
Data-Driven Activity Prediction: Algorithms, Evaluation
Methodology, and Applications

Bryan Minor
Washington State University
Pullman, WA 99163, USA

bminor@eecs.wsu.edu

Janardhan Rao Doppa
Washington State University
Pullman, WA 99163, USA
jana@eecs.wsu.edu

Diane J. Cook
Washington State University
Pullman, WA 99163, USA
cook@eecs.wsu.edu

ABSTRACT
We consider a novel problem called Activity Prediction, where
the goal is to predict the future activity occurrence times
from sensor data. In this paper, we make three main contri-
butions. First, we formulate and solve the activity predic-
tion problem in the framework of imitation learning and re-
duce it to simple regression learning problem. This approach
allows us to leverage powerful regression learners; is easy to
implement; and can reason about the relational and tempo-
ral structure of the problem with negligible computational
overhead. Second, we present several evaluation metrics to
evaluate a given activity predictor, and discuss their pros
and cons in the context of real-world applications. Third,
we evaluate our approach using real sensor data collected
from 24 smart home testbeds. We also embed the learned
predictor into a mobile device based activity prompter and
evaluate the app on multiple participants living in smart
homes. Our experimental results indicate that the activity
predictor learned with our approach performs better than
the baseline methods, and offers a simple and reliable ap-
proach to prediction of activities from sensor data.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

Keywords
activity prediction; smart environments; digital prompting;
regression learning

1. INTRODUCTION
Learning and understanding observed activities is at the

center of many fields of study. An individual’s activities
affect that individual, society, and the environment. Over
the past decade, the maturing of data mining and pervasive
computing technologies has made it possible to automate
activity learning from sensor data. This activity informa-
tion is now commonly utilized in applications from security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
c© 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783408.

systems to computer games. As a result of this technol-
ogy push and application pull, robust approaches exist for
labeling activities that occurred in the past or may be oc-
curring in the present. In this paper, we propose to extend
this recent work to look at activities that will occur in the
future.

We study a novel problem called Activity Prediction, where
the goal is to predict the future activity occurrence times
from sensor data, and introduce a data-driven method for
performing activity prediction. Activity prediction is valu-
able for providing activity-aware services such as energy-
efficient home automation, prompting-based interventions,
and anomaly detection. However, activity prediction faces
challenges not found in many other data mining tasks: the
sensor readings are noisy, activity labels provided by activ-
ity recognition algorithms are subject to error, and the data
contains rich spatial and temporal relationships that must
be exploited to be able to make highly-accurate predictions.

We formulate and solve the activity prediction problem
as an instance of the imitation learning framework, where
the training data serves as the demonstrations provided by
the expert. We provide a reduction of activity prediction
learning to simple regression learning, which allows us to
leverage powerful off-the-shelf regression learners to learn an
effective activity predictor that can reason about relational
and temporal structure among the activities in an efficient
manner. Our approach naturally facilitates life-long learning
setting, where the predictor can be improved and adapted
based on the new data from the users.

Selecting performance metrics for activity prediction is
challenging because there are multiple parameters that in-
fluence the desirability of the algorithm’s performance. We
provide several evaluation metrics and discuss their useful-
ness in the context of real-world applications. We evaluate
our prediction algorithms on twenty-four smart home sensor
datasets and find that our proposed imitation-based meth-
ods not only outperform baseline predictors but predict a
majority of the activities within minutes of their actual oc-
currence. In addition, we embed our activity predictor in-
side an activity prompting algorithm and demonstrate the
effectiveness of the prompting app for multiple participants
living in smart homes.

2. PROBLEM SETUP
We consider the problem of Activity Prediction from sen-

sor event data. Let A = {a1, a2, · · · , aT } be the set of all
activities, where ai corresponds to the ith activity class.
Given features x ∈ <d extracted from the sensor event data

at time te as input, the activity predictor needs to generate
ŷ = (ŷ1, ŷ2, · · · , ŷT) as output, where ŷi ∈ < is the predicted
relative next occurrence time of activity ai, or the predicted
number of time units that will pass until ai occurs again.
Figure 1 provides an illustration of the activity prediction
problem.

Our training data consists of a sequence of raw sensor
events Λ = (λ1, λ2, · · · , λN), where λi corresponds to sensor
readings generated at time ti. We assume that an activity
recognition (AR) algorithm is available to label each sen-
sor event with its corresponding activity class and we use
this information to train the activity predictor. An activity
recognition algorithm learns a mapping from Λ to the cor-
responding activity label, aΛ. We employ the AR algorithm
[4] which yields 95% recognition accuracy via 3-fold cross
validation on the activities evaluated in this paper.

We further assume the availability of a feature function Φ
that computes a d-dimensional feature vector Φ(λi) ∈ <d for
any sensor event λi using the context of recent sensor events
and a non-negative loss function L such that L(x, ŷ, y∗) ∈
<+ is the loss associated with labeling a particular input
x ∈ <d by output ŷ ∈ <T when the true output is y∗ ∈ <T

(e.g., RMSE). Our goal is to return a function/predictor
whose predicted outputs have low expected loss.

3. LEARNING ALGORITHMS
In this section we describe two algorithms for learning

activity predictors: 1) The Independent Predictor (IP), a
simple baseline approach, and 2) The Recurrent Activity
Predictor (RAP), which is intended to improve on the base-
line.

3.1 Independent Predictor
The Independent Predictor is our baseline activity pre-

dictor. As the name suggests, this predictor completely ig-
nores the relational and temporal structure of the problem,
and makes predictions using only the information from the
most recent sensor events at a given time. The indepen-
dent predictor is trained as follows. For each sensor event
data λi in the training sequence Λ, we extract the features
xi = Φ(λi) ∈ <d listed in Table 7 (input) and the ground-
truth activity predictions y∗i ∈ <T (output) from the la-
beled activity segments (see Figure 1 for an illustration).

The aggregate set of input-output pairs {xi,y
∗
i }Ni=1 (train-

ing examples) is given to a multi-output regression learner
to learn the activity predictor by minimizing the given loss
function L.

This approach is simple and the test-time complexity of
the predictor is very low, which is valuable for making real-
time predictions. However, the main weakness of this ap-
proach is that the local sensor event data may not provide
sufficient information to make highly-accurate activity pre-
dictions.

3.2 Recurrent Activity Predictor
Notice that the independent predictor only uses the local

sensor event data at a given time to make its predictions.
To address this weakness, one could consider joint models by
reasoning over the relationships between different activities
and accounting for the temporal structure of the problem.
It is important to note that the activity prediction problem
can be viewed as a generalization of sequence labeling, where
each output token is a vector of T real values corresponding

to the next activity occurrence time of each activity (T is
the number of activities).

A natural solution would be to define a graphical model
encoding the relationships between input and output vari-
ables at different time steps and learn the parameters from
the training data [21]. However, such a graphical model
may be very complex (high tree-width) and can pose severe
learning and inference challenges. We may consider simpli-
fying the model to allow for tractable learning and inference,
but that can be detrimental to prediction accuracy. An al-
ternate solution is to employ a heuristic inference method
(e.g., loopy belief propagation or variational inference) with
the complex model. Even though these methods have shown
some success in practice, it is very difficult to characterize
their solutions and to predict when they will work well for
a new problem. Therefore, we provide a much simpler, but
effective solution that is based on imitation learning.

Recurrent Predictor. The recurrent predictor employs
both the local features computed from the recent sensor
event window and context features which try to capture the
activity predictions from a small history window to make its
predictions. The main advantage of a recurrent predictor,
compared to the graphical model solution, is that it allows us
to encode arbitrary relationships between activities and the
temporal structure as context features and is highly efficient
in terms of training and testing.

Imitation Learning Approach. We formulate and solve
the activity prediction problem in the framework of imita-
tion learning. In traditional imitation learning, the goal of
the learner is to learn to imitate the behavior of an expert
performing a sequential-decision making task (e.g., playing
a video game) in a way that generalizes to similar tasks or
situations. Typically this is done by collecting a set of tra-
jectories of the expert’s behavior (e.g., games played by the
expert) on a set of training tasks. Then supervised learning
is used to find a predictor that can replicate the decisions
made on those trajectories. Often the supervised learning
problem corresponds to learning a mapping from states to
actions and off-the-shelf classification tools can be used. In
recent work, imitation learning techniques are successfully
applied to solve a variety of structured prediction tasks in
natural language processing and computer vision [11, 6, 5,
25, 30, 22, 23].

In our activity predictor learning problem, the expert cor-
responds to the loss function L (available for training data)
and the expert behavior corresponds to predicting the best
output y∗i ∈ <T at each time step i (see Figure 1). To
make predictions, the activity predictor uses both local fea-
tures Ψlocal(i) = Φ(λi) (see Table 7) and prediction context
features Ψcontext(i), including the previous activity predic-
tions from a small history window. The context features
Ψcontext(i) we employ in this work include the predicted la-
bels ŷ ∈ <T for all the T activities and for each history
window. If we use a history context of H previous window,
the context feature vector will be of size H · T .

Algorithm 1 provides the pseudo-code of our approach for
recurrent activity predictor learning via exact imitation of
the loss function. At each time step i, we compute the joint
features Ψi = Ψlocal(i)⊕Ψcontext(i) (input) and the best ac-
tivity predictions y∗i ∈ <T (output) from the training data,
where ⊕ refers to the vector concatenation operator. Note
that for the exact imitation training, context features con-
sist of ground-truth labels from the previous windows. The

Figure 1: A high-level overview of the activity prediction problem. Given features x ∈ <d extracted from the
sensor event data at time te as input, the activity predictor needs to predict the relative occurrence time of
each activity. In this example, we have three activities: a1 (eating); a2 (taking medicines); and a3 (sleeping).
The starting times of activities a1, a2, and a3 are t1, t2, and t3, respectively. Therefore, the ground-truth
output is y∗ = (y1, y2, y3), where yi = ti − te stands for the correct relative next occurrence time of activity ai.

Algorithm 1 RAP Learning via Exact Imitation

Input: Λ = Training sequence of sensor event data labeled
with activity segments, L = Loss function
Output: F , the recurrent predictor

1: Initialize the set of regression examples D = ∅
2: for each time step i = 1 to |Λ| do
3: Compute local features Ψlocal(i) = Φ(λi)
4: Compute context features Ψcontext(i)
5: Compute joint features Ψi = Ψlocal(i)⊕Ψcontext(i)
6: Compute best output y∗i ∈ <T using the loss function
7: Add regression example (Ψi,y

∗
i) to D

8: end for
9: F =Multi-Output-Regression-Learner(D)

10: return learned predictor F

aggregate set of input-output pairs {xi,y
∗
i }Ni=1 (training ex-

amples) is given to a multi-output regression learner to learn
the recurrent activity predictor by minimizing the given loss
function L. If we can learn a function F that is consistent
with these imitation examples, then it can be proved that
the learned function will generalize and perform well on new
instances [17, 26].

One issue with exact imitation training is error propa-
gation: errors in early time steps can propagate to down-
stream decisions and can lead to poor global performance
[14]. If the error propagation problem arises, we could em-
ploy more advanced imitation learning algorithms including
DAgger [26] to learn robust predictors. DAgger is an iter-
ative algorithm that can be viewed as generating a sequence
of predictors (one per iteration), where the first iteration
corresponds to exact imitation training. In each subsequent
iteration, DAgger makes decisions with the predictor from
the previous iteration, and generates additional training ex-
amples to learn to recover from any errors. A new predictor
is learned from the aggregate set of training examples. In
the end, the final predictor is selected based on a validation
set. DAgger also has nice theoretical properties and can
be seen as a no-regret online learning algorithm [26]. If we

deploy the learned recurrent predictor in a real-life appli-
cation, then the predictor can be adapted online based on
feedback from the users, and the DAgger algorithm can be
employed to naturally facilitate a life-long learning setting.

3.3 Multi-Output Regression Learner
Recall that both of our activity predictor learning algo-

rithms need a cost-sensitive multi-output regression learner.
The multi-output regression learning problem is the regres-
sion analog of the multi-label classification problem, where
individual labels are real-values instead of binary labels [7].

In principle, we can employ any multi-output regression
learner. However, inspired by the Binary Relevance (BR)
classifier for multi-label classification [7], we decompose the
multi-output regression problem by learning one regression
function for each output variable independently. Therefore,
we learn T regressors and employ them for making predic-
tions. We have a hard learning problem at hand, which
means linear functions won’t suffice. We experimented with
standard regression tree learners (constant outputs at leaves),
but they couldn’t handle the high variance for some activ-
ity times. Hence, we employed a variant of regression trees
called model trees, where predictions are made by a learned
linear function over all the features at each leaf node.

4. EVALUATION METHODOLOGY
In this section, we will present several evaluation metrics

to evaluate activity prediction algorithms and discuss their
pros and cons in the context of real-world applications. To
compare the effectiveness of different solution approaches for
a given problem, the evaluation metrics must be carefully
chosen. The quality and usefulness of a particular metric
will vary based on the application and specific evaluation
criteria. Many metrics tend to emphasize particular aspects
of the results, so choosing multiple metrics can be necessary
to completely understand the effectiveness of an approach.

Challenges. Selecting performance metrics for activity
prediction is challenging because there are multiple param-
eters that influence the desirability of the algorithm’s per-

formance. Activity predictors can be evaluated in multiple
ways, depending upon the type of performance that is de-
sired. First, activity prediction can be viewed as a type of
classification task in which any prediction that has non-zero
error (or error greater than a threshold) is considered a mis-
labeled data point. In this case, traditional classifier-based
performance measures can be utilized. Second, activity pre-
diction can be considered as a type of forecasting algorithm.
Viewed in this light, error is proportionate to the numeric
distance between the predicted and actual values. In ad-
dition, activity prediction relies on the effectiveness of an
online activity recognition algorithm. The performance of
the activity predictor is not anticipated to exceed the relia-
bility of the activity recognizer that is being used to train the
predictor. The activity recognizer, in turn, is trained using
hand-annotated data which may be inconsistently labeled.

Evaluation Metrics. We introduce several evaluation
metrics and employ them to validate our prediction algo-
rithms. Using our previous notation, ŷ represents a vector
of predicted outputs for each sensor event in the evaluation
dataset with elements ŷi. y∗ is the vector of true values
for the same event with elements y∗i . Note that, we have
T activities in total. Each evaluation metric takes a pre-
dicted output ŷ and ground truth output y∗ as input, and
returns a real-value indicating the quality of the prediction.
One could perform macro-averaging of metric values over
different testing instances and datasets to compute aggre-
gate values.

Mean absolute error (MAE), as defined in Equation
1, provides a measure of the average absolute error between
the predicted output and ground-truth output. It is sim-
ilar to another well-known metric, root mean squared
error (RMSE), defined in Equation 2. Both of these mea-
sures provide the average error in real units and quantify the
overall error rate, with a value of zero indicating a perfect
predictor and no upper limit. Because RMSE squares each
term, it does bring a disadvantage in effectively weighting
large errors more heavily than small ones.

MAE =

∑
|ŷi − y∗i |
T

(1)

RMSE =

√∑
(ŷi − y∗i)2

T
(2)

If the activities have varying levels of importance, we may
want to use an error measure that places more emphasis
on some activities than others (e.g., weighted RMSE). This
might be the case if a particular activity needs to be pre-
dicted very accurately, for example. Additionally, we may
need to compare results across activities or datasets where
the time spacing between activity occurrences may be dif-
ferent. In these cases, measures such as MAE and RMSE
do not give an indication of the relative error. For example,
an error of 60 minutes in predicting a time-critical activity
(e.g., taking medicine) may be unacceptable, but may be
acceptable for other activities that do not need to happen
at a certain time (e.g., housekeeping). In such situations,
we may want to use a normalized error, such as range-
normalized RMSE (NRMSE), defined in Equation 3.
Here, the minimum and maximum functions are computed
over all ground-truth values of the test instances we are eval-
uating. This metric would usually be applied on each activ-
ity or dataset that we wish to separate. While NRMSE is

convenient for comparing results from different sets, it does
not have a well-defined normalization factor with which we
can evaluate the actual magnitude of the errors.

NRMSE =
RMSE

max(y∗i)−min(y∗i)
(3)

Another useful normalized metric is mean absolute per-
centage error (MAPE), defined in Equation 4. MAPE
normalizes each error value for each prediction by the true
value y∗i we are trying to predict. This metric allows us to
normalize the error individually for each prediction. We can
also quickly determine approximately how large the error is
since it is a percentage of the true activity time. However,
as y∗i approaches zero (i.e., the activity is about to occur),
an error of any insignificant amount can cause element in
the summation to become large. This leads to inflation of
the MAPE value due to a few outlier cases where the error
is small but the true activity time is even smaller.

MAPE =

∑ |ŷi−y∗
i |

y∗
i

T
(4)

Since the metrics we have listed so far are based on find-
ing the averages of all errors, they are sensitive to possible
distortion by outliers. As a result, the metrics can often
have large values. In order to analyze the effects of outliers,
other evaluation metrics can be used. One metric we in-
troduce for this purpose is the error threshold fraction
(ETF), defined in Equation 5. I(ŷi, y

∗
i) = 1 if |ŷi − y∗i | ≤ v

and 0 otherwise. Note that the numerator of the fraction is a
count of the number of events with error below the threshold
v. This metric indicates the fraction of the errors that are
below the time threshold v. v should be non-negative, and
limv→∞ ETF(v) = 1. By varying v we can ascertain how
the errors are distributed; if we find that the ETF does not
approach 1 until v is large, this may indicate that there are a
significant number of large-error outliers. ETF(0) indicates
the number of predictions which had zero error.

ETF(v) =

∑
I(ŷi, y

∗
i)

T
(5)

Yet another metric to consider is Pearson’s r, i.e., the cor-
relation coefficient between the predicted and actual activity
occurrence times. This measure, shown in Equation 6, does
not quantify the amount of error but does indicate the rela-
tionship between the predicted and actual values.

r =

∑
(ŷi − ŷi)(y

∗
i − y∗i)√∑

(ŷi − ŷi)
√∑

(y∗i − y∗i)
(6)

Usually there is no single best evaluation metric for any
particular application. We may use multiple metrics in order
to evaluate multiple aspects of the performance. In fact,
the nature of the data mining we present here is further
complicated because error and imprecision occurs in several
places:

1) Ground truth labels. Inaccurate class labels represent a
source of error that exists in many datasets. We estimate the
amount of error in ground truth activity labels by measuring
inter-annotator agreement, or the degree of agreement of the
activity labels between multiple annotators. This is typically
represented using Cohen’s kappa [10].

2) Activity recognition accuracy. In general, activity recog-
nition model is trained using a limited set of training data.

Figure 2: Floor plan of one CASAS smart home
testbed. The location of each sensor is indicated
with the corresponding motion (M), light (LS), door
(D), or temperature (T) sensor number.

The trained model will then be used to generate activity
labels for previously-unseen data. The model itself may be
subject to error due to representational limitations, small
training set, or shortcomings of the employed learning algo-
rithm.

3) Predictor error. In the same way that the activity
recognition algorithm will likely experience some error, so
also an imperfect activity prediction algorithm will generate
erroneous predictions.

Given that there are multiple sources of error, we need
to reconsider the standard procedure employed for evaluat-
ing predictors. Unlike classification algorithms, where an
accuracy of 100% is expected, in this case the expected ac-
curacy will be limited to the quality of the labels. As a
result, the evaluation metrics that are discussed here can be
κ-normalized to reflect the same accuracy range that would
be considered for a perfect dataset, while being sensitive to
label noise that is known to be present in the data.

In our evaluation of the prediction algorithms, we em-
ploy MAE, RMSE, and ETF. MAE and RMSE values are
provided in seconds, which are the same units used for the
predictions. In order to detect outliers in the errors that
may negatively affect the RMSE, we also report ETF val-
ues. We vary the ETF threshold from one second up to 24
hours to observe the corresponding distribution of errors for
each method. Finally, in the prompting application, where
the ground truth labels are provided by the actual partici-
pants at the time prompts are delivered, we will also consider
κ-normalization of the prediction results.

5. EXPERIMENTS AND RESULTS
In this section we empirically investigate our proposed

approach on real-world data using several evaluation metrics
and compare it with baseline approaches.

5.1 Experimental Setup
Datasets. We evaluate our activity prediction algorithm
using sensor and activity data collected from 24 CASAS
smart homes1. Descriptions of the datasets are provided
in Table 1. Each CASAS smart home test bed used in

1These datasets are available at http://casas.wsu.edu.

Table 1: Description of CASAS smart home testbed
datasets used to evaluate activity predictors.

ID Residents Time Span Sensors Sensor Events

1 1 2 months 36 219,784
2 1 2 months 54 280,318
3 1 2 months 26 112,169
4 1 2 months 66 344,160
5 1 2 months 60 146,395
6 1 2 months 60 201,735
7 2 1 month 54 199,383
8 1 2 months 54 284,677
9 1 2 months 44 399,135
10 1 1 month 38 98,358
11 1 2 months 54 219,477
12 1 4 months 40 468,477
13 1 12 months 58 1,643,113
14 1 1 month 32 133,874
15 1 10 months 40 1,591,442
16 1 2 months 38 386,887
17 1 12 months 32 767,050
18 1 1 month 46 178,493
19 1 1 month 36 92,000
20 1 2 months 40 217,829
21 2 10 months 62 3,361,406
22 1 2 months 56 247,434
23 1 1 month 32 106,836
24 1 2 months 34 216,245

this evaluation includes at least one bedroom, a kitchen,
a dining area, and at least one bathroom. While the sizes
and layouts of the apartments vary, each home is equipped
with combination motion/light sensors on the ceilings, com-
bination door/temperature sensors on cabinets, and external
doors. Sensors unobtrusively and continuously collect data
while residents perform their normal daily routines. Figure 2
shows a sample layout and sensor placement for one of the
smart home test beds.

Human annotators label the events in each dataset with
corresponding activities based upon interviews with the res-
idents, photographs of the environment, and a sensor map.
Each sensor event was labeled with the activity that was
determined to be occurring in the home at that time. The
datasets contain 118 activity classes in total, but many of
them appear infrequently. For our experiments, we have fo-
cused on 11 core activities that happen on an average once
per day in most of the datasets. These activities consist of
many complex functions of daily living and are listed in Ta-
ble 2. These activities are reflective of the inhabitant’s daily
health and functioning [29]. Note that the Leave Home ac-
tivity includes times when the resident may open the door
to feel connected to the outside world, a frequent behavior
among older adults. Sensor events that do not fit into one
of the core activity classes are labeled as Other Activity,
and serve to provide context for the learned predictor. The
activity labels on each event are collectively used to deter-
mine the ground-truth activity prediction times y∗ at any
given time. Multiple annotators label the sensor data and
demonstrate interannotator agreement of κ = .85 for the
activities we evaluate in this paper.

Table 2: Activity classes.

Activity Sensor Events

Bathe 208,119
Bed-Toilet Transition 174,047
Cook 2,614,836
Eat 585,377
Enter Home 174,486
Leave Home 311,164
Personal Hygiene 1,916,646
Relax 2,031,609
Sleep 732,785
Wash Dishes 1,139,057
Work 2,028,419

Once ground truth labels are provided for a minimum of
one month of sensor data for each dataset, we train the
AR activity recognition algorithm [20] to learn a general-
ized model of the activity classes using data from all of the
testbeds as input. AR achieves 96% classification accuracy
with 10-fold cross validation on the annotated sensor data
for these classes. The AR-provided labels are then used to
learn the prediction models. The predictors were trained
and tested separately for each dataset.

Activity Prediction Algorithms. We evaluate our
Recurrent Activity Predictor (RAP) and the Inde-
pendent Predictor (IP) as a informed baseline. For both
algorithms, we employ a set of local features Ψlocal (listed in
Table 7) generated from a variable-length window of recent
sensor events. These features are generated from the sensor
events directly and provide the regression learner with infor-
mation about the context of recent sensor events. For RAP,
we also generate a set of context features Ψcontext (listed
in Table 7). These features consist of the prediction from
the previous event (lag) for each of the activities ŷ and pro-
vide contextual information about the activities to RAP. To
account for different time spacing between events, the lag
values are adjusted by the time elapsed since the previous
event.

In order to determine the best-performance limit for RAP,
we also test the Oracle recurrent predictor. The oracle
predictor employs the same features as RAP, except that the
features Ψcontext are the true activity times drawn from the
labeled data instead of the predicted values. This represents
the upper bound of performance enhancement that could be
achieved with RAP using the DAgger algorithm by learning
to correct from erroneous lag values.

We also create a second baseline called Exponential,
which is uninformed. This method does not learn a com-
plex model of activity times. Instead, it models the relative
times of each occurrence for each activity as an exponential
distribution. The Exponential method then samples from
the distribution in order to generate activity predictions.

5.2 Evaluation Procedure
To evaluate the performance of our predictors on these

temporal datasets, we employ a sliding window validation
procedure. This method is similar to k-fold cross-validation,
but allows us to maintain the temporal ordering of the sensor
event data. We select a window of w=2000 events which we
use along with the corresponding ground-truth values as the

Table 3: Overall MAE and RMSE results for the
different predictors (in seconds). These values were
found by averaging the individual metrics across all
the datasets. A one-way ANOVA indicates that the
differences in performance are significant (p < .05).

Method MAE RMSE

Exponential 13,709.05 27,772.89
IP 19,050.85 173,501.54
RAP 8,433.38 22,337.32
Oracle 2,686.47 12,758.97

� ���� ����� ����� ����� ����� ����� ����� �����

���	

�
�����
�����������

����

���

���
�����

�
��
����

�
�����������
�

�
��

!�

"

#��	�$��	
�

#���

������������	
������
����������

�������� "��
����� %� �&� '��(�

Figure 3: Average MAE for each activity. These
values were averaged for each activity across all
datasets.

training examples {xi, y∗i }Ni=1. We learn a predictor from
this training data and employ it to make predictions for the
next 5000 events after the window. The window is then
shifted forward by 1000 events and the process is repeated.
For exact-imitation training, the lag (context) values are
provided using the ground-truth values from the training
data, while the predicted values are employed during testing.

5.3 Results and Analysis
IP vs. RAP. The average MAE and RMSE results for

each of the methods are shown in Table 3. IP had an average
RMSE of over 150,000 seconds. The RAP method greatly
improves on this, reducing the RMSE nearly eightfold to
22,337 seconds. While the improvement over IP is less dra-
matic for the MAE results, it is still significant. We also
note that the RMSE values can be dramatically influenced
by the outliers. There are a few datapoints in which the pre-
dicted activity time is off by almost a day. RMSE squares
each error there by the average performance measure can be
biased by these few outliers. We conclude that to examine
the overall performance of the predictors, MAE is a better
measure.

The average MAE results for each activity are shown in
Figure 3. Again, RAP has a lower average error than IP for
all activities. In fact, even the Exponential method gener-
ally outperforms IP. The graph reflects some of the volatility
with the IP learner, which may sometimes generate very er-
roneous predictions because it does not benefit from having
access to context provided by the other activities. For ac-

Table 4: Area under the ETF curve (AUETF) values
for each predictor.

Method AUETF

Exponential 0.8673
IP 0.8757
RAP 0.9091
Oracle 0.9972

tivities such as Cook, Eat, Wash Dishes the error for RAP
is much lower than that for IP. This may be due to the re-
lationship these activities have with other activities (e.g.,
cooking, eating, and washing dishes tend to happen sequen-
tially). RAP is able to account for this context through the
lag features. RAP also performs well when compared to IP
for the Personal Hygiene and Relax activities, which can oc-
cur in multiple contexts throughout the day and may not
be easily related to information in the sensor events alone.
RAP can provide improved performance for these activities
by discovering useful relationships in the activity context.
Overall, these MAE values indicate that the RAP algorithm
is able to provide a significant improvement over the baseline
Exponential and IP learners.

Figure 4 shows the ETF values for varying thresholds.
The independent predictor has about 5% of its errors below
one second. RAP has an improved performance with about
18% of errors less than a second. About 55% of RAP errors
are below 15 minutes, compared to about 40% of errors for
the independent predictor. Both methods converge to about
99% of errors being below 24 hours. These results indicate
that RAP is able to predict more often with smaller error
when compared to the independent case, while also having a
majority of its predictions be within one hour of the ground-
truth time, which is sufficient for many applications.

We also note that the Exponential baseline has less than
3% of its errors below 30 seconds and is outperformed in this
regard by both IP and RAP. While it has lower average error
than IP in many cases, this is due to the actual activity times
being similar to the mean of the random distribution. This
allowed it to form many predictions that were, on average,
closer to the actual values. However, this overall average
hides the fact that the Exponential baseline does not actively
adjust its predictions to smaller differences, as demonstrated
in the lower ETF at smaller thresholds.

RAP vs. Oracle. We also compare RAP against the
Oracle predictor. Overall, the oracle has an average MAE
of about 5,750 seconds (about 1.5 hours) lower than RAP
(Table 3). Examining the error for each activity in Figure 3,
the oracle performs better than both RAP and the indepen-
dent case for all activities. In fact, for some activities such
as Cook, Personal Hygiene, and Relax, the oracle has almost
no error. This indicates that by using DAgger, we may be
able to improve RAP by learning to recover from errors.

From the ETF plot in Figure 4, it is apparent that the or-
acle shows significant improvement over the other methods.
Over 90% of the errors for the oracle method are less than
one second. Thus, the greatest improvement in performance
with DAgger may lie with increasing the overall fraction of
perfect predictions. While there are still some large outlier
errors, nearly all predictions are very accurate.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20000 40000 60000 80000

ET
F(

v)

Threshold (v, seconds)

ETF Values as a Function of v

Random Exponential IP RAP Oracle

Figure 4: ETF plotted for each predictor. Threshold
values range from one second up to one day.

We note the similarity between the ETF curves in Figure 4
and a standard ROC curve. In this case, the discrimination
threshold is based on the time-based threshold for prediction
error. As with the Area Under a ROC Curve, a perfect
predictor will have an Area Under the ETF Curve (AUETF)
of 1.0. The AUETF values for our three predictors are given
in Table 4. Consistent with the ETF plots, the RAP method
outperforms IP and both informed predictors outperform
the Exponential method.

Behavior Over Time. It is also of interest to examine
how the error for each method changes as we move further
from the training window. Figure 5 shows the average MAE
at each test horizon against how far that horizon was from
the training window. For all methods except the Exponen-
tial, the average error is relatively low just after the training
window (around 8 minutes for the independent case and
30 seconds for RAP and the oracle). The error generally
increases as the test event gets further from the training
window. However, the error for IP is much more variable
than for RAP or the oracle, sometimes changing by 10000
seconds or more. RAP and the oracle have much smoother
curves and produce relatively close errors even at far hori-
zons. These differences indicate the smoothing effect pro-
vided by the activity context for RAP, which can utilize the
information of lag values to more accurately transition be-
tween events and avoid the volatility exhibited by IP. This
indicates that RAP is useful in providing more predictable
results, while also resulting in overall lower error at increas-
ing test horizons.

For all predictors, the error tends to increase as the event
horizon moves away from the training window. However,
both RAP and the oracle stabilize after about 2,000 events
at error values of about 2.5 and 1 hour, respectively. We
suspect that the error rates are partially related to the size
of the training window used. While the event frequency is
different for each dataset, 5000 events is approximately a
day or two in length. At 2000 events, the training window
is relatively small compared to the size of the datasets, but
this window size was chosen to provide a sufficient number
of test windows for computing the evaluation metrics. It is

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000

A
ve

ra
ge

 M
A

E
(s

e
co

n
d

s)

Test Event Horizon
(Number of Events Past End of Training Window)

Average MAE At Each Horizon

Random Exponential IP RAP Oracle

Figure 5: MAE plotted for each predictor against
the test horizon. The test horizon indicates how far
(in number of events) the test event is from the end
of the training window. MAE values are averaged
over all activities and datasets at each test horizon.

likely that increasing the training window size (and thus al-
lowing more of the residents’ activities to be observed) may
reduce the error rates for the predictors. This hypothesis
is supported by the results from the prompting app evalua-
tion, shown in the next section. The predictors used for the
app were trained with more than a month of data, yet still
had error rates below an hour even at more than two weeks
beyond the training window.

6. DIGITAL PROMPTING APPLICATION
The ability to predict, or forecast, future occurrences of

activities can play a central role in activity prompting. Ac-
tivity prompting can be used to remind a memory-impaired
individual of an activity they typically perform or to encour-
age integration of a new healthy behavior into a normal rou-
tine. Prompting technologies have been shown to increase
adherence to medical interventions and increase indepen-
dence for individuals with cognitive impairment [8, 27].

We evaluated our IP activity predictor in the context of
an activity prompting app called CAFE (CASAS Activity
Forecasting Environment). Rather than relying on manual
setting of reminder times or hand construction of reminder
rules [1, 15], CAFE prompts individuals based on the pre-
dicted times that the activities will occur. The iOS-based
app periodically queries a server for the predicted times of
selected activities. An activity recognition algorithm [20]
and our activity predictor both reside on the server and gen-
erate real-time labels and predictions as sensor data arrive
from the smart homes. When the predicted occurrence time
is reached, CAFE issues a notification, as shown in Figure 6.

We evaluate CAFE over a period of two weeks for two
individuals who were living in smart homes described in
Table 5. These homes are instrumented with sensors for
motion, temperature, light, and door usage. Sensor data is
automatically labeled using the AR activity recognition al-
gorithm. Participant 1’s apartment (referred to as “kyoto”)
houses two residents. Participant 2’s apartment (referred to
as “navan”) houses a single resident. For both apartments,
we utilize the generalized AR model that was trained from

Figure 6: Interface for the EMA and CAFE apps.

Table 5: Description of CAFE testbeds.

Testbed Residents Time span Sensors #Events

kyoto 2 2 weeks 81 147,919
navan 1 2 weeks 28 57,241

the datasets described in Table 1 to generate training data.
Neither apartment was part of the training set, so the train-
ing labels rely on the generalization power of the learned ac-
tivity recognizer. The predictor model for kyoto was trained
on two months of labeled data from that apartment; and four
months of data were used for navan.

The two participants responded to CAFE activity prompts
over a period of two weeks. The participants were prompted
for seven activities: Bathe, Cook, Eat, Leave Home, Relax,
Sleep, and Work. The participants provided a total of 112
responses, which were evenly distributed between “I will do
it now”, “I already did it”, and “I will do it later”. We note
that delays may occur between the activity occurring and
the prompt being generated. This is partly due to the fact
that the database is updated every 15 minutes, after which
AR provides labels and the prompts are generated. Once
the prompt is generated, notification is scheduled for deliv-
ery but can be delayed due to the iOS behavior for obtaining
updates from the server. As a result, the participants ob-
served that occasionally they would receive a prompt to start
an activity while they are in fact currently performing the
activity. Therefore, they respond with “I already did it” or
“I will do it later”.

Given the nature of the current notification generation, we
also evaluated the prompt timings based on MAE and range-
normalized MAE, as summarized in Table 6. Each activity
occurred at least once a day and MAE values were normal-
ized based on a maximum error of 43,200 seconds, or half of
a day. As shown in Table 6, the average MAE value is 2,925
seconds (about 48 minutes). The average prediction error
is approximately 15 minutes longer than the infrastructure-
created delays on average. To further assess the error we
calculate the ETF value using 30 minutes, the maximum
infrastructure-initiated delay, as our threshold value.

Because all of the sensor data is labeled by an activity

Table 6: Evaluation of CAFE prompts (in seconds).

MAE Normalized MAE ETF κ-Normalized ETF

2,925 0.07 0.64 0.72

recognition algorithm, we also analyzed participant respon-
siveness to the prompt. During this pilot study, we observed
that each time the participants responded “I will do it now”,
they did initiate the activity within the next 20 minutes.

Finally, we obtained ground truth activity labels during
the same two-week period that participants received activity
prompts. This was accomplished through a separate EMA
app. EMA here stands for ecological momentary assessment.
This is an established method of obtaining participant infor-
mation “in the moment”, when the information is likely to
be most accurate [13]. Using the EMA app, participants are
queried every 15 minutes about the activity they are cur-
rently performing. The responses are stored in the database
and used to validate our activity recognition algorithms.
From the collected responses, we report AR accuracy of 92%
for these seven activities. We use this information to gener-
ate the κ-normalized values summarized in Table 6.

Interestingly, the participants noted that the app some-
times actually created a modification in their behavior. One
resident pointed out that he was debating between leaving
home to get groceries or watching television. Upon receiv-
ing the CAFE prompt, he left immediately to perform his
errands. On another occasion, a participant started work-
ing earlier than originally planned due to the prompt noti-
fication. Integrating activity prompts into daily behavioral
routines thus raises interesting challenges for intervention
design that need to be carefully considered in future work.

7. RELATED WORK
Activity recognition algorithms have been investigated over

the last decade for a plethora of sensor platforms, including
ambient sensors, wearable sensors, phone sensors, and au-
dio/video data [2, 3, 16, 24, 32]. Some existing work also
addresses complex scenarios including real-time recognition
and recognition with multiple residents [28, 31]. These al-
gorithms map a sequence of sensor readings onto an activ-
ity class value. They can be used to track occurrences of
well-known activities or partnered with activity discovery
algorithms to model all of a person’s routine behaviors [4].
A number of data mining approaches to this problem have
been tested including generative, discriminative, and ensem-
ble methods.

While activity prediction is not as heavily investigated as
activity modeling or recognition, there are some representa-
tive first efforts in this area. Most of these techniques focus
on sequence prediction to generate a label for the activity
that will occur next. This work includes the Active LeZi
algorithm by Gopalratnam and Cook [9] to predict the next
event generated by sensors in an instrumented home. Other
researchers [12, 18, 19] have investigated the use of proba-
bilistic graphical models for sequential prediction in video
data. In the work by Koppula and Saxena [19], the antici-
pated event was supplied to robots in order to provide better
assistance. The authors report prediction F1 scores of 37.9
for 10 activities monitored in a scripted environment.

On the other hand, automated prompting systems have

been developed and studied for some time. Most of these
systems are rule-driven or require knowledge of a user’s daily
schedule [1, 15]. While these systems are able to adjust
prompts based on user activities, they also require input of
a user’s daily schedule or predefined activity steps. In con-
trast, the methods we describe in this paper are data-driven.
They utilize activity-labeled sensor events to learn an in-
dividual’s normal routine and generate predictions based
solely upon this data.

8. SUMMARY AND FUTURE WORK
We studied a data-driven approach for predicting future

occurrences of activities from sensor data. We showed how
powerful regression learners can be leveraged to learn an ef-
fective activity predictor that can reason about relational
and temporal structure among the activities in an efficient
manner. Our extensive experiments on twenty-four smart
home datasets validate that our recurrent activity predictor
is not only effective at forecasting upcoming activity occur-
rences. Additionally, we illustrated the use of the predictor
as part of our CAFE activity prompting app.

In the future, we will enhance our approach by incorpo-
rating iterative prediction refinement as well as smoothing,
and perform a large-scale user study. In this paper, we lim-
ited our evaluation to consider only activity initiation, but
an exciting direction will be to predict the length of the ac-
tivity as well as individual activity steps. We will study the
theoretical properties of our approach and apply it to more
general prediction problems.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grants 0900781 and 1262814 and
by the National Institute of Biomedical Imaging and Bio-
engineering under Grant R01EB015853.

9. REFERENCES
[1] J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and

A. Mihailidis. A decision-theoretic approach to task
assistance for persons with dementia. In International Joint
Conference on Artificial Intelligence, pages 1293–1299,
2005.

[2] A. Bulling, U. Blanke, and B. Schiele. A tutorial on human
activity recognition using body-worn inertial sensors. ACM
Computing Surveys, 46:107–140, 2015.

[3] D. J. Cook. Learning setting-generalized activity models for
smart spaces. IEEE Intelligent Systems, 27(1):32–38, 2012.

[4] D. J. Cook, N. Krishnan, and P. Rashidi. Activity discovery
and activity recognition: A new partnership. IEEE
Transactions on Systems, Man, and Cybernstics, Part B,
43(3):820–828, 2013.

[5] J. R. Doppa, A. Fern, and P. Tadepalli. HC-Search: A
learning framework for search-based structured prediction.
JAIR, 50:369–407, 2014.

[6] J. R. Doppa, A. Fern, and P. Tadepalli. Structured
prediction via output space search. JMLR, 15:1317–1350,
2014.

[7] J. R. Doppa, J. Yu, C. Ma, A. Fern, and P. Tadepalli.
HC-Search for Multi-Label Prediction: An Empirical Study.
In AAAI, 2014.

[8] N. Epstein, M. G. Willis, C. K. Conners, and D. E.
Johnson. Use of technological prompting device to aid a
student with attention deficit hyperactivity disorder to
initiate and complete daily activities: An exploratory study.
Journal of Special Education Technology, 16:19–28, 2001.

[9] K. Gopalratnam and D. J. Cook. Online sequential
prediction via incremental parsing: The active lezi
algorithm. IEEE Intelligent Systems, 22:52–58, 2007.

[10] K. L. Gwet. Handbook of Inter-Rater Reliability. Advanced
Analytics, LLC, 2014.

[11] Hal Daumé III, J. Langford, and D. Marcu. Search-based
structured prediction. MLJ, 75(3):297–325, 2009.

[12] K. P. Hawkins, N. Vo, S. Bansal, and A. Bobick.
Probabilistic human action prediction and wait-sensitive
planning for responsive human-robot collaboration. In
IEEE-RAS International Conference on Humanoid Robots,
pages 499–506, 2013.

[13] K. E. Heron and J. M. Smyth. Ecological momentary
interventions: Incorporating mobile technology into
psychosocial and health behavior treatment. Journal of
Health Psychology, 15:1–39, 2010.

[14] M. Kääriäinen. Lower bounds for reductions. In Atomic
Learning Workshop, 2006.

[15] P. Kaushik, S. S. Intille, and K. Larson. User-adaptive
reminders for home-based medical tasks: A case study.
Methods of Information in Medicine, 47:203–207, 2008.

[16] S. Ke, H. Thuc, Y. Lee, J. Hwang, J. Yoo, and K. Choi. A
review on video-based human activity recognition.
Computers, 2(2):88–131, 2013.

[17] R. Khardon. Learning to take actions. MLJ, 35(1):57–90,
1999.

[18] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert.
Activity forecasting. In Proceedings of the European
Conference on Computer Vision, 2012.

[19] H. S. Koppula and A. Saxena. Anticipating human
activities using object affordances for reactive robotic
response. In Robotics: Sciences and Systems, 2013.

[20] N. Krishnan and D. J. Cook. Activity recognition on
streaming sensor data. Pervasive and Mobile Computing,
10:138–154, 2014.

[21] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. In ICML, pages 282–289, 2001.

[22] M. Lam, J. R. Doppa, S. Todorovic, and T. Dietterich.
Learning to detect basal tubules of nematocysts in sem
images. In ICCV Workshop on Computer Vision for
Accelerated Biosciences, 2013.

[23] M. Lam, J. R. Doppa, S. Todorovic, and T. Dietterich.
HC-Search for structured prediction in computer vision. In
CVPR, 2015.

[24] O. Lara and M. A. Labrador. A survey on human activity
recognition using wearable sensors. IEEE Communication
Survey Tutorials, 15:1195–1209, 2013.

[25] C. Ma, J. R. Doppa, W. Orr, P. Mannem, X. Fern,
T. Dietterich, and P. Tadepalli. Prune-and-Score: Learning
for greedy coreference resolution. In EMNLP, 2014.

[26] S. Ross, G. J. Gordon, and D. Bagnell. A reduction of
imitation learning and structured prediction to no-regret
online learning. In AISTATS, 2011.

[27] M. Schmitter-Edgecome, S. Pavawalla, J. T. Howard,
L. Howell, and A. Rueda. Dyadic interventions for Persons
with Early-Stage Dementia: A Cognitive Rehabilitative
Focus, chapter 3, pages 39–56. Nova Science Publishers,
2009.

[28] D. Stowell and M. D. Plumbley. Segregating event streams
and noise with a Markov renewal process model. Journal of
Machine Learning Research, 14:2213–2238, 2013.

[29] V. G. Wadley, O. Okonkwo, M. Crowe, and L. A.
Ross-Meadows. Mild cognitive impairment and everyday
function: Evidence of reduced speed in performing
instrumental activities of daily living. The American
Journal of Geriatric Psychiatry, 15:416–424, 2008.

[30] J. Xie, C. Ma, J. R. Doppa, P. Mannem, X. Fern,
T. Dietterich, and P. Tadepalli. Learning greedy policies for
the easy-first framework. In AAAI, 2015.

[31] J. Ye, G. Stevenson, and S. Dobson. KCAR: A

knowledge-driven appraoch for concurrent activity
recognition. Pervasive and Mobile Computing, 19:47–70,
2015.

[32] Y. Zheng, W.-K. Wong, X. Guan, and S. Trost. Physical
activity recognition from accelerometer data using a
multi-scale ensemble method. In Proceedings of the
Innovative Applications of Artificial Intelligence
Conference, pages 1575–1581, 2013.

APPENDIX

Table 7: Activity prediction features.

Feature Description

lastSensorEventHours* Hour of day for current event
lastSensorEventSeconds* Seconds since the beginning of

the day for the current event
windowDuration* Window duration (sec)
timeSinceLastSensorEvent*Seconds since previous event
prevDominantSensor1* Most frequent sensor in the

previous window
prevDominantSensor2* Most frequent sensor in the

window before that
lastSensorID* Current event sensor
lastLocation* Most recent location sensor
sensorCount** Number of events in the win-

dow for each sensor
sensorElTime** Time since each sensor fired
timeStamp* Normalized time since begin-

ning of the day
laggedTimestamp* Previous event timeStamps
laggedPredictions*** Previous event predictions
maximumValue# Maximum value of sensor
minimumValue # Minimum value of sensor
sum# Sum of sensor values
mean# Mean of sensor values
meanAbsoluteDeviation# Average difference from mean
medianAbsoluteDeviation#Avg. difference from median
standardDeviation# Value standard deviation
coeffVariation# Coefficient of value variation
numZeroCrossings# Number of median crossings
percentiles# Number below which a per-

centage of values fall
sqSumPercentile# Sq. sum values < percentile
interQuartileRange# Difference between 25th and

75th percentiles
binCount# Values binned into 10 bins
skewness# Symmetry of values
kurtosis# Measure of value“peakedness”
signalEnergy# Sum of squares of values
logSignalEnergy# Sum of logs of squares
signalPower# SignalEnergy average
peakToPeak# Maximum - minimum
avgTimeBetweenPeaks# Time between local maxima
numPeaks# Number of peaks

*Used for IP and RAP experiments. **Used for IP and
RAP, one sensorCount and one sensorElTime for each
sensor used. ***Used for RAP, one per activity. #Based
on window of recent values for each sensor.

