a label of 0 seconds for the target activity Personal

Hygiene (since it is labeled with that activity). The label for the Dress activity is 1.3 seconds

and the label for the Toilet activity is 6.5 seconds. Since each activity has a separate model

tree, each tree is trained using only one of the elements of the label vector y∗i corresponding to

that activity.

We denote as Y ∗ the total set of activity time labels (for the activity of interest) found

in the training data. The model is trained starting from the root node. At this node, let the

set of labels at that node, Y ′, be equal to the total set Y ∗. At each node, we choose a feature

and threshold to split on in order to maximize the gain, defined in Equation 4.19.

Gain(Y ′, Y ′<, Y
′
>) = σ(Y ′)− |Y

′
<|
|Y ′|

σ(Y ′<)− |Y
′
>|
|Y ′|

σ(Y ′>) (4.19)

This equation is dependent on the splitting feature and the chosen threshold value. Here, Y ′< is

the set of labels for which the value of the associated splitting feature is less than the threshold

value. Y ′> is the set of labels for which the feature value is greater than the threshold. σ(Y ′)

is the standard deviation of the values in the label set Y ′, while σ(Y ′<) and σ(Y ′>) are the
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standard deviation of the values in the two subsets. The gain represents the reduction of error

that would occur in the two split sets if we split at a given feature and threshold, where the

error is estimated by the deviation in the class labels. The goal is to maximize this reduction

in error so that the instances that reach each class node will be similar.

We iterate over all the features and possible splitting thresholds to find the pair that

maximizes the gain. This pair is then set as the splitting feature and threshold for the node. The

instances associated with the set Y ′< get passed to the first child node (to form Y ′ for that node),

while the instances associated with Y ′> get passed to the second node. The splitting process

then continues recursively with the child nodes to build the tree. The splitting terminates when

one of the following conditions occurs: all features have been used as splitting attributes on

the current path, the number of instances that reach a node is too little (four or fewer), or

the standard deviation of the remaining instance labels Y ′ is smaller than 5% of the standard

deviation of the original set Y ∗. When this occurs, we form a leaf node.

At each node in the tree, we form a multivariate linear regression model. This model is

learned using the set of training instances that would reach that node following the splitting in

the nodes above it. The model uses only the features that are used as splitting features in the

node itself or the nodes below it in the tree. In this way, it forms a localized regression model

for instances that are similar to the ones at the node and would reach it following the same

path.

After the full model tree is formed, it can be pruned to reduce its complexity and improve

prediction performance. Pruning starts at the leaf nodes and proceeds in a bottom-up fashion.

At each node, we use the regression model at that node to form predictions ŷm for all training

instances in the subset that reached that node. We then compute the root mean squared error
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(RMSE) of the predictions compared to the training labels, as shown in Equation 4.20.

RMSE =

√∑
(ŷm − y∗m)2

N
(4.20)

The summation is performed over the N predictions ŷm and labels y∗m in the set.

The instances are also predicted using the node’s subtree (with each instance traversing

the nodes) and the RMSE of these results is computed. If the RMSE of the node is lower than

the RMSE of its subtree, the subtree is pruned and the node becomes a new leaf node. In this

way, we reduce the depth of the tree while also improving its performance.

Finally, a smoothing process can be used to improve the performance of the predictions,

especially when the number of instances used to construct a node’s model is small [72]. This

smoothing combines the model in each node with the models of the nodes in the path above

it. We denote S as the node of interest, and C(S) is the regression value that will be output

for that node. To perform smoothing, we adjust the model such that the regression output

becomes as shown in Equation 4.21.

C(S) =
niC(Si) + kM(S)

ni + k
(4.21)

Here Si is the ith node that was traversed to reach the current one, and ni is the number of

training instances that reached that node. M(S) is the original output of the linear model at

node S, while k is a smoothing constant (15 in our case).

4.2 Recurrent Activity Predictor

The IP predictor uses independent regression models to separately predict each activity.

That is, the regression learner is only provided features directly from the sensor data, with no
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information about predictions from other activities (or even previous predictions of the same

activity). While these features are able to provide a basic context for prediction, they can be

improved by using joint activity models that can utilize information about the joint relationships

between activities. This allows the algorithm to use the context of recent predictions from all

activities to inform the prediction of individual activities.

4.2.1 Joint Activity Prediction

Recall that the IP utilizes a feature function Φ to extract context features from each event

λi. These discrete and sampling features are drawn directly from the sensor events themselves.

They do not provide any information about different activities and the relationships between

them. However, many activities that take a user may perform are interrelated. For example,

in a smart environment, a resident will often cook breakfast, then eat the prepared meal, and

finally clean the dishes afterward in a regular and repeated pattern. Similar relationships exist

between bathing, dressing, and grooming activities as well as others. If our algorithm can learn

and reason about these activity relationships performance can be increased. Therefore, we wish

to incorporate the activity context into our algorithm in order to create joint interdependent

prediction models for all activities.

In order to include this information we utilize the framework of imitation learning. In

traditional imitation learning, an expert generates training data which the learner uses to

imitate the behavior of the expert in a generalizable way. For our application the expert

information is drawn from the labeled sensor event data used for training the regression learner.

The labeled data is used during the training process to provide the expert (ground-truth)
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behavior which the learner should follow. When the learned model is used, the expert data is

replaced with values generated by the learned model. We wish to find a set of useful contextual

values that can be used in this way to incorporate information about activity relationships

using this imitation learning method.

Formally, we wish to include additional feature values in our feature extraction com-

ponent that provide contextual information about recent activity predictions. Let us define

Φindependent(λi) to be our feature function Φ(λi) used to generate the discrete and sampling fea-

tures in IP. We wish to incorporate a second feature function Φjoint(λi) that provides additional

features consisting of recent activity predictions made by the predictor. The two feature func-

tions combine to form a new overall feature function Φtotal(λi) = {Φindependent(λi),Φjoint(λi)}

that consists of both sensor and activity context features. This new feature function is uti-

lized by the feature extraction component of AP. In this way we provide information about

activity relationships by allowing the model to learn the relationships between prediction times

for several activities and the activity it is attempting to predict. Since this context is simply

included as new feature values in the feature vectors x, the regression learner does not need

to use any new algorithm to learn and use the activity context. Instead, it simply learns the

activity relationships from the new features provided to it.

4.2.2 Joint Prediction Through Recurrence

Our joint activity predictor, called the Recurrent Activity Predictor (RAP), utilizes pre-

dictions from the previous event (lagged predictions) as the activity features generated by

feature extraction. Formally, the feature function Φjoint(λi) produces as features the prediction
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for each activity from the previous event. These values are known for each event as they are

generated for the event before it. Since the events are not spaced evenly in time, the model

may have difficulties properly incorporating these lags as they may be more or less “fresh” for

each event. To counter this, we adjust the lags by subtracting the time interval between the

previous event and the current one. In this way, the lag values represent the time from the

current event time until the next activity occurrence based on the predictions from the previous

event. Since we want the activity prediction values to be non-negative (only pointing forward

to future activity occurrences), we limit the lag values to be non-negative as well. Similarly,

we limit RAP to only predict non-negative values (values less than zero are set equal to zero).

Note that we still train a separate regression leaner for each activity, but they are now able to

utilize context from the other activities (and past predictions for their own activity) through

the lag features.

During training the lag values are created from the labeled sensor event data. Since the

adjusted lag is used, these values are simply the activity occurrence time labels for each event,

equivalent to the ground truth adjusted lag. These values represent the “expert” the learner

is trying to model. During testing or use of the learned model, these values are provided from

the actual predictions made by the model for each event.

When testing with pre-recorded datasets (e.g, a validation test), we can initialize the

lag values on the first event using the ground truth label values as during training. This is

because with the pre-recorded data the time until the next occurrence of each activity at the

start is already known. When using the learned model in a live environment, however, we must

consider how the lag values are initialized. Since the lag value represents the adjusted activity

occurrence time from the previous event, we need to know when these activities will occur in
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the future. Thus, when we start using the model we do not know what the lag values should

be. However, we can use an activity recognition algorithm to determine what activities occur

as sensor events are observed. The lag values can be fully initialized once all of the activities

are detected to occur. Once this occurs, we can initialize the lag values for the original event

(before the first activity occurs), using the time from that event to each of the occurrences for

the lags. From this point, we can use the observed sensor events between that initial event and

the current one with the RAP model to form forward predictions until we “catch up” to the

current time.

Alternatively, an IP model could be trained alongside the RAP. This model could then

be used to form predictions for the first online event to initialize the lags, with the recurrent

model used for subsequent events. While this initialization may not be as accurate as waiting

for all activities to occur, it avoids the delays caused by waiting for the activities and allows

prediction to start immediately.

4.3 Two-Pass Activity Predictor

4.3.1 RAP Training Issues

The RAP algorithm can be susceptible to certain problems due to the way in which

the regression learner is trained. During training the ground-truth activity labels are used to

generate the adjusted lag features. Since these values are “perfect” within the context of the

data, the lag values are equal to the actual time to be predicted for each event. In other words,

the training lag values provide as input to the learner the exact same value we wish to have it

output for each event. The model tree learner will see this relationship and establish a model
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where it simply outputs the adjusted lag value for the activity as the prediction for each event.

Since the lag values are perfect in training, this is the optimal model to learn based on the

training data, and would result in no errors on the training dataset.

However, this model does not work as well when tested or used in an online setting. The

lag values are initialized either from the actual activity labels (in pre-recorded datasets) or after

all activities are first observed (in a live setting). In this way, the initial lag values are also

“perfect” like the training data, and the model should achieve a perfect prediction on the first

event by outputting the lag value. Since the time between each event is known, the feature

extraction component can accurately create the adjusted lag value for the next event, which

will also be perfect. This continues and provides great results for the first events.

The problem arises when the activity occurs. At this point, the prediction output will

go to zero (meaning the activity is occurring on that event). This will continue during the

activity occurrence, which is fine. However, when the activity ends, the actual activity time

will become nonzero to point to the next activity occurrence. RAP, however, continues to

output the adjusted lag values as the new predictions. Since the previous lag value is zero

(from when the activity was occurring), RAP will again output zero after the activity ends.

This will continue through the rest of the testing set, as RAP essentially gets “stuck” predicting

zero as the time for the next activity occurrence through its feedback loop. As a result, the

predicted values become uninformative and the error will increase. So, while RAP can perform

perfect predictions for all events up to and during the first occurrence of the activity, it becomes

ineffective after that point. This problem stems from the simple “input-output” model learned

by the model tree in training with the perfect lag values.

Another issue faced with RAP is that only one set of lag values (from the previous event)
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can be used. We can add additional lag values from events before the previous one. If we

adjust these lag values as we do for the first lags and still use the training labels to do so,

we find that all of the lag values for each activity will be the same. That is, since each lag

value is a perfectly-adjusted time value, all of the lags will provide the same information to

the regression learner. Since the learner is attempting to optimize its model, it only chooses

one of the lag values to incorporate in the model. The others are ignored since they provide

redundant information.

4.3.2 Using a Two-Pass Method

As an alternative to these options, we present a two-pass predictor that uses a combination

of independent and recurrent predictors to address many of the problems noted above. We

denote this algorithm the Two-Pass Activity Predictor (TPAP). TPAP uses an independent

predictor followed by a recurrent predictor, as shown in Figure 4.4. The independent predictor

provides prediction labels for the sensor events, which the recurrent predictor then uses as lag

values to form the final prediction. While this requires learning two separate models, it allows

us to avoid the training issues found in the original RAP and also to include additional lag

features for improved performance.

During training, the independent predictor is trained using the labeled sensor events with

feature extraction as before. It then makes predictions for every event in the training set, and

these predictions are attached to their associated events. The second-stage feature extraction

then uses these predictions, along with the original features, to set up the features for the

recurrent predictor. Specifically, it uses the predictions made by the independent predictor to
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Figure 4.4: Two-Pass Activity Predictor predictor block diagram. The independent predictor

is used to form prediction labels for the recurrent predictor to use for lag values.

create a number of lag prediction features for each activity. For each event, these lags consist

of the prediction for that event, as well as the (non-adjusted) predictions for a fixed number

of previous events. The lags are created for each activity in the set, so that all activity models

have access to recent predictions from all activities. The recurrent predictor is then passed these

lag features along with the original features to learn a new model. In this way, the recurrent

predictor is able to use multiple lag values to improve predictions. Since these lag values are

not all the same (due to the variability in the independent predictions), the recurrent model

can be trained to use multiple lags. It will also not rely on only the lag prediction to form the

prediction since the training lag values it sees are not perfect. Thus, it addresses the two major

problems with our original RAP algorithm.

During testing or use of the method the process is similar. The independent predictor is

used to form predictions for all events to be tested. These predictions are then turned into lags

and are passed to the recurrent predictor, which makes the final predictions for each event. If

lags from previous events are used (beyond the independent prediction for the current event),

initial events will not have all of the lag values initialized. Thus, the recurrent predictor will

need to wait until enough events have occurred before it forms its first predictions. However in
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the interim the independent predictions can be used instead.

TPAP is similar to our previous AP algorithms, but has some notable changes that in-

crease its utility. Although we must train both an independent and a recurrent model for each

activity, this increases the flexibility of the model. We can use the independent predictor’s

outputs in conjunction with the recurrent predictions if desired, such as in an ensemble predic-

tor. This method also addresses the problems faced with training the RAP predictor without

needing to change the training data itself. Further, TPAP allows a flexible number of lags to

be used, depending on the characteristics of the dataset we are predicting. It is also relatively

simple, building on our previous methods without requiring much additional computational

change in order to achieve a more robust model.

The TPAP model is also similar to the use of an off-trajectory training approach. In such

an approach, a learner is trained in order to improve its ability to adapt to prediction errors.

When using lag values, this can be done by training the learner using its own predictions as

part of the training data, allowing it to observe erroneous lag values and learn how to correct

from them. TPAP follows a similar approach in the training of its second-stage recurrent

predictor. Since the recurrent predictor is trained using multiple lag values, all of which are

generated by the independent predictor, it learns how to correct from erroneous predictions

from the independent predictor. While the recurrent predictor is not provided with its own

previous outputs for training, this adaptation could be made in order to allow an off-trajectory

approach.
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4.3.3 Other Regression Learners

One benefit of the TPAP method is the ability to vary the regression learners used to

improve performance. We use WEKA [75] to implement the regression learners in this method.

We use the same M5 model tree algorithm as before, meaning that the models are constructed

in the same way as described previously. However, this also provides flexibility for testing new

types of learners that may yield higher performance. For example, the model tree learners could

be replaced with ensemble methods or a boosting method such as Adaboost [76]. It is likely

that these methods can improve performance over the model tree. They can also be rapidly

prototyped using WEKA and different learners can be used for each stage of the predictor if

desired. These are ideas that we plan to examine in future experiments.

In this chapter we have presented a number of versions of our AP algorithm. The IP

algorithm uses independent regression learners to separately form predictions for each activity.

The RAP method utilizes information about the relationships between activities found in lagged

prediction values to increase performance. Finally, the TPAP method jointly utilizes IP and

RAP predictors to address potential problems with the other predictors. Each of these methods

is capable of predicting human activities through observed sensor events. The variations in each

are useful for adapting to different contexts with varying complexity. In the next chapter we

describe various evaluation metrics which we can use to verify the effectiveness of our proposed

methods.
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CHAPTER 5. EVALUATION METRICS

In order to properly determine the effectiveness of an activity prediction approach, it is

important to consider what metrics are being used to evaluate it. Different metrics can tend to

emphasize certain aspects of a method’s performance, so this must be taken into consideration.

The appropriateness of a single metric can even change based on the application and data being

evaluated. It may often be necessary to use several metrics to fully evaluate and compare results.

In this chapter we discuss various evaluation metrics, their properties, and their applicability

for activity prediction evaluation.

There are two main ways in which activity prediction can be evaluated. The first takes

the view of activity prediction as a classification problem. This view is often used in the

context of sequence activity prediction, where the number of incorrect predictions can be used to

compute a classification accuracy. While a similar approach can be taken with numeric activity

prediction (where any non-zero error is a misclassification), this fails to take into account other

considerations of time-based predictions. For example, while having a perfect (zero-error)

prediction may be most desirable, it is usually tolerable to have predictions with error smaller

than a certain threshold (e.g, five minutes). When this is the case, we are usually more interested

in the relative magnitude of the error, which is the second approach to evaluation. One option,

used by [19], is to apply metrics such as precision-recall curves based on whether an event

occurs within a specified time interval. However, we assess activity prediction by evaluating

the amount of error present in the results. While this may be more complicated, it allows us

to analyze the error in light of the requirements of the application in which we will use the
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predictions.

In order to concisely describe evaluation metrics in this chapter, we will use the following

notation:

• y∗m represents a ground-truth value (label) from the set Y ∗ of all ground-truth values we

wish to compare against

• ŷm represents the predicted values from the set Ŷ of all predictions we are evaluating

• N represents the number of instances (ground-truth value and prediction pairs) being

evaluated

Most of the metrics listed in this chapter can be utilized on various subsets of the total

results of an experiment. For example, we may wish to evaluate a metric separately for each

activity being predicted, or for results at different test horizons. We can then macro-average

the results across multiple subsets to form overall metrics for a certain dataset. This is the

approach we will often take in the experiments in this dissertation.

5.1 Unnormalized Metrics

Most common metrics are defined in such a way that they can be used for direct com-

parison between different datasets (usually in the same units as the error itself). They are

not normalized relative to different datasets, allowing their meaning to usually be intuitively

determined. Most of these metrics are based on averaging of different measures of error.

Mean absolute error (MAE), defined in Equation 5.1, measures the average absolute error

between the predicted and ground-truth values. The MAE does not emphasize any particular
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aspect of the error, but rather evaluates all errors in an average sense [77]. Zero MAE means

there is no error, and MAE has no upper bound.

MAE =

∑
|ŷm − y∗m|
N

(5.1)

Another common measure is root mean squared error (RMSE), defined in Equation 5.2.

It uses the square of the error, with the root used to return the measure to the same units as

the error. RMSE tends to emphasize the largest errors due to the square, so it may be strongly

affected by only a few instances of large error [77,78]. Like MAE, zero RMSE indicates perfect

performance and RMSE has no upper bound.

RMSE =

√∑
(ŷm − y∗m)2

N
(5.2)

If the sign of the errors is of interest, mean signed deviation (MSD; also called average

error) can be used. MSD is similar to MAE, except that it allows the sign of the error to be

taken into account. This allows us to determine whether the predictions are, on average, above

or below their respective ground-truth values. MSD is defined in Equation 5.3. An MSD of

zero indicates no error, but MSD is unbounded in both the positive and negative direction.

MSD =

∑
ŷm − y∗m
N

(5.3)

As these metrics use an average of the error values, they may be affected by outliers. If

this is a concern, a corresponding version of each of these metrics is available which uses the

median of error values rather than the mean.
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5.2 Normalized Metrics

While the unnormalized metrics are widely-used, they do not take into account the differ-

ences in scale between datasets. For example, consider the prediction of a “Toileting” activity

and a “Housekeeping” activity. The Toileting activity may occur multiple times a day, while

the Housekeeping activity could occur as infrequently as once per month. Using an unnormal-

ized metric, we may find that the average error for Toileting is around a minute, while it is a

few hours for Housekeeping. This would appear to indicate that the Housekeeping predictions

are much worse than those for Toileting. While this is true in an absolute sense, it may not be

the case in a relative sense given the differences between the activities. While an error of hours

may be unacceptable for Toileting, this may not be the case for Housekeeping since the times

between occurrences of that activity are so large. In order to address this and allow comparison

between different datasets and contexts, it may be desired to use a normalized error measure.

Usually, these measures normalize a common unnormalized metric by some aspect of the error

values or the dataset itself.

A common normalized metric is the mean absolute percentage error (MAPE), shown in

Equation 5.4. MAPE normalizes each error by the corresponding ground-truth value, meaning

that it is an “average of normalized errors” value. This is useful as it tends to de-emphasize

large errors due to the normalization. However, MAPE can be greatly affected in cases where

the ground-truth value y∗m is at or near zero. For these instances, even small errors will be

normalized to very large (possibly infinite) values, leading to distorted MAPE values. While

MAPE has no upper bound, a value of zero indicates perfect prediction, while a value of 1
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indicates the error is as large as the ground-truth values themselves.

MAPE =
1

N

∑∣∣∣∣ ŷm − y∗my∗m

∣∣∣∣ (5.4)

Other normalized measures utilize the unnormalized metrics listed above. Those metrics

can be normalized by the range of the ground-truth values, leading to the range-normalized

MAE and RMSE (RangeNMAE and RangeNRMSE), defined in Equations 5.5 and 5.6.

RangeNMAE =
MAE

max(y∗m)−min(y∗m)
(5.5)

RangeNRMSE =
RMSE

max(y∗m)−min(y∗m)
(5.6)

Another option is to normalize by the mean of the ground-truth values to determine the

mean-normalized MAE and RMSE (MeanNMAE and MeanNRMSE), defined in Equations 5.7

and 5.8.

MeanNMAE =
MAE

1/N
∑
y∗m

(5.7)

MeanNRMSE =
RMSE

1/N
∑
y∗m

(5.8)

All the range-normalized and mean-normalized metrics have no upper bounds, though a

value of 1 indicates that the error is as large as the normalizing factor. Values of zero indicate

no error.

While normalized metrics can be useful for comparing data across datasets, the normal-

ization process causes them to lose their relationship with common units. This can make them

difficult to interpret, since we now only have a unitless value rather than a value in seconds or

some other units as with unnormalized metrics. Normalized metrics also tend to be less-used in

the literature. Thus, when deciding to use normalized or unnormalized metrics, it is important

to consider whether the normalization is needed based on the application and other concerns.
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5.3 Other Metrics

Since the above metrics are based on the average error of results, they do not provide

much information about the form and other characteristics of the errors. They also may be

subject to distortion by outlier error values. In order to understand the distribution of the

errors and to detect outliers, it is often useful to include other error metrics.

A common metric is Pearson’s r, or the correlation coefficient between the predicted and

actual values. It is defined in Equation 5.9, where ŷ is the average predicted value and y∗ the

average ground-truth value. r provides a measure of the relationship between the actual and

predicted values, and ranges from -1 to 1. A value of zero indicates that the predicted and

actual values have no relationship to each other (no dependence), indicating bad predictions.

A value of -1 indicates an inverse correlation, while a value of 1 indicates the predictions are

highly correlated to the corresponding label values. Usually values of r near 1 are desired. The

correlation information allows us to observe whether the predictions are properly changing in

a manner similar to the actual values.

r =

∑
(ŷm − ŷ)(y∗m − y∗)√∑

(ŷm − ŷ)
√∑

(y∗m − y∗)
(5.9)

Another metric is the number of sign changes (NSC) [77]. The NSC is a count of the

number of times that the sign of the error changes in the sequence. This provides information

about whether the predictor is consistently over- or under-predicting the values. An NSC value

of zero indicates that the error is consistently of the same sign, though it does not necessarily

indicate a perfect prediction.

The absolute maximum error AME, defined in Equation 5.10, is simply the largest ab-

solute error value in the sequence [77]. It has no upper bound and a value of zero indicates
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perfect prediction. AME may be useful if the error cannot be allowed to go above a certain

threshold. For example, if an inhabitant must be reminded to take their medicine within an

hour interval, we may want to avoid errors greater than one half-hour. AME would allow us to

ensure the largest error is within this limit, although it would not tell us anything about the

distribution of the other error values.

AME = max(|ŷm − y∗m|) (5.10)

Another metric that may be used is the peak difference (PDIFF) [77], defined in Equa-

tion 5.11. It simply measures the difference between the maximum predicted value and the

maximum ground-truth value. It does not account for the correlation between the peak values

or the results as a whole. However, it provides some information as to whether the predicted

values achieve the same range as the ground-truth values. PDIFF is unbounded, though a

PDIFF of zero would indicate that the predicted and actual values reach the same upper limit.

PDIFF = max(ŷm)−max(y∗m) (5.11)

Others have defined additional metrics for measuring error. Torgo and Ribeiro [79]

adapted precision and recall metrics to be usable for regression. Others have used standard

deviation and normalized variations of it as a metric [80].

We introduce a new metric, the error threshold fraction (ETF), defined in Equation 5.12.

ETF is defined for a non-negative scalar threshold value v. It quantifies the fraction of errors

(out of all errors in the sequence) that are smaller than the threshold in magnitude. For a

given threshold v, an ETF of 1 indicates all errors are below the threshold, while a value of

zero indicates all the errors are above the threshold. limv→∞ETF(v) = 1, and we can vary v

to see how the errors are distributed. If the ETF does not approach 1 until v is large, this
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indicates that there are a significant number of large-error outliers. ETF(0) indicates what

fraction of the predictions have zero error.

ETF(v) =
||ŷm − y∗m| ≤ v|

N
(5.12)

5.4 Ground-Truth Considerations

When considering the activity prediction problem, there are some issues to consider re-

lated to the activity labels which may affect prediction accuracy. Recall that the data used for

activity prediction training and testing relies on activity labels generated by human annotators

or an activity recognition algorithm. In the case of human annotation, the activity labels usu-

ally have some inherent error. This is due to the inability of annotators to perfectly observe and

interpret inhabitant activities and create perfect labels. With activity recognition algorithms,

there may be errors in the model representation that leads to errors in the labels. Activ-

ity recognition algorithms are also subject to inaccuracies introduced in the human-annotated

data used to train them.

Due to these inaccuracies in the “ground-truth” data, it is important to consider how the

prediction performance may be affected and to quantify this effect. We should not expect the

activity predictor to have perfect accuracy if there is error or disagreement within the data used

to train it. One method that is frequently used to address these issues is Cohen’s kappa [81]. It

allows us to measure the inter-annotator reliability of labels from multiple annotators (human

and machine). Many classification metrics can be κ−normalized to emulate the performance we

would expect from a perfect predictor if these discrepancies are taken into account. While these

normalizations have not been as widely applied for regression metrics, we can use information
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about inter-annotator reliability to inform our interpretation of prediction results. Care should

be taken when analyzing prediction results to understand the effects of label reliability on

prediction performance.

In order to understand and compare activity prediction results, it is important to carefully

consider the evaluation metrics that are used. In this chapter we have presented a number of

metrics for analyzing regression problems. Many of these metrics quantify the average or nor-

malized average error with different emphases. Others allow us to understand the distribution

of errors in the dataset in order to identify outliers and other issues. We note that, given the

complexity of the activity prediction problem and inherent issues with labeled data, it is often

required to use multiple evaluation metrics to fully understand the performance of a particular

algorithm. In the following chapters we apply these evaluation metrics in order to understand

the performance of our AP algorithms.
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CHAPTER 6. CASAS SMART HOME SYSTEM

In order to verify the performance of our AP methods we wish to test them using data

collected from actual smart environments. The experiments described in this dissertation were

carried out using data from the CASAS smart home system. The CASAS smart home sys-

tem, developed at Washington State University, consists of several smart environment testbeds

installed in participants’ homes. Each testbed is equipped with various sensors to monitor

inhabitants’ daily activities over time, as shown in Figure 6.1. These sensors generate events

which are recorded in a sensor event database. The recorded sensor events and accompanying

activity labels are utilized in the evaluation of activity prediction algorithms described later in

this dissertation. This chapter describes the system architecture of the CASAS smart home

systems and describes the testbeds used in this dissertation.

6.1 CASAS Sensors

Each CASAS smart home testbed is equipped with a number of sensors used to monitor

inhabitants. These sensors are designed to work passively with minimal invasion of the inhab-

itants’ privacy. Some of the sensors are wired-type sensors, though most use wireless ZigBee

communication. The ZigBee wireless mesh is used to connect the wireless sensors with the

CASAS middleware [82], as shown in Figure 6.2.
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Figure 6.1: A CASAS smart home testbed. Wireless ZigBee passive infrared motion detectors

are attached to the ceiling, including top center.

6.1.1 Passive Infrared Motion and Light Level Detector

Passive infrared (PIR) motion detectors use infrared light to detect motion occurring

within their field of view. These sensors report a simple “ON” message when motion is detected,

followed by an “OFF” message a short time after movement stops. A PIR motion detector is

shown in Figure 6.3.

Motion detectors are divided into two types based on the same Control4TMwireless motion

sensor:
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Figure 6.2: CASAS system component diagram, as detailed in [82]. The sensors form the

physical layer, which communicates with the middleware layer through a ZigBee wireless mesh.

The middleware layer communicates with smart home applications and sensor event storage.
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Figure 6.3: CASAS passive infrared motion sensor. These sensors detect motion within their

field of view.

• Narrow-Field (Normal) Motion Detectors These sensors have a narrow field of view

covering only a few feet. They are usually placed on the ceiling in order to detect motion

in a specific portion of a room. Often many of these sensors will be placed throughout a

room’s ceiling in order to detect inhabitants’ motion through the room. Motion detectors

of this type are shown on the ceiling of the room in Figure 6.1.

• Wide-Field (Area) Motion Detectors These sensors have a much wider field of view.

They are usually placed on walls in order to detect any motion within a room and provide

indication of an inhabitant’s presence within the room. They generally cannot detect an

inhabitant’s specific location within the room.

In addition to providing ON/OFF motion events, PIR motion detectors also provide

numeric indications of other parameters. They are equipped with light level sensors that

observe the ambient light level within their field of view and report this as a numeric value

as levels change. This allows the CASAS system to observe changes in light as an inhabitant
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Figure 6.4: A CASAS door sensor, which detects whether a door is open or closed.

interacts with the space. The PIR motion detectors also report their battery charge and voltage

at regular intervals.

6.1.2 Magnetic Door Sensors

Magnetic door sensors use a magnetic switch to detect when doors are open or closed.

They are usually mounted on doors throughout a testbed. They send simple “OPEN” or

“CLOSE” events when the door is opened or closed. These door sensors are connected wirelessly

and can be run on either battery or mains power. Figure 6.4 shows a door sensor in use.

6.1.3 Temperature Sensors

Temperature sensors report a numeric value for the temperature within a room. They are

usually placed on ceilings, though also can be placed in other areas of interest such as near a

stove. The temperature sensors are wireless and send an event when the temperature changes.
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The temperature sensors use the same wireless module as the door sensors, so temperature

readings can be sent from door sensor locations as well.

6.1.4 Light Switch Sensors

Light switch sensors are installed in light switches throughout a testbed. They wirelessly

report when the switch is turned on or off with simple “ON” or “OFF” events. These sensors

provide insight into inhabitants’ presence and need for lighting in each room.

6.2 CASAS Middleware

The CASAS middleware layer [82], as shown in Figure 6.2, handles the collection and

dissemination of sensor events to other components. It uses a publish/subscribe manager to

establish connections among parts of the system. This architecture allows applications running

on the application layer to receive sensor events and send commands to the middleware in real

time.

The middleware also allows connection to the Scribe bridge for archiving sensor events.

Each sensor event generated by a testbed’s sensors is stored in a database, along with a times-

tamp indicating when the event occurred. Example sensor events from the CASAS system have

been shown in Tables 3.1, 3.2, and 4.3.

For most of the experiments in this dissertation, we used archived sensor event data.

However, our activity prediction algorithms could also be used in real time by connecting to

the CASAS middleware interface.
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6.3 Activity Labeling

Activity labeling is performed in order to determine which inhabitant activity relates with

each sensor event. This associates each sensor event with a particular activity that was being

performed when that event occurred. Our activity prediction algorithm uses these activity

labels to learn the inhabitant’s activity patterns.

6.3.1 Human Annotation

There are two ways in which we perform activity labeling. The first method is human

annotation. Human annotators look at the floorplan and sensor layout of a testbed, interview

inhabitants to ascertain their daily routines, and visualize the sensor event sequence in the

PyViz visualization tool [83]. The annotator interprets which activity is occurring during each

sensor event and labels the event appropriately. Multiple individuals annotate activities and

interannotator agreement is at the κ = 80% level for the activities evaluated in this dissertation.

Human annotation may be able to account for nuances in the sensor events that may go

unnoticed by automated methods. However, human annotations tend to be inconsistent across

different annotators and even within the same annotator’s labels. It is also difficult to obtain

human annotations on sensor events in a live environment in real time.

6.3.2 Activity Recognition

The second activity labeling method uses an activity recognition algorithm. Activity

recognition algorithms can automate the activity labeling process, and can even be used with



67

activity discovery algorithms to model all of an inhabitant’s behaviors [84]. The goal of activity

recognition is to map a sequence of sensor events x = e1, e2, . . . , en to an activity label a from

a set of predefined activity labels a ∈ A. This can be viewed as a machine learning problem.

Starting with a feature vector X that represents the event sequence x, we wish to learn a

function h that maps X onto an activity label in A: h : X → A. This function is learned

from collected training data, usually labeled by human annotators. The learned function can

then be used to label sequences of events with the appropriate activity labels. This results in

activity labels being assigned to each event indicating which activity was occurring during the

event.

Some aspects of the activity recognition problem require special attention compared to

other machine learning problems. First, the sequential nature of the sensor events must be

accounted for, as the ordering of inhabitants’ actions is important for distinguishing among

activities. Second, there are often unclear boundaries between separate activities in an event

sequence. Activities will even overlap and interweave with each other. These factors must be

taken into account, leading to additional data processing being required.

There are many approaches to supervised activity recognition that have been explored by

our group and others [61, 62, 85–98]. They have been used with many different sensor modali-

ties, such as environmental [99–101], wearable [102–105], object [40, 106,107], video [108–111],

and smart phones [112, 113]. Some methods are designed for specific purposes, such as energy

conservation [114] or monitoring inhabitant wellness [39,115]. Transductive techniques include

template matching using a kNN classifier with fixed or variable (with dynamic time warping)

sensor window size [116]. Generative techniques, including Näıve Bayes classifiers, Markov mod-

els, and dynamic Bayes networks, can perform well if there is a large amount of labeled training
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data available [99,117–123]. When training data is more limited, discriminative methods which

learn the boundary between different activity classes may offer improved performance. These

methods include decision trees, boosting and bagging meta classifiers, support vector machines,

and probabilistic graph models such as conditional random field models [99,124–126]. Ensemble

approaches, such as boosting, can also be used to combine these basic methods [120,127,128].

Many activity recognition algorithms are designed only for specific situations with only a

single inhabitant and pre-segmented activities. Our group’s recent work allows generalization to

consider activity models for multiple inhabitants [122,129]. Our activity recognition algorithm,

AR, has achieved over 95% accuracy for 30 activities in 20 smart homes. While many other

approaches require offline data segmentation of activities [106, 130–136], AR avoids this by

extracting features from a sliding window of events that moves over the data [137]. The

window’s size is adjusted automatically based on the most likely activities associated with each

sensor event and their corresponding durations.

It is difficult to recognize activities that overlap or are performed in parallel. One approach

is to train a model on each separate combination of activities, but this leads to an exponential

number of combinations that must be considered. Other approaches include training for single-

activity situations with coupled hidden Markov models or factored conditional random fields

[138–151], but this requires a substantial amount of training data to be available. Instead, AR

uses a weighting scheme for events in the sliding window based on the relationship between

sensor occurrences. This weighting is based on the empirical probability of two sensors occurring

sequentially within the window sequence (used as mutual information in [137]). If we allow Si

and Sj to represent the ith and jth sensors in the set of sensors being used, then their weighting

is defined as in Equation 6.1, where N is the sliding window size. Here, sk is the sensor for the
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kth event in the window; sk+1 is the sensor for the event after that. δ(sk, Si) = 1 if sk = Si

(if the kth event is from sensor Si) and 0 otherwise; the other term is defined similarly. The

summation will only be increased if Si and Sj occur sequentially in the sensor sequence. The

use of this weighting allows AR to focus on sensor events that are closely related and thus filter

out sensor events that are not directly relevant to the activity of interest.

W(i, j) =
1

N

N−1∑
k=1

δ(sk, Si)δ(sk+1, Sj) (6.1)

AR generates a set of feature values from the sliding window of sensor events which relate

information such as the time of day and the most frequent recent sensors, similar to our IP

algorithm. These features are then passed to a C4.5 decision tree model [152]. During training,

the decision tree creates a tree structure, choosing features at each node so as to maximize

the information gain. When used for activity labeling, the tree is traversed until a leaf node is

reached, at which point an appropriate activity class label is found.

While AR can be used to automate activity labeling, its performance is dependent on the

accuracy of the learned model. However, AR tends to be more consistent in its annotations

compared to human annotators. It also can be used to label large sensor event datasets at

much lower cost than with human annotators. Our AR algorithm is used throughout this

dissertation to generate activity labels to support the activity prediction methods. Details of

the experiments in the next chapter will indicate the manner in which AR is used for both

training and testing datasets.
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6.4 Smart Home Testbeds

We use sensor data from a number of CASAS testbeds for the analyses in this disserta-

tion1. Each testbed has one or more inhabitants who went about their daily routines as sensor

data was collected. Following is a description of the datasets in each group.

6.4.1 “Bosch” Testbeds

This group consists of three CASAS apartment testbeds, each housing one older adult

over age 65. The inhabitants performed their daily routines for at least six months while data

was collected. The layout of these apartments is shown in Figure 6.5.

These testbeds provide basic datasets for testing activity prediction algorithms. They

contain only motion and door sensors, simplifying the types of sensors to be examined. Each

testbed only houses one resident, reducing the complexity of activities compared to having

multiple residents. These testbeds are used in the experiments described in Section 7.2.1.

6.4.2 “Horizon House” Testbeds

This group consists of 25 CASAS apartment testbeds. Each apartment houses one or two

older adults over age 73. Each testbed includes at least one bedroom, a kitchen, a dining area,

and at least one bathroom. These testbeds utilize not only motion and door sensors, but also

light switch, light level, and temperature sensors. Information and a layout for each testbed

1Many of these datasets are available at http://casas.wsu.edu
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Figure 6.5: Bosch apartment testbed layouts. Each apartment houses one older adult. Only

motion and door sensors were used in these testbeds.

are found in the appendix.

Two separate groups of datasets from the Horizon House testbeds are used, representing

different time periods and events. One was labeled by human annotators, while the other was

labeled using AR. The diversity of these datasets, including the presence of more than one

resident in some apartments, allows for examining activity prediction performance in more

difficult situations. These datasets are used in many of the experiments in Chapter 7.
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6.4.3 “Navan” Testbed

The Navan testbed consists of an apartment with one resident. It is equipped with motion,

door, light level, and temperature sensors. The testbed also has thermostat and power metering

sensors. The sensor layout for this testbed is shown in Figure 6.6. Data from this testbed is

utilized for the prompting application trials in Chapter 8. Details about the data used are

described in that chapter.

6.4.4 “Kyoto” Testbed

The Kyoto testbed houses two residents in a two-level apartment. However, it is also used

as an experimental testbed for controlled tests of the CASAS system with various participants.

These experiments occur on weekdays between 9:00 am to 4:00 pm. In order to capture only

data from the residents’ behaviors, sensor events that fall into the experiment time periods are

removed.

This testbed is equipped with motion, door, light switch, light level, and temperature

sensors. It also has item sensors to detect use of specific items and water flow sensors. The

testbed sensor layout is shown in Figure 6.7. Data from the Kyoto testbed is used in Chapter 8

and are described further there.

We use the data collected from these CASAS testbeds to demonstrate the AP methods

described in this dissertation. These datasets provide a convenient testing environment for

our AP methods in a real-world setting. By using data collected from observation of actual

inhabitant activities, we are able to understand how well the methods perform in a variety
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Figure 6.6: The Navan testbed layout. LL = light level sensors.
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Figure 6.7: The Kyoto testbed layout. Legend: M = motion sensor, MA = motion area sensor,

D = door sensor, L = light switch, LS = light level sensor, T = temperature sensor, I = item

sensor, F = flow sensor.
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of contexts. In the next chapter we describe a number of experiments to validate our AP

methods.
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CHAPTER 7. EXPERIMENTAL RESULTS

In this chapter we present a number of experiments with which we evaluate our AP

methods. Using the CASAS sensor data and the evaluation metrics described earlier we are able

to test the performance of our methods in a number of situations. This allows us to understand

how the algorithms perform in different contexts and situations, while also determining the

strengths and weaknesses of each model. The goal of these experiments is to validate our

activity prediction hypothesis with our AP algorithms. We begin by introducing the sliding

window validation method used for most of these experiments before describing each experiment

and its results.

7.1 Sliding Window Validation

In order to evaluate the performance of our AP algorithms, a form of validation must be

used. In a classification problem this would typically take the form of a k-fold cross-validation.

In this form of validation, the data is divided into k folds, each consisting of randomly-chosen

data points from the overall set. The regression model is trained on all but one fold and the

model is tested on the remaining fold. This is repeated for all k folds and the results are

averaged to obtain the overall performance.

However, normal k-fold cross-validation cannot be directly applied to the activity predic-

tion problem due to the sequential nature of the data. It is important that the training and

testing maintain the sequential ordering of the events, but a random fold selection would dis-

rupt this. Instead, we use an adaptation of the cross-validation approach called sliding window
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validation. In sliding window validation, we choose fixed training and test window sizes. Then,

starting from the beginning of the dataset, we move the training and test windows through the

data. The AP model is trained using the events in the training window. The learned model

is then used to form predictions for the events in the test window, which follows immediately

after the training window. The two windows are then moved forward by a specific number

of events wskip and the process is repeated, as shown in Figure 7.1. This process is repeated

through the rest of the data.

Since the prediction labels for training are generated by finding the time from each event

to the next event with the activity label, we stop the sliding window at the last event labeled

with the activity of interest. Beyond this point, we do not know when the next occurrence of

the activity will be (since it is not in our labeled data). Thus, we cannot compute the ground-

truth prediction labels beyond this point. While this means that the entire dataset is not used

for all activities, the number of windows used for each activity is approximately the same and

most of the dataset is covered.

In this way, we form multiple separate validation windows from the whole dataset. Similar

to k-fold validation, we can then average the results from all of the test windows to obtain an

overall performance measure. While this method does introduce some dependency relationships

amongst the validation windows, it is a convenient application of the k-fold validation to our

temporal data. It also allows us to test multiple learned models from the same dataset. Note

that the sliding window validation is run separately for each activity, and then the results can

be averaged across all activities.
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Event Time

Training Window Test Window

Window m

Event Time

Training Window Test Window

Window m+1

Figure 7.1: Sliding window validation. At each step, the model is trained on the events in the

training window and tested on the events in the test window. Then, the windows are moved

forward by a certain number of events and the process is repeated until the whole dataset is

used.

7.2 IP Evaluation

7.2.1 Basic Method Evaluation

Setup

The IP predictor is our basic AP algorithm. In this experiment we wish to evaluate the

effectiveness of the IP algorithm to ensure the validity of our underlying model. This will allow

us to determine if using a regression learner with contextual features can provide effective

automated prompting. To that affect, we test IP using discrete features in an experiment

using the Bosch datasets described in Section 6.4.1. These datasets were labeled by human

annotators. Each sensor event is labeled with one of 12 ADL labels, with events not belonging

to any particular activity labeled as an “other” activity. The “other” category is not modeled
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by AR or AP and thus is not included in the performance evaluation. The activities chosen

represent a core group of ADLs that represent important aspects of daily function, such as

cooking, eating, and taking medication. Tables 7.1-7.3 show the statistics for each dataset,

including the distribution of activity events and occurrences in each dataset. The B1 and B2

datasets each have housekeeping activities but the residents did not work, while the B3 dataset

contains work activity but no housekeeping.

We used a sliding window validation for this experiment. In order to understand how

the amount of training data affected the performance of IP, we varied the size of the training

window. Specifically, we collected results when the training window size was 1,000, 2,000, and

5,000 events. These lengths were chosen to ensure a sufficient number of windows were used

in the sliding window validation. (Note that the average day is approximately 2,500-10,000

events in length.) For these initial tests, we used a test window size of one event. That is, for

each training window, we tested the performance on the next event after the window. We also

moved the sliding windows forward by wskip = 1, 000 events each time.

We compared IP against a standard linear regression (LR) algorithm. We used the same

feature extraction for both our model tree learner and a LR learner. LR provides a baseline

comparison as it is a commonly-used regression technique but it does not model the nonlinearity

of the data. Thus, using LR as a baseline allows us to understand if the nonlinear properties

of the model tree are useful for predicting activity times.

We utilize the MAE, RangeNRMSE, and Pearson’s r as evaluation metrics for this exper-

iment. The MAE provides us with a real-units measure of the error. The normalized measure

allows us to compare the results between different activities and the different datasets. The

correlation demonstrates the amount of agreement between the predicted and actual values in
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Table 7.1: B1 dataset statistics.

Jul. 7, 2009 - Feb. 3, 2010

658,811 Events

Activity Events Occurrences

Bathing 7,198 89

Bed to Toilet Transition 4,170 136

Eating 28,771 599

Enter Home 3,711 586

Housekeeping 3,280 65

Leave Home 4,305 578

Meal Preparation 101,820 921

Personal Hygiene 39,190 1,181

Sleeping (in bed) 33,213 336

Sleeping (not in bed) 39,934 737

Take Medicine 15,388 664

Work 0 0
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Table 7.2: B2 dataset statistics.

Jun. 15, 2009 - Feb. 4, 2010

572,254 Events

Activity Events Occurrences

Bathing 16,295 75

Bed to Toilet Transition 14,641 391

Eating 24,417 416

Enter Home 2,440 463

Housekeeping 12,971 255

Leave Home 2,476 460

Meal Preparation 55,240 615

Personal Hygiene 42,704 1,285

Sleeping (in bed) 10,477 407

Sleeping (not in bed) 16,996 215

Take Medicine 22,524 170

Work 0 0
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Table 7.3: B3 dataset statistics.

Aug. 11, 2009 - Feb. 4, 2010

518,759 Events

Activity Events Occurrences

Bathing 5,151 52

Bed to Toilet Transition 4,346 120

Eating 39,453 477

Enter Home 996 179

Housekeeping 0 0

Leave Home 1,246 212

Meal Preparation 44,842 638

Personal Hygiene 37,237 711

Sleeping (in bed) 20,693 306

Sleeping (not in bed) 8,207 138

Take Medicine 1,248 68

Work 108,763 500
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Table 7.4: Overall results for discrete feature tests with IP. MT = model tree, LR = linear

regression. Results are macro-averages of the average for each dataset. MAE values are in

seconds. Best values are in bold.

Test Average MAE Average RangeNRMSE Average r

MT - 1000 728.8 0.0089 0.9935

MT - 2000 1,047.2 0.0104 0.9908

MT - 5000 1,436.0 0.0137 0.9864

LR - 1000 7,345.4 0.0586 0.9334

LR - 2000 15,060.7 0.1295 0.7605

LR - 5000 9,523.3 0.0452 0.9400

each group.

Results

The overall results for this experiment are shown in Table 7.4. The model tree performs

better than the LR at all window sizes. It performs the best for a window size of 1,000 events.

In this case, the average error is about 725 seconds (about 12 minutes). Even at the larger

window sizes, the model tree has average error under 25 minutes. These error values are likely

to be acceptable for many prediction tasks, indicating that our IP algorithm is able to be a

strong predictor. This is further supported by the high correlation r values near 1.

The lowest average error for LR (for the 1,000-event window) is over two hours. In the

worst case, the error is over 4 hours. These errors are likely to be unacceptable for many
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Figure 7.2: Discrete feature IP MAE results by window size. MT = model tree, LR = linear

regression. *Results are significant (p < 0.05).
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86

0

0.2

0.4

0.6

0.8

1

Pearson's r for B1 Dataset

MT - 1000

MT - 2000*

MT - 5000*

LR - 1000

LR - 2000*

LR - 5000*P
e

a
rs

o
n

's
 r

0

0.2

0.4

0.6

0.8

1

Pearson's r for B2 Dataset

MT - 1000

MT - 2000*

MT - 5000

LR - 1000

LR - 2000*

LR - 5000P
e

a
rs

o
n

's
 r

0

0.2

0.4

0.6

0.8

1

Pearson's r for B3 Dataset

MT - 1000*

MT - 2000*

MT - 5000*

LR - 1000*

LR - 2000*

LR - 5000*P
e

a
rs

o
n

's
 r

Figure 7.4: Discrete feature IP Pearson’s r results by window size. *Results are significant (p

< 0.05).



87

activity prediction needs. Thus, it appears that the LR model is unable to properly account

for the nonlinear aspects of the activity data.

Plots of the MAE results for these experiments are shown in Figure 7.2. The predictions

are especially strong for the B1 dataset, where the average error for a size-1,000 window is

around 600 seconds (10 minutes). While the errors are higher for the B2 and B3 datasets, they

are still within 15-30 minutes. These results indicate that the IP algorithm is able to predict

activities with a good degree of accuracy. For many uses, such as energy management or certain

forms of prompting, errors of 30 minutes or less would be acceptable.

The model tree performs better than the linear regression in almost all cases. This

is especially true for the B2 dataset, where the linear regression predictions for the 2,000-

event window average 25,400 seconds (seven hours). LR seems to have difficulty modeling

the Housekeeping activity for B1 and B2. This may be due to irregularity in the housekeeping

activities which make them difficult to model with a linear approach. LR also has much difficulty

modeling the Take Medicine activity in B3, having an average error of over 32 hours for the

2,000-event window. It is possible this is due to irregularity or lack of frequency for the resident

taking medicine, as there are not many occurrences of this activity in the dataset. Overall, the

model tree used in our IP algorithm performs much better than the linear approach, indicating

the importance of modeling the nonlinear aspects of the data.

Figure 7.3 shows the RangeNRMSE results. As with the MAE results, the normalized

RMSE also shows a large improvement using the model tree over LR in most cases. Significant

exceptions to this include the Take Medicine activity for B1. Here, the model tree does about as

poorly as LR. The performance of the model tree was also relatively poor for these predictions

in the MAE sense, indicating that the B1 resident’s medicine-taking habits are difficult to
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model even with a nonlinear approach.

The Enter Home and Meal Preparation activities for B2 also seem to have relatively high

error. Note, however, that the RangeNRMSE results show more equal error between the model

tree and LR than the MAE results. This may be due to the fact that the RMSE highlights

the larger errors in the results which do not hold as much weight in MAE. These activities

may have a few large errors which affect the RangeNRMSE, but most of the errors are likely

smaller. It is also possible that the Enter Home activity has higher error in all the datasets

due to the lack of sensor data preceding it. Since this activity involves the resident returning

from outside (where there are no sensors), there is no motion or door data generated until the

activity begins, making it difficult to predict.

The effects of the normalization are especially apparent for the Housekeeping activity.

With the MAE results, both B1 and B2 had very high error for the LR model with this activity.

However, the RangeNRMSE value for B1 Housekeeping is actually closer to the average, while

it is still high for the B2 dataset. Likely this is due to differences in timing for this activity in

the two different testbeds. In B1 the time between Housekeeping occurrences is likely greater

(supported by the low number of occurrences in the dataset), which helps lower its normalized

error.

The correlation results are shown in Figure 7.4. The r values for the model tree are almost

always over 0.99. This indicates that there is very high correlation between the predicted and

actual values. Again, the Enter Home activity provides some difficulty, with a lower correlation

value in the B2 dataset. Overall, however, this shows a strong ability of the model tree and IP

to form accurate predictions.

As with the other metrics, LR has lower performance in this aspect as well. While it has
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some high correlation values for certain activities, it has less correlation for many others. This

is especially the case for some of the window sizes for Personal Hygiene. In some ways this is

surprising, as Personal Hygiene is the activity with the most occurrences in each dataset. The

difficulty of performance here may be due to a variety of different sub-activities being labeled

as Personal Hygiene. These activities may include grooming, brushing teeth, and other tasks

which are similar but may occur at different times. The human annotators may have also been

inconsistent with their labeling of this activity due to its variety, leading to higher variation in

the data.

It is interesting to note that the best performance in many cases comes from the 1,000-

event window, the smallest window size used. This may be due to the fact that the sliding

window validation tests the next event after the training set. It is likely this event is closely

related to the training window data and having a smaller training window helps the model

“focus” on the prediction of this event better. As a result, the prediction for the test point is

more accurate in this case. This is something we are continuing to investigate and will also be

discussed further in later sections.

Table 7.5 shows the statistical significance of the results. The p-values are calculated

using a two-tailed paired t-test comparison of the model tree and LR results for each window

size and dataset. In all but one case the results are significant (p-value < 0.05). The differences

for B3 with 2,000-event windows are less significant, which may be due to the large variance in

the error values for that case.

From these results, we determine that a combination of contextual features and regression

learners can be used to form accurate activity predictions. IP is able to form predictions

with an acceptable level of error. The model tree used in IP also performs well compared
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Table 7.5: Significance results for discrete features. The p-values are computed using a two-

tailed paired t-test between the model tree and LR MAE results for the activities. Significant

p-values < 0.05 are marked.

B1 B2 B3

Window Size p-Value Window Size p-Value Window Size p-Value

1000 0.0491* 1000 0.0006* 1000 0.0342*

2000 0.0001* 2000 0.0001* 2000 0.1567

5000 0.0001* 5000 0.0001* 5000 0.0001*

to the LR baseline, having much lower error compared to the linear approach. Thus, it is

important to model the nonlinearity of the activities in prediction. These results also indicate

that the discrete features used provide a significant amount of information about the underlying

activities represented in the sensor data. They allow the IP algorithm to form relatively strong

activity predictions in an automated fashion. Thus, we conclude that IP with discrete features

provides a strong predictor that can be used as a basis for comparing our other methods.

7.2.2 Sampling Feature Improvements

Setup

In this experiment we wish to see how the sampling features can be used to improve the

performance of the IP algorithm compared to the use of discrete features alone. We wish to

see if the state-based information provided through the sampling features is useful for activity
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prediction. We use the Horizon House testbeds described in Section 6.4.2 for these experiments.

For these experiments, the datasets were labeled by human annotators, with each dataset being

annotated by multiple people to maximize label accuracy. In total, there are 118 distinct

activity labels used amongst the 25 datasets. However, there are 30 core activities that are

each present in 19 or more of the 25 datasets which represent the most important aspects of

daily living (e.g. Eating, Cooking, Sleeping, etc). We assess only these 30 core activities in

order to compare results across multiple datasets and to ensure a sufficient number of instances

for each activity. Table 7.7 shows an overview of each of the datasets.

For these experiments we again used the sliding window validation approach used previ-

ously. For simplicity, we used a single training window size of 2,000 events. As before, the test

window size was one event and wskip = 1, 000.

Sensor Comparison

When using sampling features we may utilize additional sensor types that were not used in

the previous experiment. While the Bosch datasets used previously only had “discrete” sensor

events (e.g, motion and door sensors), this is not the case for the Horizon House datasets.

These datasets also contain “sampling” sensor events, where numeric continuous values are

reported (e.g, light level, temperature, and battery sensors). We want to determine what affect

the inclusion of these additional sampling sensors have on IP performance. In this way we can

see whether performance increases when using sampling features are due to additional sensors

or to the features themselves. Thus, we compare results of the sliding window validation for

two sets of the Horizon House data: one with only the discrete sensors present, and a second

with all sensors included. In both cases, only discrete features are used.

Table 7.6 shows the overall results for these tests. The average MAE is 1,173 seconds
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Table 7.6: Overall results comparing discrete vs. all sensor types. These values represent

macro-averages over the results for all activities in all datasets. Best results are in bold. Note

that the error for HH125 was equal in both cases as that dataset has no sampling sensor events.

Test Discrete Sensors All Sensors

Average MAE 1,173.3 749.2

Average RMSE 8,858.2 6,017.8

Number of Datasets Where Test

Has Lowest Average MAE

5 19

Number of Datasets Where Test

Has Lowest Average RMSE

13 11
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Figure 7.5: Sensor type comparison MAE results. Top plot shows the average MAE for each

dataset, while the bottom plot shows the average MAE for each activity (across all datasets).

All tests are with discrete features only and 2,000-event training windows. Dataset results are

not statistically significant (p < 0.05), but activity results are.
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Figure 7.6: Sensor type comparison RMSE results. Top plot shows the average RMSE for each

dataset, while the bottom plot shows the average RMSE for each activity (across all datasets).

All tests are with discrete features only and 2,000-event training windows. Results are not

statistically significant (p < 0.05).
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Table 7.7: Horizon House datasets for sampling features.

Dataset Residents Timespan Events Labeled Activities

HH101 1 2 months 326,066 30

HH102 1 2 months 413,142 30

HH103 1 2 months 167,183 29

HH104 1 2 months 484,931 32

HH105 1 2 months 225,820 30

HH106 1 2 months 263,083 33

HH107 2 1 month 295,165 27

HH108 1 2 months 362,164 31

HH109 1 2 months 569,331 32

HH110 1 1 month 138,331 25

HH111 1 2 months 356,496 33

HH112 1 3.5 months 669,330 30

HH113 1 17 months 3,250,290 32

HH114 1 1 month 194,345 28

HH115 1 10.5 months 2,169,339 64

HH116 1 2 months 507,995 32

HH117 1 11.5 months 1,118,020 37

HH118 1 1 month 254,112 30

HH119 1 1 month 140,711 28
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Table 7.7: Horizon House datasets for sampling features.

Dataset Residents Timespan Events Labeled Activities

HH120 1 2 months 300,037 32

HH121 2 0.5 months 170,930 75

HH122 1 1 month 202,112 32

HH123 1 1 month 154,068 30

HH124 1 2 months 76,024 21

HH125 1 2 months 216,255 32

(almost 20 minutes) when only discrete sensors are included. By including events from the

sampling-type sensors, the error decreases to 749 seconds (about 12.5 minutes). This indicates

that the inclusion of other sensor types causes the error to be reduced by about half, at least

in terms of absolute error. The reduction in error is not as significant when examining the

RMSE results, where the error drops by only about 32%. Recall the RMSE emphasizes larger

errors more than the MAE. It is likely that the additional sensors mostly help to reduce the

smaller prediction errors, but do not have as much effect on larger errors. Overall, however, the

addition of more sensor types helps to improve the overall performance of the IP predictions

in a noticeable way.

Figure 7.5 shows plots of the average MAE both by dataset and by activity. In 19 of

the 25 datasets the inclusion of more sensors leads to a noticeable reduction in error. This is

especially true for the HH105 dataset, where the MAE with only discrete sensors is over two
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hours, but drops to about 12 minutes with all sensors included. On the other hand, five of the

datasets had higher MAE when the extra sensors were included. Often this increase in error

is small (e.g, HH21), indicating that the increase may be due mostly to different dynamics

in the extra events for which IP is forming predictions. For HH106, however, the increase in

error is much greater (about 650 seconds). It is possible that the placement of the sampling

sensors and the inhabitant’s habits in some datasets may be such that including them actually

makes hinders the ability of the model tree to predict accurately. This could also be due to the

additional events being added having more difficult activity times to predict, such as those that

are not experienced in the training windows. These differences highlight the need to consider

different parameter approaches for each activity prediction situation in order to best match

the environment. It should be noted that the HH125 dataset contains no sampling sensors, so

there is no change in performance between the two cases for that dataset.

Inclusion of additional sensors also has a varying effect on performance for different ac-

tivities. The most improvement is seen in activities such as Cook Dinner, Dress, and Phone.

It is possible that the additional sensors provide improved coverage of areas and situations

where these activities occur. For example, since temperature sensors report values more fre-

quently when the temperature changes more rapidly, it is possible that IP observes that many

temperature events caused by stove use during cooking can be used to improve performance.

Similar situations may occur with lighting sensors. It should also be noted that the MAE

increases noticeably for the dish washing activities, which may be due to the additional sensors

making it more difficult to predict this activity. Overall, however, the sampling sensors lead to

improvements for most activities.

Figure 7.6 shows the RMSE results. As with the MAE results, the addition of more
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sensors improves performance in many cases, although the results are more mixed. The HH105

dataset still has much improvement with the additional sensors, while the HH106 and HH123

datasets show notable decrease in performance. Comparing activities, the improvement for all

of the cooking activities is noticeable. The performance decrease for the dish-washing activities

is more noticeable as well. The dish-washing activities with all sensors may have a few larger

errors that cause the RMSE to rise more markedly than the MAE. It seems as if many of the

activities which have higher RMSE when more sensors are added would benefit from efforts to

reduce the larger errors to lower the overall error rate.

The p-value from a paired t-test between the MAE results for the different activities is

0.0009, which is significant. Thus, the inclusion of additional sensor types is useful for better-

informing the predictor in most cases. However, this is not universally true, as the performance

can decrease if the additional sensors are not able to provide useful new contextual information.

There is also an additional aspect of the sensor types used that we find notable. Recall

that many of the battery-operated wireless sensors report their battery voltages and capacity

percentages at regular intervals. Normally, these events only come at certain intervals, without

any direct link to inhabitant activities. This may lead to the conclusion that the battery-related

events would not be helpful for activity prediction. However, we briefly tested what effect is

had if these events are removed, and found that the performance actually decreased. Although

the decrease was not particularly large, it is an interesting anecdotal observation that IP is able

to use the seemingly unhelpful battery information to improve performance.

Sampling Feature Inclusion

We now consider the effects of including sampling features in addition to the discrete

features previously used. Since we found that performance generally increases using additional
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sensors, we are now interested to see how much more improvement the sampling features

themselves can contribute. This allows us to understand if the state-based sampling features

are useful for activity prediction. For this comparison, we use IP with the same Horizon House

datasets with all sensor types included. (This is the same collection of data used for the “all

sensors” comparisons in the previous section.) We again use a window size of 2,000 events and

test on the next event. wskip is again 1,000 events. This time, we use only discrete features

for one set of results, but utilize the sampling features previously described for the other. The

sampling interval is set at one second, while five seconds of sample lag are used. Larger sampling

intervals and lags can be used, but this can lead to increased computation time and complexity

for this many datasets.

Table 7.8 shows the overall results of these tests. The average MAE is improved by

about 14 seconds with the inclusion of the sampling features. While this improvement is not

much, the average RMSE improves by about 722 seconds (about 12 minutes) to 5,296 seconds.

The previous section indicated that adding more sensor types mostly reduces smaller errors

(reflected by the greater MAE reduction). Here, however, the RMSE reduction is greater,

indicating that adding the sampling features most strongly reduces larger errors emphasized by

the RMSE. While only 11 of the datasets have improved MAE results with sampling features,

16 show improvement when RMSE is considered. Thus, while adding sampling features does

reduce the overall error in both an MAE and RMSE sense, the effect is not consistent and is

mostly related to reducing large-magnitude errors.

Figure 7.7 shows plots of the MAE results. Although many of the datasets have higher

error with sampling features added, the difference is usually small (usually less than a minute).

Thus, there is not much reduction in performance that occurs when the sampling features are
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Table 7.8: Overall results comparing discrete vs. all features with IP. These values represent

macro-averages over the results for all activities in all datasets.

Test Discrete Features Discrete + Sampling Features

Average MAE 749.2 735.1

Average RMSE 6017.8 5295.5

Number of Datasets Where

Test Has Lowest Average

MAE

14 11

Number of Datasets Where

Test Has Lowest Average

RMSE

9 16
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Figure 7.7: Features comparison MAE results. Top plot shows the average MAE for each

dataset, while the bottom plot shows the average MAE for each activity (across all datasets).

All tests are with all sensor types and 2,000-event training windows. Results are not statistically

significant (p < 0.05).
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Figure 7.8: Features comparison RMSE results. Top plot shows the average RMSE for each

dataset, while the bottom plot shows the average RMSE for each activity (across all datasets).

All tests are with all sensor types and 2,000-event training windows. Results are not statistically

significant (p < 0.05).
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added. Only HH123 shows a relatively large error increase of about 260 seconds. When the

error is reduced, however, the reduction can be notable. With the HH106 dataset, for example,

adding sampling features reduces the error by almost 8 minutes. Note that the HH106 dataset

showed an increase in error when adding sampling-type sensors, so this reduction in error with

the sampling features is of interest (though not as great as the previous error increase).

The activity errors show a similar trend. In most cases, the error difference between using

only discrete sensors and using all sensors is relatively small. The most significant difference

is with the Wash Breakfast Dishes activity, which decreases by about 7 minutes. This may

indicate that the inclusion of the value information gained from the sampling features is useful

in predicting the dish washing activity in the morning. Perhaps this is due to increased context

related to the use of light and changes in temperature within the home as the inhabitant

performs their morning routine.

Figure 7.8 shows RMSE plots for these tests. Here, the decrease in error with the addition

of sampling features is more marked. As with the MAE, the HH106 dataset gains noticeably

improved performance, reducing the RMSE by over two hours. The HH111, HH113, and

HH115 datasets also show a strong improvement in performance. For the other datasets the

improvement is less, but the only dataset showing a strong increase in error is HH123. This

dataset has an RMSE increase of about 42 minutes.

The activity RMSE results show a similar pattern. The majority of the activities have

improved RMSE performance with sampling features, especially Bathe, Eat Dinner, and Wash

Breakfast Dishes. These activities may be helped by the addition of knowledge about the sensor

states from the sampling features. For other activities, such as Bed-Toilet Transition or Enter

Home, the improvement is less, indicating that sensor values are not as useful for predicting
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these activities. It is interesting to note that the Sleep activity has particularly low error,

which may be the result of relating light sensor values throughout the day with upcoming Sleep

occurrences.

The p-value from a paired t-test for the MAE activity values is 0.51, which is not signifi-

cant. Comparing the RMSE results, the p-value is 0.052, which is not particularly significant,

though more so than for MAE. The low significance is likely due to the small differences be-

tween the sets of results compared to the relatively large error differences between activities.

The effect gained from adding more sensor types is more significant than adding the sampling

features, although the sampling features may still be helpful.

Again, the improvements in the RMSE results indicate that much of the error reduction

from adding more features is found in reducing larger errors. This may be a significant improve-

ment for applications where very large errors can be particularly costly, such as cases where

action may be taken to prepare for an activity that is predicted with large error. Even in cases

where the MAE or RMSE error is greater, the difference is usually small. Thus, it appears that

using sampling features can increase the ability of the regression learner to predict activities

with fewer large errors.

Correlation with Sensor Data Statistics

Next, we probe deeper to determine what the relationship is, if any, between the charac-

teristics of activities and the ability of IP to predict them. We are interested in knowing if we

can expect the performance of IP to vary dramatically based on the type and composition of

the data used for predictions. This is useful in understanding whether our regression learner

prediction techniques are susceptible to major changes in performance as dataset characteristics

change. Ideally, the performance would not change much across different datasets. To this end,
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we correlate the MAE results from the previous section when using all sensors and all features

with various statistical measures of the Horizon House data. In particular, we compare against

the following parameters:

• Number of activity occurrences per day The average number of occurrences of a

particular activity per day throughout the dataset.

• Mean start / end times of activities The average start or end time of all occurrences

of an activity throughout the dataset. These averages are calculated using a circular

average in order to account for the cyclical nature of daily times. For example, start

times of 23:00 and 01:00 would average to 00:00 with a circular average.

• Variance of the start / end times of activities The variance in the start / end times

of occurrences of an activity. These variances are based on a normalized circular scale

similar to the circular mean.

• Mean number of total events per day This is an average of the number of events

per day, across all activities. It is computed separately for each dataset.

In the case of the activity-related statistics, we linearly correlate each statistic with the

MAE results across all activities in each dataset. We then average the correlation for each

dataset. For the last statistic, we find an overall correlation between the mean number of

events and the overall average MAE across all datasets.

These results are shown in Table 7.9. The number of occurrences per day has a moderately

negative correlation with the error. This indicates that activities that have more occurrences

per day will have slightly lower error and thus increased performance. This seems sensible

as more activity occurrences leads to both more interesting instances to train from as well as
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reduced time between occurrences that must be predicted. MAE is slightly positively correlated

with the start and end times of activities, indicating that activities earlier in the day are slightly

easier to predict. This may be due to more strongly fixed morning routines of the inhabitants

compared to the evenings, which may vary with different activities throughout the week.

Table 7.9: Correlation of MAE results with dataset statistics. Results for the first five statistics

are averages across datasets of the linear correlation of activities in each dataset. The last

statistic is a linear correlation of all datasets.

Statistic Correlation

Occurrences/Day -0.213

Mean Start Time 0.145

Mean End Time 0.150

Start Time Variance -0.131

End Time Variance -0.126

Dataset Events/Day -0.547

Interestingly, the MAE is negatively correlated with the variance in activity start and end

times. In other words, the performance improves somewhat when the variability in the activity

occurrence times increases. However, this effect is only slight and not strongly correlated.

Finally, the strongest correlation is a negative correlation between the MAE and the

number of events per day in each dataset. When there are more events per day the error

decreases and performance improves. Similar to the correlation with activity occurrences, this

also seems sensible given that there are more training instances to learn from for each day’s
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activity patterns, leading to improved prediction models.

These results indicate that the greatest contributing factor to performance seems to be

having a high number of events and occurrences of activities per day. There is less effect from

the actual start and end times of activity occurrences. With the exception of the number of

events per day, however, none of these correlations are particularly strong. Therefore it is likely

that IP will perform well when used with data with varying characteristics and can be applied

across multiple applications and scenarios. Even when the activities in those datasets may vary

more significantly, the resulting impact on error will likely be small.

7.2.3 Regression Learner Comparison

We are also interested in determining the effectiveness of the model tree regression learner

used in IP compared to other approaches for activity prediction. A variety of regression learners

could be used in activity prediction and we are interested in seeing if the model tree is a strong

model for this purpose. Using the previous Horizon House data, we compare the model tree

against two popular learners: a linear regression model and a support vector machine (SVM).

The linear regression was used in our experiments with the discrete features in Section 7.2.1.

It again provides a baseline comparison using a basic linear model. The SVM provides a more

complex regression model that should be able to predict activities using a nonlinear model,

similar to our model tree.

We use the feature extraction component of IP to generate the same features for all three

regression learners. All features (both discrete and sampling features) were used for these

experiments. As before, we trained and tested all three regression learners using a sliding
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window validation. The same windows were used for all three models. We then compared the

predicted times from each regression learner with the ground-truth labels for each event.

We use the WEKA data mining software [75] to implement the LR and SVM regression

learners. LR was used without attribute elimination, so all of the features were available to the

model. The SVM was trained using sequential minimal optimization [70] with a linear kernel

and attribute normalization.

One of the drawbacks of the SVM model was observed while attempting to run the

comparison experiments. We had originally used a window size of 2,000 events, as with previous

tests. The model tree and linear regression learners were able to complete the training and

testing with this window size in fewer than 12 hours. The SVM model, however, had difficulty

with the amount of data. After running for 10 hours it was only able to complete one or two

sliding windows out of the hundreds needed. We believe the SVM model had difficulty learning

a model due to the high number of data attributes and data instances in each training window.

(With all of the sample features included, there are over 2,000 features for each data instance.)

This indicates that the SVM learner may not be optimal for the activity prediction problem

due to its training time on the large training datasets used. In order to allow the SVM model

to finish within reasonable time, we reduced the window size to 500 events, moving the window

forward by 500 events each time.

Table 7.10 shows the overall results of these experiments. The LR model has a very

high average MAE and RMSE on the order of 1011 to 1012 seconds. Much of these large error

results can be attributed to a few instances where the error is very large, causing the averaged

values to be very large. Most of the errors for LR are much smaller. However, these very

large errors indicate that the LR model may have trouble dealing with nonlinear aspects of
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Table 7.10: Overall results comparing different regression learners. MT = model tree, LR =

linear regression, and SVM = support vector machine. These values represent macro-averages

over the results for all activities in all datasets.

Regression Model MT LR SVM

Average MAE 522.0 1.84 ∗ 1011 530.4

Average RMSE 5810.3 5.15 ∗ 1012 10,062.1

Number of Datasets Where Test

Has Lowest Average MAE

8 0 17

Number of Datasets Where Test

Has Lowest Average RMSE

13 0 12
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Figure 7.9: Regression learner comparison MAE results. MT = model tree and SVM = support

vector machine. All tests are with all sensor types and 500-event training windows. Results

are not statistically significant (p < 0.05).
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Figure 7.10: Regression learner comparison RMSE results. MT = model tree and SVM =

support vector machine. All tests are with all sensor types and 500-event training windows.

Results are not statistically significant (p < 0.05).
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the activities that are important in multiple cases. They also suggest that it may be useful

in activity prediction to detect and minimize predictions with large errors. For example, a

smoothing operation may be useful to avoid large error spikes.

The LR model was also impacted by the small training window size and correlation be-

tween feature values. With only 500 training events in each window, the values in all of the

training feature vectors are often similar to each other. This may cause the learned model to

over-fit the training examples, leading to reduced performance on test events which have differ-

ent feature values. Collinearity between features can also decrease the LR model performance.

Feature vectors from small training windows may have many collinear features which were not

removed in this experiment, leading to larger error. The use of feature reduction techniques

and larger training window sizes may improve LR performance, though the inability of LR to

form nonlinear models would still limit performance.

The SVM and model tree learners have considerably better performance. The MAE for

the model tree is 522 seconds, while it is about 530 seconds for the SVM. This is about a nine-

minute average error. While the model tree has slightly lower overall MAE, the SVM had lower

MAE on 17 of the datasets (the model tree was lowest for 8 datasets, while the LR was not

lowest for any datasets). However, we note that the RMSE for the model tree is 5810 seconds

(about 1.5 hours), while it is 10,062 seconds (2.75 hours) for the SVM. The model tree has

only about half the RMSE as the SVM. Since MAE emphasizes all errors equally but RMSE

weights larger errors more heavily, this indicates that the SVM model produces more notably

large errors while performing approximately the same as the model tree in general.

Figure 7.9 shows the MAE results. In many cases, the error for the model tree and the

SVM is nearly the same. Noticeable exceptions include HH115, HH116, and HH125, where the
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SVM performs about twice as poorly or worse compared to the model tree. The model tree has

much greater error for HH106 and HH123. Recall that the model tree has had relatively poor

performance for HH106 in many of the previous experiments as well, indicating that the tree

structure may have difficulty modeling the particular habits of that testbed’s inhabitant. For

many of the datasets the performance with the SVM is better. However, in the cases where

the model tree performs better, it often does so by a strong margin.

From the activity plot, we see that the two models perform best on an approximately equal

number of activities. The SVM appears to have trouble with some morning activities, such

as Cook Breakfast, Morning Meds, and Wash Breakfast Dishes. The model tree has improved

performance for these activities. It is possible that the model tree is able to model variability

in morning routines that the SVM has difficulty with. The model tree performs poorly relative

to the SVM for activities such as Entertain Guests, Sleep Out of Bed, and Work At Table.

These are activities that may occur at different times, locations, and contexts during the day.

(For example, the inhabitant may entertain guests at much different times on different days.)

The model tree might have difficulty grouping similar training data for these activities and thus

has reduced performance, while the SVM is able to distinguish these contexts more accurately.

However, the two models are roughly equal in performance across most other activities.

Figure 7.10 shows the RMSE results for these experiments. For many of the datasets,

the model tree and SVM have similar RMSE values. As with other metrics, the model tree

has much higher RMSE for the HH106 dataset than the SVM. However, the SVM has very

poor RMSE performance for the HH115 and HH116 datasets, with average RMSE values of

about 80,000 and 34,000 seconds, respectively. This is an error of almost a day in some cases.

Comparatively, the RMSE for the model tree is only around 10,000 seconds for HH115 and less
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than 3,000 seconds for HH116. It appears that the SVM has a significant amount of large-error

predictions for these datasets which cause its performance to be much lower. Thus, when large-

magnitude errors should be avoided, the model tree appears to be a more effective regression

learner.

Similar results can be seen in the activity RMSE data. The SVM again has difficulty

with morning activities, where it obtains large RMSE errors. While the model tree again has

higher RMSE for many of the activities where it has high MAE, the only very large error is

for the Work At Table activity. Thus, it appears that many of the errors that cause higher

MAE for these activities are smaller errors not weighted as heavily in the RMSE measure. It

should also be noted that both models have relatively low RMSE for predicting the Sleep (in

bed) activity, indicating that this is easy to predict using the nonlinear models.

While the SVM has improved MAE performance on some datasets, the model tree overall

performs slightly better. It also shows a much greater improvement in RMSE measures com-

pared to the SVM. Thus, the model tree seems able to perform prediction without as many

large erroneous predictions. This may be useful in many cases, where we wish to avoid mis-

takenly acting on predictions when they can be very far from the actual activity times. While

the LR model is easy to train, it is unable to handle certain aspects of the activity patterns,

resulting in large error. Thus a nonlinear model is needed to predict activities more accurately.

The SVM model can obtain relatively strong performance over the model tree in some

cases. However, its inability to handle larger and more complex data limits its application to

activity prediction. Anecdotal observations suggest that the SVM is also slower to train than

the model tree, suggesting the latter is a useful model for its performance and ease of training.

It is also possible that the small training window size leads to a poor model tree structure, as
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there may not be enough data instances to properly generate a full model tree and its nodes for

more accurate prediction. However, we will often want to use much more training data than

just 500 instances regardless of the model used in order to achieve better performance across

the variety of daily activity patterns for each inhabitant. The model tree provides a strong

prediction component for IP with lower complexity compared to SVM but better performance,

especially compared to the linear model. This indicates that the tree structure is effective at

modeling activity patterns for prediction.

7.3 RAP Evaluation

7.3.1 Setup

We now evaluate the performance of the RAP method compared to that of IP and other

baselines. We wish to know whether the inclusion of joint activity information allows us to

improve predictive performance. In this way we can analyze whether relationships between

activities can be effectively used to perform predictions in support of our hypothesis. We

also wish to evaluate the performance improvement that may be achieved through the use of

imitation learning techniques.

For these tests we use the Horizon House testbeds as we did for the sampling feature tests

for IP. However, we only utilize 24 for the 25 datasets (HH124 is excluded due to the lack of

data from that testbed). Using the initial human-annotated data described in Section 7.2.2

we train AR to learn a generalized model from the data for all 24 datasets. AR achieves 96%

classification accuracy on these datasets under a 10-fold cross validation of the labeled data.

The AR model is then used to label additional data from these testbeds which are then used
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for these tests. This is done to avoid the irregularity and inter-annotator reliability problems

in human-annotated data. The statistics for these AR-labeled data are shown in Table 7.12.

We have condensed many of the 30 core activities used in previous experiments into 11 main

activities (e.g, all of the variations of eating are now in the Eat activity). Table 7.11 shows the

distribution of the activities (across all 24 datasets).

We again use the sliding window validation approach for these tests. While the training

window size is 2,000 events, we increase the test window size to 5,000 events. That is, we now

test on 5,000 events after each training window. This is done in order to mitigate the effects

of the close proximity of each training and testing window. By adding more test events that

move further from the training window we can better evaluate how well RAP will do with new

data different than the initial training set. This also allows us to see how performance changes

as the data changes. As before, wskip is 1,000 events.

Algorithms

For this evaluation we compare the following four algorithms:

• Independent Predictor The IP provides an informed baseline for comparison.

• Recurrent Activity Predictor The RAP includes activity relationship features which

we hope will improve predictive performance.

• Gaussian As an uninformed baseline, we utilize a Gaussian predictor. This predictor

does not rely on a complex underlying model for generating prediction times. Rather, it

models the activity occurrence times for the activity of interest from the training window

as a Gaussian distribution. The Gaussian predictor then samples from this distribution

in order to generate a prediction.
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Table 7.11: Activity class distributions in datasets used for testing recurrent predictors. The

number of events is a total from across all datasets.

Activity Sensor Events

Bathe 208,119

Bed-Toilet Transition 174,047

Cook 2,614,836

Eat 585,377

Enter Home 174,486

Leave Home 311,164

Personal Hygiene 1,916,646

Relax 2,031,609

Sleep 732,785

Wash Dishes 1,139,057

Work 2,028,419
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Table 7.12: Statistics for AR-labeled datasets used for testing recurrent predictors.

Dataset Residents Time Span Sensors Sensor Events

HH101 1 2 months 36 219,784

HH102 1 2 months 54 280,318

HH103 1 2 months 26 112,169

HH104 1 2 months 66 344,160

HH105 1 2 months 60 146,395

HH106 1 2 months 60 201,735

HH107 2 1 month 54 199,383

HH108 1 2 months 54 284,677

HH109 1 2 months 44 399,135

HH110 1 1 month 38 98,358

HH111 1 2 months 54 219,477

HH112 1 4 months 40 468,477

HH113 1 12 months 58 1,643,113

HH114 1 1 month 32 133,874

HH115 1 10 months 40 1,591,442

HH116 1 2 months 38 386,887

HH117 1 12 months 32 767,050

HH118 1 1 month 46 178,493

HH119 1 1 month 36 92,000
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Table 7.12: Statistics for AR-labeled datasets used for testing recurrent predictors.

Dataset Residents Time Span Sensors Sensor Events

HH120 1 2 months 40 217,829

HH121 2 10 months 62 3,361,406

HH122 1 2 months 56 247,434

HH123 1 1 month 32 106,836

HH125 1 2 months 34 216,245

• Oracle The Oracle predictor provides a best-performance limit to the performance of

RAP. It is based on the idea that the DAgger algorithm [60] could be used to improve

the predictive ability of the RAP model. The Oracle predictor employs the same features

as RAP, except that the lag features Φjoint are based on the true activity times, rather

than predictions from the model. This mimics what could be obtained through optimal

imitation learning of the lag values, as could be provided by the iterative learning of

DAgger. Oracle provides an upper limit for the performance limits that should be

achievable through RAP.

7.3.2 Results

Table 7.13 shows the overall results for each algorithm. The RAP method shows a very

noticeable improvement over IP in RMSE, reducing the error by almost eight-fold from 175,502
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seconds to 22,337 seconds. RAP’s improvement over IP is less dramatic for the MAE results,

but is still significant (reduced by half). The RMSE is especially affected by a few large IP

errors that are greater than one day, causing it to rise dramatically compared to MAE. This

emphasizes how MAE is a better measure for determining overall error performance.

Table 7.13: Overall results comparing recurrent and other predictors. A one-way ANOVA of

the results indicates that the results are significant (p < 0.05).

Method MAE RMSE

Gaussian 12,134.30 23,142.38

IP 19,050.85 173,501.54

RAP 8,433.38 22,337.32

Oracle 2,686.47 12,758.97

Figure 7.11 shows the MAE results for each activity. RAP performs better than IP for

all activities. Even the Gaussian learner performs better than IP. This demonstrates some

of the variability exhibited by IP, which can be subject to large prediction swings. Unlike

RAP, IP has no lag values to help condition new predictions, so it can generate very erroneous

predictions. We believe that the Gaussian predictor outperforms the IP predictor because it

generates predictions close to the mean value of the training labels. Since the test events are

still relatively close to the training windows the activity times do not change greatly, so the

random Gaussian predictions are still closer than the widely-varying IP predictions.

RAP performs noticeably better for activities such as Cook, Eat, and Wash Dishes. This
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may be because these activities are often closely related to each other and performed in or-

der. RAP is able to use the context of the related activities from its lag features to improve

prediction. RAP also performs well against IP for the Personal Hygiene, Relax, and Sleep

activities. These activities can have variability in their start and end times, and (in the case

of the first two) may occur in different places throughout the home. The sensor-based fea-

tures alone do not provide enough context for these activities, but RAP is able to discover the

relationships between these activities and others to more accurately predict them. RAP, IP,

and the Gaussian predictor all have poor performance for the Bathe and Bed-Toilet Transition

activities. This may be due to variability in these activities and their relative sparseness in the

dataset, making them harder to model and predict. It may also be noted that RAP does have

some trouble predicting the Enter Home activity, likely because there are not a lot of events

preceding the inhabitant’s return home. Overall, RAP outperforms both the IP and Gaussian

predictors with significant improvement.

Figure 7.12 shows the ETF values at varying thresholds. The IP model has only about

5% of its errors below one second. RAP increases this to 18% of errors less than one second, a

notable improvement. About 55% of RAP errors are less than 15 minutes, compared to only

40% of errors with the independent predictor. Both methods have about 99% of errors smaller

than 24 hours. These results indicate that RAP can predict more often with smaller error

compared to the independent case while still having a majority of its errors less than one hour.

This level of performance is useful for many activity prediction problems.

The Gaussian predictor has less than 1% of its errors under 30 seconds. In this regard

it is outperformed by both IP and RAP. It is interesting to note that, although the Gaussian

model has lower overall error than IP, it has a larger number of errors over an hour. This is
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Figure 7.11: Recurrent predictor MAE by activity.
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because the Gaussian predictor takes a “middle-of-the-road” approach, neither predicting with

very low or very high error. The IP model is more subject to swings in the predictions that

cause large errors, but it is still able to outperform the Gaussian model in terms of the error

threshold. It is possible the IP predictor could be used with a limitation threshold above which

certain predictions can be ignored.

The Oracle predictor achieves about a three-fold reduction in MAE compared to RAP, but

only reduces the RMSE by about half (Table 7.13). This indicates that, although the Oracle

performs better than RAP, this improvement is mostly in reducing the number of medium-

magnitude errors that are not emphasized by the RMSE. This is also indicated in the ETF

values in Figure 7.12. Over 90% of the errors for Oracle are less than one second, compared

to the 18% for RAP. However, both predictors have around 5% of errors larger than 43,200

seconds (12 hours), with only slightly fewer under Oracle. Thus it appears that the majority

of the improvement that is gained from the improved fidelity of lag values is in reducing the

magnitude of most errors, increasing the number of near-perfect predictions. However, there

are still some large outlier errors that are encountered with the Oracle.

In Figure 7.11 we see that Oracle performs better than the other solutions on all activities.

In fact, Oracle has almost no error for activities such as Cook, Personal Hygiene, and Relax.

This indicates that RAP would be able to achieve lower error rates, especially on these activities,

by learning to recover from errors with DAgger.

We note that the ETF curves in Figure 7.12 resemble a standard ROC curve used in

classification problems. In this case, the discrimination threshold is the time threshold on

prediction error, v. With common ROC curves, the area under the ROC curve (AUC) can

be used as a numeric measure of performance. We thus utilize the area under the ETF curve
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Table 7.14: Area under the ETF curve (AUETF) values for each predictor. A value of 1.0 is a

perfect predictor (no error).

Method AUETF

Gaussian 0.8619

IP 0.8757

RAP 0.9091

Oracle 0.9972

(AUETF) in an analogous fashion. A perfect predictor would have an AUETF of 1.0. We list

the values of AUETF for each predictor in Table 7.14. As with the ETF plots themselves, RAP

outperforms IP, while both RAP and IP outperform the Gaussian baseline. The AUETF value

for Oracle is particularly high, indicating that RAP can become a very strong predictor with

the help of a method such as DAgger.

We are also interested in how the performance of each predictor changes as we move away

from the training data. Figure 7.13 shows the average MAE based on how far the test event

horizon was from the training window. For all predictors except the Gaussian baseline the

errors are very low just after the training window (about 8 minutes for IP and 30 seconds for

RAP and Oracle). The MAE slowly increases as the horizon moves away from the training

window since the events gradually have different properties than those in the training window.

However, IP has a very sharp initial increase in error. It also exhibits a much more variable

curve, with some jumps of over 10,000 seconds or more. The curves for RAP and Oracle are
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Figure 7.13: Recurrent predictor MAE by horizon. The test horizon indicates how far (in

number of events) the test event is from the end of the training window. MAE values are

averaged over all activities and datasets at each test horizon.
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much smoother and do not increase as sharply. This is indicative of the smoothing properties of

RAP, which can use previous predictions to reduce prediction variability and avoid particularly

large jumps in error.

For all four predictors the error tends to increase as the horizon moves away from the

training window. While the variability of the IP curve makes it difficult to determine the overall

trend, it appears that it settles at an error of around 21,000 seconds (5.8 hours) after about 4,500

events. RAP and Oracle, on the other hand, achieve much lower steady-state errors sooner than

IP. RAP settles at around 2.5 hours after about 2,000 events, while Oracle has a lower error at

about 1 hour after 2,000 events. These errors may be reasonable for some applications, but we

suspect they can be lowered further with additional training data in each window. 2,000 events

is relatively small compared to the size of the datasets. While this window size was chosen to

provide a sufficient number of test windows for our validation, it seems likely that using larger

training sets can improve predictive performance by allowing more of the residents’ activities

to be observed. This is supported by the results for our prompting applications described in

Chapter 8, where errors of less than an hour are achieved even at two weeks after training. For

those predictors, the training data consisted of more than a month’s worth of activities.

This experiment demonstrates the usefulness of activity relationship information for activ-

ity prediction. By incorporating this information through the lag values as in RAP, an activity

predictor is able to noticeably improve its performance. Thus, activity relationships are an

important source of context for prediction. The strong performance of the Oracle predictor

suggests that RAP can be improved even further with the use of algorithms such as DAgger

which allow it to better correct from errors. RAP is a strong predictor and useful for many

situations, though it is open to further improvement with the TPAP method.
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7.4 TPAP Evaluation

In this experiment we hope to determine if the TPAP algorithm can be used to address

some of the issues found with the RAP predictor. We also evaluate TPAP using three different

lag sizes in order to understand how the number of lag predictions affects performance. In this

way we can understand if using a combination of learners can improve predictive capability.

For these experiments, we used the same Horizon House AR-labeled data used in Section 7.3.

WEKA [75] was used for the independent and recurrent model trees in these experiments to

allow more rapid testing and changes. However, the M5 model tree regression learner was still

used, so the model is equivalent to that used previously.

Instead of using a sliding window validation as previously, we now use a holdout validation

method. In this method, a certain percentage of the dataset is “held out” to be used as test

data. The model is trained on the remaining data, and then tested on the held out set.

The performance of both the independent and recurrent predictors were measured using this

method. In both cases, 67% of the data was used for training while 33% was used to test. The

test points are chosen at random from the dataset. However, this choosing happens after all

of the features are generated for each stage. Since the features are already created for each

instance at this point, the temporal ordering of the events is no longer critical as the regression

learners treat each instance separately. We also use only 75,000 events from the beginning of

each dataset to reduce the run time of the tests with the Weka platform.

We compare the two-pass method using 0, 1, or 12 lags. We also use the performance

of the independent predictor as a baseline. The lag-n predictors use both stages of the two-

pass method, while the independent results are only from the first-stage independent predictor.
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Table 7.15: Overall results for TPAP. The number n for the Lag-n predictors indicates the

number of lagged predictions from previous events that are used for that predictor. Each

predictor was tested on a 33% holdout from 75,000 instances in each dataset. Best results are

in bold.

Method Average MAE Average RMSE Average r

Independent 721.7 2,492.4 0.9815

Lag-0 637.3 7,621.3 0.9840

Lag-1 642.0 7,628.5 0.9841

Lag-12 567.9 1,927.9 0.9873

In the zero-lag case, only the prediction for the same event is added before the recurrent

stage. In the lag-1 or lag-12 cases, we additionally add predictions from the 1 previous event

or 12 previous events, respectively. So, in the lag-12 case, each feature vector passed to the

recurrent stage includes the predictions for that event along with the 12 events preceding it. By

comparing varying numbers of lags we can observe how the amount of previous history affects

the performance of the algorithm. Discrete features are also used for both the independent and

recurrent predictors.

Table 7.15 shows the results of these experiments. We measure the MAE, RMSE, and

Pearson’s r for each test. In terms of both MAE and the correlation statistic, the two-pass

results outperform the independent model. The independent model has MAE of around 722

seconds (12 minutes), which is reduced down to 568 seconds (9.5 minutes) using the lag-12

predictor. While the MAE and correlation results are better for the lag predictors, this is not
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necessarily the case with RMSE. While the RMSE is about 2,500 seconds for the independent

predictor, it jumps up to around 7,600 seconds for the lag-0 and lag-1 predictors. For the lag-12

predictor the RMSE is reduced to about 1,900 seconds. This indicates that the introduction of

the two-pass model can lead to an increase in the size of large errors. Adding more lags helps

to reduce this variability by allowing for the predictions to be conditioned on more previous

values. The correlation also increases as the number of lags increases.

It is also interesting to note that the MAE and RMSE actually increase from the lag-0

to lag-1 predictors. However, this increase is very slight, indicating that there is not much

difference between the two predictors in terms of performance. Therefore it appears that the

inclusion of more than one lag is needed before the most benefits can be seen.

Figure 7.14 shows the MAE for each activity. The independent predictor has the highest

MAE for almost all of the activities, with the exception of Eat. For this activity, the lag-0 and

lag-1 predictors have a very large MAE. For most other activities, the MAE for lag-0, lag-1,

and lag-12 are nearly the same. Thus, it appears that, for most activities, adding more lag

values does not necessarily help improve performance. However, at least for some activities, the

additional lags can improve performance and reduce the number of large errors. The results

are found to be not statistically significant through a one-way ANOVA.

This is further suggested by the RMSE results in Figure 7.15. Again, the lag-12 predictor

does show improvement over the other lag predictors for Eat, as well as Leave Home. Since the

RMSE for the lag-0 and lag-1 predictors is so high for these activities, it is likely that most of

the error experienced is concentrated in a few larger errors. It is also notable that the RMSE

for the Enter Home activity is much higher with the independent predictor. Recall that this

activity is often not preceded by many sensor events. The lag predictors are likely able to use
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Figure 7.14: Two-pass MAE results by activity.
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Figure 7.15: Two-pass RMSE results by activity.

the predictions from events before the resident left home in order to better predict when they

will return.

While examining the results of these experiments we noted some common causes of errors.

The independent predictor had large errors where the time between sensor events was very

large. In these cases, the gap in the timeStamp features tends to cause the model to output an

incorrect prediction. Large errors are also caused by a transition between different leaf nodes in

the model tree. At these points, the splitting features in the tree vary enough that the model

will use a different node for a few events and produce large-error predictions before moving

back to a more reasonable state. It is likely that the lack of both of these types of situations

in the training data may be why the predictor has trouble handling them.
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For the recurrent predictor (and TPAP overall), the largest errors are due to the inde-

pendent model’s errors. When the independent model has one of the problems noted above, it

will cause the lag values to become erroneous as well, reducing the performance of the overall

predictor. The recurrent predictor is also susceptible to large gaps in the event times, as it relies

on the lag values without adjustments for spacing between events. Although we tried using

adjusted lag values to reduce this problem, we found that the performance did not noticeably

increase.

Overall the two-pass method performs well, indicating a combination of predictors and

more history information can further enhance prediction. However, there are still some open

questions regarding its effectiveness and how it reacts to variations in parameters. It is possible

that adding more lag features can improve the performance further, as supported by the overall

results. However, there are some activities where the lag-12 predictor performs worse. Thus,

we plan to continue investigating this prediction method to determine how it can be most

effectively used in further experiments.

In this chapter we described a number of experiments to validate our AP algorithms. We

wanted to understand how the various features of each algorithm improve performance, as well

as how they are affected by different variations in the data. Our basic activity prediction premise

was found to be a strong baseline performance which shows lower error than a linear regression

or SVM model. We also found that the sampling features help improve performance, though

not as dramatically as the addition of new sensor types. The inclusion of additional contextual

information about activity relationships is beneficial in both reducing error and smoothing

predictions. This can be further enhanced using a two-pass method that combines multiple

predictors. Overall, out AP algorithms are found to be effective at forming activity predictions
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in an automated fashion, supporting our hypothesis. In the next chapter we describe pilot tests

of an activity prompting application using our AP algorithms in a real-world context.
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CHAPTER 8. PROMPTING APPLICATION

In order to test the utility of our AP methods in a real-world application scenario, we

have deployed a mobile-based activity prompting application called CAFE (CASAS Activity

Forecasting Environment). This application provides reminder prompts to users based on

predictions made by an AP algorithm. Prompts can provide important assistance to smart

environment inhabitants to help remind them to perform needed ADLs. For example, a prompt

could be used to remind the inhabitant to take their medications before dinner each evening.

Prompting systems can help increase independence for cognitively-impaired individuals and

increase adherence to medical interventions [153, 154]. Since these prompts are best delivered

in the context of inhabitants’ daily activities [155], we use an AP algorithm to predict when

activities will occur and prompt appropriately. In this chapter we describe two pilot studies of

the CAFE app, using two different prediction methods, along with their results.

8.1 CAFE Prompting App

The CAFE prompting app is an iOS app designed to run on mobile devices. The app

periodically queries a server to get the latest predicted times for activities of interest. These

predictions are generated every 15 minutes using one of our AP methods, using the latest sensor

events from the smart environment. The app schedules alerts to prompt the user to perform

the activities at the predicted time, as shown in Figure 8.1. When the user responds to a

prompt, they are presented with multiple responses to indicate whether they are performing

the activity, plan to perform it, or already performed it. Their response is logged to the server
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Figure 8.1: Interface for the CAFE prompting app. The screen on the left shows a prompt

notification, while the right screen shows the user response screen.
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for later analysis.

Due to the restrictions of the iOS platform the retrieval of new predictions from the

server is scheduled by the iOS process manager. The update is not guaranteed to happen at

a specific interval, although it tends to occur approximately every 15-45 minutes. Combined

with the 15 minute update interval of the server-side predictions, this can lead to 30 minute

or longer delays in fetching new predictions from the server. While any older predictions are

used and displayed in the interim, these predictions may not be as accurate as those generated

from newer sensor events closer to the activity occurrence. Thus, there is some reduction in

performance introduced in the system delays inherent to the app.

The app was deployed in two separate pilot studies, each featuring the same two partici-

pants. One participant lived in the Navan testbed, while the other lived in the Kyoto testbed

(both described in Section 6.4). The Navan participant was the sole resident of that home,

while the Kyoto participant shared the home with another resident (who did not partake in

the study). For each testbed only the motion and door sensors were used and were retrieved

for the predictor at the 15-minute intervals. Since the Kyoto testbed houses experiments with

guest participants during the 9:00am to 4:00pm timeframe when the participant is away, these

events are not used in either training or use of the models. Participants were prompted for

seven activities: Bathe, Cook, Eat, Leave Home, Relax, Sleep, and Work.

8.2 Independent Predictor Prompter

For the first pilot test we evaluated CAFE using IP to generate activity predictions. The

predictor for Kyoto was trained on two months’ worth of data for that testbed, while the one
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Table 8.1: Data statistics for first CAFE app deployment with the IP algorithm.

Testbed Residents Time Span Sensor Events

kyoto 2 2 weeks 147,919

navan 1 2 weeks 57,241

for Navan was trained on four months of data. This training data had been labeled by AR

using a generalized model trained from the Horizon House datasets. Only the discrete features

were used for the independent predictor. The pilot lasted two weeks, over which time the

data generated by each testbed is as shown in Table 8.1. While the predictions were being

generated and used by the app, AR was used to label the inhabitants’ activities with the same

generalized model used to generate the training data. This labeled data is used as a comparison

to determine the effectiveness of the activity prompts.

The participants provided 112 responses, which were fairly equally divided between “I

will do it now”, “I already did it”, and “I will do it later”. Since the participants had to open

the mobile device to respond to the prompt, there was sometimes a delay between when the

actual prompt occurred and the participant’s response. Thus, while the resident may have

been actually performing the activity when the prompt occurred, they may not have seen the

prompt until later and thus replied “I already did it” or “I will do it later” instead.

Using the AR-labeled sensor data for comparison, we are able to compute MAE and

normalized MAE measures as shown in Table 8.2. These data are based on the predictions

made for prompts where responses were collected. Since each activity occurred at least once

per day, the MAE is normalized by 43,200 seconds, or half a day. The MAE value is 2,925
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Table 8.2: First CAFE app deployment results, averaged over all collected responses. MAE

value in seconds. Normalized MAE is computed using 43,200 seconds as the normalization

factor. κ-normalized ETF was adjusted using the accuracy of the AR algorithm.

MAE Normalized MAE ETF(1800 s) κ-Normalized ETF

2,925 0.07 0.64 0.72

seconds, or about 48 minutes. Given the inherent delays in the app infrastructure that can lead

new predictions to be delayed by 30 minutes or more, we find this to be a reasonable error.

We also compute the ETF value using a threshold of 30 minutes (the infrastructure delay), as

shown in the table. 64% of the prediction errors are less than 30 minutes, indicating that the

prediction errors were largely smaller.

We note that these error levels were achieved even after 2 weeks of sensor activity and

with events occurring many months after the training data. Compare this with the horizon-

based results from Section 7.3, where the error rose much more rapidly. We believe that the

use of extra training data for the prompting deployment allows the error rate to be reduced

over time compared to the smaller window used for the previous sliding window validations.

While the participants were taking part in this CAFE pilot study, they were also using a

separate app named EMA (Ecological Momentary Assessment). This is an established method

to obtain participant information “in the moment” in order to collect more accurate information

about their activities [156]. The app queried participants every 15 minutes asking what activity

they were performing. The stored responses can be used to validate our AR algorithm. Using

these responses, we found that AR had about 92% accuracy on the seven activities being
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prompted. This leads to an adjusted κ-normalized ETF value of 0.72, as listed in Table 8.2.

We also used the AR-labeled data to compare the participant’s prompt responses to their

actual behavior. We observe that, when the participant responded to a prompt with “I will

do it now”, they always initiated the activity within the next 20 minutes. This indicates that

the prompts were effective in influencing and predicting the inhabitants’ behavior in these

circumstances.

8.3 Two-Pass Prompter

The second pilot test utilized the TPAP algorithm for generating the activity predictions.

The lag-12 predictor was used for the second stage with discrete features for both stages. An

AR model was trained separately for each testbed to generate training data. For Kyoto the

model was trained on human-annotated data covering a five-year span from multiple datasets.

However, the human-annotated data was for residents other than those currently living at

this site. In addition, Kyoto houses two residents which complicates activity recognition and

prediction. Navan was trained on data spanning two years from only that testbed. The AR

models were then used to label more recent sensor data for each testbed: two months’ worth

for Kyoto and three months for Navan. This AR-labeled data was then used to learn a TPAP

model for each testbed. Four weeks’ worth of data were collected for this pilot test, with the

statistics shown in Table 8.3. As before, AR was used alongside TPAP in order to provide

activity labels for each event.

In the previous pilot study the participants would often get multiple repeated prompts for

the same event within a few minutes of each other. This was due to the fact that the activity
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Table 8.3: Data statistics for second CAFE app deployment with TPAP predictor.

Testbed Residents Time Span Sensor Events

kyoto 2 4 weeks 185,560

navan 1 4 weeks 154,997

predictions often shift slightly with each new prediction computation. When the participants

responded to one prompt the predictions were instantly updated and so a second prompt might

be scheduled shortly after the first one. The participants requested that a minimum timing

between prompts be enforced so that they were less bothered by the app. For this second pilot

test a minimum time between prompts for the same activity of 15 minutes was enforced.

This study also added a response option of “I am doing this now (or in the last half

hour)”. We designed this option to capture the instances when the user was prompted for

an activity while they were performing it, but did not respond to the prompt until after they

finished. Users could respond to a prompt with “I am doing this now (or in the last half hour)”,

“I will do it now”, or “I will do it later”.

98 prompt responses were received during this pilot test. The distribution of responses

favored “I will do it later”, as shown in Figure 8.2. Figure 8.3 shows the total number and

distribution of responses for each activity. The Bathe and Leave Home activities were the

most prompted by a significant margin. For both of these activities, a large number of the

participant responses were “I will do it later”, indicating that the predictions were such that

prompts were presented too early. One of the participants relayed that they felt they were only

being prompted for the Bathe activity for long periods of time. Examining the predictions
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indicated that AP would sometimes keep moving the predicted time for many of the activities

by a few minutes with each prediction iteration. This had the effect that only a few of the

activities (mostly Bathe) would be prompted during some time periods. This is something we

intend to investigate further with future studies.

We also note that there was often a significant delay between when a prompt was issued

and the inhabitant responded. This is shown in Table 8.4. While often the response delay was

less than a minute, there were multiple times when the delay was a half hour or even more.

The average delay was approximately a half hour. Since the inhabitant responses reflected the

inhabitants’ activities when they responded to the prompt rather than received it, the prompted

activity may have already occurred by the time of their response.

Also shown in Table 8.4 is the MAE and normalized MAE for the prompted activity

times. These values were calculated using the AR-labeled data as in the last study, with the

same normalization factor of a half day for the normalized MAE. The MAE was higher for

this pilot by about 2,000 seconds (about a half hour). This increase in error may be due to

differences in the inhabitants’ activities that made them more difficult to predict. It is also

possible that the AR models are less accurate in this case. We note that the larger training

windows with widely varying patterns (including multiple different sets of residents in at least

one of the testbeds) may have reduced the accuracy of AR. The EMA app was not a part of this

study, so ground-truth annotations cannot be used to analyze the accuracy of the AR models.

The ETF value with a 30-minute threshold for this test was 0.56, indicating a few more large

errors compared to the previous pilot, although the number is similar.

The pilot studies presented here have allowed us to gain a better understanding of the

utility of the AP algorithm and some of the challenges of using it in real applications. We found
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Table 8.4: Second CAFE app deployment results, averaged over all collected responses. MAE

value in seconds. Normalized MAE is computed using 43,200 seconds as the normalization

factor. The average response delay is the average number of seconds between when a prompt

is issued and the participant responds.

MAE Normalized MAE ETF(1800 s) Average Response Delay

4,282.5 0.10 0.56 1,508

the resident feedback regarding the prompting to be especially interesting. In addition to the

feedback mentioned previously, the inhabitants also suggested that the app sometimes created a

modification in behavior. One participant mentioned he was debating between getting groceries

and watching television when he received a CAFE prompt for Leave Home. He immediately

left and went to perform his errands. At another time a participant started working earlier than

planned due to a prompt. These instances are representative of the challenges in intervention

design and prompting that are important to consider in future work.

These pilot studies have indicated that AP can be usefully applied for behavior prompting

in a real-world context. We hope to continue developing the CAFE prompting app alongside

our AP algorithms to improve both performance and usability. Future plans include deploying

the app with older adults in wider studies. By learning how users interact with and are affected

by the capabilities of activity prediction algorithms we can continue to improve and grow in

understanding of the activity prediction problem and solutions.
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CHAPTER 9. CONCLUSION

9.1 Summary and Conclusions

In this dissertation we have addressed the challenge of predicting human activities. This

is an important area whose importance will only continue to increase as the number of activity-

aware services continues to grow. Our work focuses on the ability to predict inhabitant activities

within a smart home environment by drawing on sensor observations of daily life. While others

have explored this area in the past, our work presents a novel solution to this problem with an

automated method to model complex activity patterns in order to generate numeric predictions

of activity times. We hypothesized that these activity times can be predicted using machine

learning and time series techniques and information found in sensor data. To provide evidence

supporting our hypothesis, we implemented and evaluated several Activity Predictor methods.

We have found that using feature extraction to draw useful contextual features from the

raw sensor event data can provide a useful basis for activity prediction. The discrete and

sampling features used provide information about the temporal nature and state values of

activities, both of which have been shown to be useful for informing predictors. The ability of a

regression learner to form accurate predictions of activities has also been demonstrated. Using

features drawn directly from the sensor data, our IP predictor is able to form predictions under

15 minutes on average. The nonlinear model tree used in our algorithms can model the activity

information effectively, without added complexity. Therefore, our underlying hypothesis that
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numeric activity times can be accurately predicted from sensor data is valid.

We have also found that the use of activity relationship information is useful for predicting

activities and that it can be easily encoded as lagged prediction values. Our RAP implemen-

tation of this enhancement is shown to have increased performance, while also reducing the

variability of the predicted times. By comparing performance against an Oracle predictor we

have also found that RAP can be further enhanced with the help of other published training

techniques. We also have found that a combination of two separate predictors, such as in our

TPAP approach, can allow for further improvements in performance while addressing problems

due to training. The power in this method includes its ability to be customized using different

regression learners for even greater results.

We have also discussed and used a variety of evaluation metrics and methods throughout

our work. The challenge of interpreting algorithm performance through several evaluation

metrics has been discussed. Our results have indicated firsthand how various metrics can

highlight different aspects of prediction error and the importance of using multiple metrics

to fully understand what is occurring. We have also deployed two pilot tests of our CAFE

prompting app. From these tests we have observed the ability of AP to form useful and helpful

predictions for real-world applications, but we have also discovered new challenges for the

future.

Our results have supported our hypothesis on automated activity prediction from sensor

data. The methods presented here draw their feature context information from the sensor

data and their own predictions, without the need for user input. By using nonlinear model

trees, it is possible to model the complexities of activity relationships in a concise way with

ample performance. This has been demonstrated in the low error results observed in both our
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validation and prompting tests.

9.2 Future Work

While the work detailed in this dissertation reflects strong progress in the activity pre-

diction field, there are still many challenges and issues that will need to be addressed by future

works. We are particularly interested in using a variety of different models and parameters in

our two-pass prediction method to further test its performance and see how it can be improved.

We feel that the use of boosting and other methods can help reduce errors even further without

severely increasing complexity or runtime performance. The effects of training dataset size

and differences between training and test data on performance are also of interest as questions

related to these issues have only partially been resolved in our current work.

We are also interested in introducing additional enhancements to our AP framework to

further support automated activity prediction. We hope to develop a system for incremental

updating of the regression model over time in order to adapt to changes in inhabitant activities.

Further work will include addressing the challenge of predicting activity durations and reducing

the errors surrounding the issue of the “jump” in activity times. Our future work will also

explore the development and use of new error metrics and the application of established metrics

to address the challenges of prediction evaluation. There are still many unanswered questions

in the area of evaluation which we hope to address.

One of the major challenges for future research in this area lies in being able to adapt

our methods to different situations and problems. Consideration should be made for how to

adapt to new users, activities, and environments. For example, it is important to determine
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the ability of our activity prediction models to accurately predict new users’ activities based

on the habits of current users. This might be done through the user of transfer learning and

incremental update methods. Other adaptations that we plan to consider include adapting to

new types of prediction (e.g, energy prediction, traffic forecasting, etc.) and incorporating user

feedback to better inform the predictor and allow it to adapt. These adaptations pose many

interesting questions which we hope to address in our future work.

We also plan to further develop and deploy our CAFE prompting software. We plan to

revise and improve the user experience to both reduce the burden placed on the user and to

improve prompt effectiveness. Future deployments are planned to include more participants,

including many older adults for whom activity prompts can be most useful.

The work in this dissertation has provided first steps toward new methods of activity

prediction. Our AP framework is able to predict activities with reasonable accuracy and limited

need for human setup or interaction. Although we have shown a number of improvements and

successes for activity prediction in this work, there are still many new challenges to explore

in this area. Our hope is that the continued development of prediction technologies will lead

to greater health and independence for older adults and others in their daily lives. There is

a need in many fields for improved activity predictions based on automated observations, and

our work with automated contextual prediction provides a first step in this direction.
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Appendix: Horizon House Testbeds

Horizon House testbeds. This table contains information about the number of residents and

sensors in each testbed.

Dataset Residents Sensors Dataset Residents Sensors

HH101 1 19 HH114 1 17

HH102 1 32 HH115 1 20

HH103 1 13 HH116 1 19

HH104 1 33 HH117 1 16

HH105 1 26 HH118 1 25

HH106 1 35 HH119 1 18

HH107 2 32 HH120 1 20

HH108 1 29 HH121 2 32

HH109 1 26 HH122 1 28

HH110 1 22 HH123 1 20

HH111 1 29 HH124 1 19

HH112 1 20 HH125 1 34

HH113 1 29
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[60] Stéphane Ross, Geoffrey J Gordon, and J Andrew Bagnell. A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning. Journal of Machine
Learning Research - Proceedings Track, 15:627–635, 2011.

[61] Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. Hc-search: A learning frame-
work for search-based structured prediction. Journal of Artificial Intelligence Research
(JAIR), 50:369–407, 2014.

[62] Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. Structured Prediction via
Output Space Search. Journal of Machine Learning Research, 14:1317–1350, 2014.

[63] Jun Xie, Chao Ma, Janardhan Rao Doppa, Prashanth Mannem, Xiaoli Fern, Tom Diet-
terich, and Prasad Tadepalli. Learning Greedy Policies for the Easy-First Framework.
In 2AAAI Conference on Artificial Intelligence, pages 2339–2345, 2015.

[64] Chao Ma, Janardhan Rao Doppa, J Walker Orr, Prashanth Mannem, Xiaoli Fern, Tom
Dietterich, and Prasad Tadepalli. Prune-and-Score : Learning for Greedy Coreference
Resolution. In EMNLP2, 2014.

[65] Michael Lam, Janardhan Rao Doppa, Sinisa Todorovic, and Thomas G Dietterich. HC
-Search for Structured Prediction in Computer Vision. In CVPR, 2015.



173

[66] Michael Lam, Janardhan Rao Doppa, Xu Hu, Sinisa Todorovic, Thomas Dietterich,
Abigail Reft, and Marymegan Daly. Learning to detect basal tubules of nematocysts in
SEM images. In Proceedings of the IEEE International Conference on Computer Vision,
pages 190–196, 2013.
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