
Forecasting Occurrences of Activities

Bryan Minor
Washington State University

Pullman, WA 99203 USA
bminor@eecs.wsu.edu

Diane J. Cook
Washington State University

Pullman, WA 99203 USA
cook@eecs.wsu.edu

Abstract

While activity recognition has been shown to be valuable for pervasive computing applications,
less work has focused on techniques for forecasting the future occurrence of activities. We
present an activity forecasting method to predict the time that will elapse until a target activity
occurs. This method generates an activity forecast using a regression tree classifier and offers an
advantage over sequence prediction methods in that it can predict expected time until an activity
occurs. We evaluate this algorithm on real-world smart home datasets and provide evidence that
our proposed approach is most effective at predicting activity timings.

Keywords

activity forecasting; activity recognition; regression trees; smart homes

1. Introduction	
A significant component of any smart assistive technology is the ability to predict future
occurrences of a user’s activities based on current and past context. The ability of a system to
forecast what activities the user will perform in the future allows the system to take anticipatory
action to help the user complete those activities. Activity prediction can thus transform context-
aware systems into activity-predictive systems.

One type of system that can benefit from the use of an activity prediction algorithm is the smart
environment. A smart environment is a physical environment that is equipped to sense the state
of its inhabitants and their surroundings in order to act to improve the wellbeing of the
inhabitants and the environment [1,2]. Smart environments employ a variety of sensors to
monitor their inhabitants and provide prompts and other actions to help complete those activities
and provide for inhabitant safety.

In activity prediction, we desire to create a system which can forecast the number of time units
(be it seconds, hours, or days) until future activities occur. The challenge lies in optimally using
collected sensor data to inform activity forecasts without human intervention. Although the data
can provide a wealth of information about user activities, it can be challenging to extract useful
attributes to use in forecasting models. The relationship between sensor data and future activities
is complex and nonlinear. Previous methods rely on user input and pre-defined rules, limiting
their scope and flexibility for use in varied applications. An effective activity predictor needs to
be able to discover and utilize deeper activity complexities and model them appropriately.

In this article, we introduce an activity forecasting algorithm that predicts future activity
occurrences. Our algorithm, which we call AF, predicts the number of time units that will elapse
until the next occurrence of a particular activity based on current and past sensor events. AF
utilizes information about recent sensor events to generate both discrete-event and sampling-
based features to provide improved prediction accuracy. These features can then be used with
common machine learning models to learn the complex relationships between sensor data and

future activities in a straightforward way. Our approach provides new insight into activity
forecasting by utilizing this combination of window-based feature extraction and machine
learning. In the following sections, we discuss the implementation of this method and evaluate it
using sensor and activity data gathered from smart homes.

2. Background	and	Related	Work	
Work on activity prediction follows two general approaches. The first approach is sequence
prediction. In this approach, a predictor is trained using a sequence of observed symbols,
S=s1,s2,...,st, and is then used to generate the symbol st+1 that is likely to occur at time t+1. In the
case of activity prediction, if activity information is available (e.g., from an expert observer or
from an activity recognition algorithm) then the sequence predictor can output the most likely
activity to occur next. Feder et al. adapted the LZ78 compression algorithms for use in
sequential prediction [3,4]. The algorithms analyze the sequences of activities that occur and use
Markov models to predict the next activity in the sequence. This method is further refined by the
LeZi and Active LeZi algorithms [5,6]. A further development for application in smart homes is
the SPEED algorithm, which utilizes the patterns of appliance usage in the home [7]. Other
variable-order sequence prediction models have been examined by Begleiter et al. [8].

While these sequence prediction algorithms are able to predict the next activity that occurs in a
sequence, they do not provide information about when that activity might occur. The algorithms
simply predict the next activity in a sequence – there is no indication if this activity might occur
in the next minute or in a few hours. Similarly, they do not provide information about target
activities and their occurrence times when those activities are not in the short-term sequence
horizon. For automation methods that are time-dependent, these can be important distinctions. In
the smart home case, the next predicted event in a home automation system may be the resident’s
return home, but there is no indication of how much time will elapse until this activity occurs.
This makes it more challenging for the system to determine when to start automation sequences
in anticipation of their arrival.

In order to provide time-based forecasts of when each activity will occur, a second approach can
be considered. This approach, called activity forecasting, involves predicting the time until an
activity of interest will occur. Instead of determining a discrete classification for the next
activity, activity forecasting methods determine a continuous-valued output prediction of the
time until a particular activity occurs. This has been traditionally studied in the area of time
series analysis. Until this point, it has not been explored in the context of activity prediction.

Popular time forecasting methods include autoregressive moving average (ARMA) and
autoregressive integrated moving average (ARIMA) models [9]. While these models are
relatively simple and have been widely discussed in the time series literature [10-12], they are
based on the underlying time series being linear and stationary. These assumptions may not
apply in the case of activity forecasting. The relationships between sensor data and activities are
varied and cannot be readily decomposed into linear models. Furthermore, user behaviors tend
to change over time as users experience life changes and adopt new routines, resulting in activity
distributions which are not stationary.

Additionally, many time series models are designed for a univariate time series, where the
previous values of the variable being forecasted are also used as inputs to the model. Since we
do not precisely know the time an activity will occur until after it happens, this may be difficult

to apply for activity prediction. A multivariate model could be used instead [13,14]. These
models incorporate time series values from a variety of variables, but are often limited to the
same linearity and stationarity assumptions as univariate models. Our approach leverages
feature generation and common machine learning models to build a system capable of forming
activity predictions when these conditions do not hold. Nonlinear time series models, such as
artificial neural networks [15] and autoregressive conditional heteroscedastic models [16], can
sometimes be used. However, these methods can be difficult to train and use.

A variant on activity forecasting which is related to our work is the rule-based algorithm
developed by Holder and Cook [2]. This method uses rules generated from the relationships
between activities and their occurrence distributions. Activity predictions are made by using
activity recognition to determine when a reference activity occurs so that the time to a desired
activity can be predicted. They applied this algorithm to provide prompts in a smart home
setting. While this model utilizes machine learning methods similar to ours, it relies upon the
times between reference and forecasted activities to be relatively stable, which may not be the
case as activity habits change. Furthermore, it uses only a limited scope of activity relationship
information.

While the methods described above can be useful for activity prediction, they face some
restrictions that leave room for improvement. Many of the time series methods are based on
linear models that have difficulty modeling the more complex relationships between activities
and current context. Rule-based approaches rely on the particular rule representation and
discovery method that is used and will not be sensitive to more complex relationships between
activities.

The proposed method is designed to overcome some of these challenges by including a
forecasting model derived directly from training datasets. The combination of feature extraction
and machine learning used in AF allows us to model the complex activity relationships without
pre-defining activity rules. Further, by utilizing nonlinear models, we can overcome some
limitations of linear methods.

Another key component in predicting sequences of activities is activity recognition. Not only
does activity recognition inform the prediction algorithm of when the predicting activities
actually do occur (thus providing both training data and feedback on predictive performance),
but knowing when activities occurred in the past may be valuable for the activity forecasting
algorithm.

Activity recognition algorithms label activities based on the sensor readings (or events) that are
collected from the environment. The challenge of activity recognition is to map a sequence of
sensor events, x=e1,e2,...,en, onto a value from a set of predefined activity labels, aÎA. Activity
recognition can be viewed as a type of supervised machine learning problem. An activity
recognition algorithm learns a function that maps a feature vector, X, describing a particular
sensor event sequence onto an activity label, h:X®A. The algorithm can then use the learned
function to recognize and label occurrences of the learned activity. Our group and others have
explored a large number of approaches to supervised activity recognition [17-31]. The learning
methods can be broadly categorized into transductive, generative, discriminative, and ensemble
approaches. Template matching techniques employ a kNN classifier to a fixed window size of

sensor data or with dynamic time warping to a varying window size [32]. Generative approaches
such as naïve Bayes classifiers, Markov models and dynamic Bayes networks have yielded
promising results for behavior modeling and offline activity recognition when a large amount of
labeled data is available [33-40]. On the other hand, discriminative approaches that model the
boundary between different activity classes offer an effective alternative. These techniques
include decision trees, meta classifiers based on boosting and bagging, support vector machines,
and discriminative probabilistic graphical models such as conditional random fields [33,41-43].
Other approaches combine these underlying learning algorithms, including boosting and other
ensemble methods [35,44,45].

While many activity recognition algorithms have been proposed, they are typically designed for
constrained situations with pre-segmented data, a single user, and no activity interruptions.
Recent work has extended this to consider generalization of activity models over multiple users
with real-time labeling. We have achieved >95% accuracy for 30 activities in (N=20) smart
homes using our real-time AR activity recognition algorithm, which will be used as the activity
recognition algorithm for our AF activity forecaster described in this paper. In order to avoid
offline data segmentation that is used in other approaches [46-53], AR extracts features from a
sliding window that moves over the data in real time as it is collected [54]. The window size
dynamically adjusts to sensor readings based on likely current activities and their associated
likely durations.

3. Methods	
We introduce an activity forecasting algorithm, called AF. The AF algorithm can be applied to
any type of sensor-based activity data. Previously, we described the basic forecasting approach
and generated preliminary results on sample datasets [55]. In this paper, we describe an enhanced
approach to AF that utilizes a richer set of feature descriptors and perform a comparative
evaluation based on its performance as a component in the WSU CASAS smart home project.
The CASAS smart home system is comprised of a wireless sensor network with a variety of
sensors placed throughout the home. These sensors include motion, door, light, switch, and
temperature sensors, among others. The sensor network monitors inhabitant activities within the
home and sends sensor event information over a mesh network to be processed by the
middleware and stored in a server database. The AF component uses these stored events to
generate activity forecasts which can be used by other components in the system, such as prompt
generation or energy management applications. AF provides a numeric prediction of the number
of time units that will occur between any given sensor event and the next occurrence of an
activity of interest.

The goal of AF is to map a feature vector, describing the current activity context and the state of
the environment, onto a number representing the number of time units until a target activity will
next occur. AF consists of two main components: the feature extraction component and the
forecasting component. These are described in detail next.

Table 1: Example sensor event data from the CASAS smart home. The sensor message component can be either a
discrete message (e.g. ON or OFF) or a numeric value (e.g. a light level value).

Date	 Time	 Sensor	 Message	
2012-07-20	 11:36:25.77	 M002	 ON	
2012-07-20	 11:36:25.85	 LS001	 27	
2012-07-20	 11:36:26.89	 M001	 ON	
2012-07-20	 11:36:27.08	 M002	 OFF	
2012-07-20	 11:36:27.16	 M003	 ON	
2012-07-20	 11:36:29.71	 LS001	 36	
	
3.1	Feature	Extraction	
The first step in the AF algorithm is to extract useful features from the raw CASAS sensor data.
Sensor data stored in the database includes the date, time (at multiple resolutions), sensor ID, and
sensor message for each event, as shown in Table 1. Some sensors, such as motion or door
sensors, generate discrete-valued messages indicating their state (e.g. ON or OFF, OPEN or
CLOSED). We call these discrete sensors. Other sensors, such as temperature and light sensors,
generate messages which are continuous numeric values (e.g. the temperature in Celsius) and are
referred to here as sampling sensors. Discrete sensors usually only generate events when there is
a change in their state, typically as a result of direct interaction with the inhabitant, while
sampling sensors will report values at a constant rate regardless of events that are (or are not)
occurring in the home. By incorporating both types of sensors into AF’s feature vector, a wider
understanding of the inhabitant’s activities can be gained and a more sensitive forecaster can be
created. In addition, using both of these types of features allows us to apply activity forecasting
to multiple types of sensor platforms, include smart phones, wearable sensors, and cameras in
addition to smart home environment sensors by customizing them for the sensor types chosen.
As a result, AF’s features are divided into two types: discrete features and sampling features.

Table 2: The discrete features that are generated by the feature extraction component of AF. These features are based on
a window of previous events and are combined with the sampling features as input to the regression tree classifier.

Discrete	Feature	Name	 Description	
lastSensorEventHours	 Hour	of	the	day	when	the	current	event	occurred	
lastSensorEventSeconds	 Time	since	beginning	of	the	day	in	seconds	for	the	current	event	
windowDuration	 Duration	of	the	window	(seconds)	
timeSinceLastSensorEvent	 Time	since	the	previous	sensor	event	(seconds)	
prevDominantSensor1	 The	most	frequent	sensor	ID	in	the	previous	window	
prevDominantSensor2	 The	most	frequent	sensor	ID	in	the	window	before	that	
lastSensorID	 The	sensor	ID	of	the	current	event	
lastLocation	 The	sensor	ID	for	the	most	recent	discrete	sensor	event	
sensorCount*	 Number	of	times	each	sensor	produced	an	event	in	the	window	
sensorElTime*	 Time	(seconds)	since	each	sensor	last	produced	an	event	
timeStamp	 Time	since	beginning	of	the	day	(seconds)	normalized	by	the	total	

number	of	seconds	in	a	day	
lag*	 timeStamp	feature	value	for	previous	event	
*There	is	one	sensorCount	and	one	sensorElTime	for	each	sensor	in	the	smart	home.		The	lag	values	
are	created	for	the	previous	sensor	events	(for	our	experiments,	the	lag	size	is	12).	

	
3.1.1	Discrete	Features	
The discrete features used in AF’s feature vector describe the time and location where events
occur in the home and are listed in Table 2. These features are generated using information
found in the sliding window that contains the most recent sensor events, similar to the method
described for the AR algorithm in the previous section. Temporal features (e.g.,
lastSensorEventHours, timestamp, windowDuration) are used to provide information on the time
of day. This allows the classifier to take into account the fact that many activities occur during
certain times of day. The prevDominantSensor features provide information about context
leading up to the current window (in this case, the sensor generating the most events in the
previous two sliding windows). Other features contain information about the location where an
activity is taking place within the home based on the location of sensors that most recently
generated events (e.g., lastLocation, sensorCount, and sensorElTime). The lag features describe
the time of day at which previous sensor events occurred to provide a picture of the temporal
patterns in the most recent sensor events.

Table 3: The sample features generated by the feature extraction component of AF. These features are based on a
window of sample vectors, each containing the latest value of each sensor when the sample was taken. Each of these
features is generated separately for each sensor using the sampled values for that sensor. Details and equations for these
features are described in [56].

Sampling	Feature	Name	 Description	
sensorMaximumValue	 The	maximum	value	of	the	sensor	
sensorMinimumValue	 The	minimum	value	of	the	sensor	
sensorSum	 The	sum	of	the	sensor’s	values	
sensorMean	 The	arithmetic	mean	of	the	sensor’s	values	
sensorMeanAbsDev	 The	mean	absolute	deviation	of	values	from	the	arithmetic	mean	
sensorMedianAbsDev	 The	mean	absolute	deviation	of	values	from	the	median	
sensorStdDev	 The	standard	deviation	of	the	values	
sensorCoeffVar	 The	coefficient	of	variation	for	the	values	
sensorNumZeroCross	 The	number	of	times	the	values	cross	the	median	in	the	window	
sensor25thPercentile	 The	25th	percentile	of	the	values	
sensorSqSum25thPer	 The	sum	of	the	squares	of	values	less	than	the	25th	percentile	
sensor50thPercentile	 The	50th	percentile	of	the	values	
sensorSqSum50thPer	 The	sum	of	the	squares	of	values	less	than	the	50th	percentile	
sensor75thPercentile	 The	75th	percentile	of	the	values	
sensorSqSum75thPer	 The	sum	of	the	squares	of	values	less	than	the	75th	percentile	
sensorInterQuartRange	 The	difference	between	the	75th	and	25th	percentiles	
sensorBinCount*	 The	number	of	values	in	each	bin	
sensorSkewness	 The	skewness	of	the	values	
sensorKurtosis	 The	kurtosis	of	the	values	
sensorSigEnergy	 The	signal	energy	(sum	of	squared	values)	
sensorLogSigEnergy	 The	logarithmic	signal	energy	(sum	of	log10	of	squared	values)	
sensorSigPower	 The	signal	power	(arithmetic	mean	of	squared	values)	
sensorPeakToPeak	 The	difference	of	the	maximum	and	minimum	values	
sensorAvgTimeBtwnPeaks	 The	average	time	between	local	maximum	values	
sensorNumPeaks	 The	number	of	local	maximum	values	
*The	values	are	binned	into	10	bins	divided	equally	across	the	range	of	values	for	each	sensor	

	
3.1.2	Sampling	Features	
Sampling features are generated from the values of each sensor sampled at given intervals. A
sample interval and a sample lag are provided to the feature extraction component. Some
sensors, such as accelerometers, are designed to provide readings at regular time intervals and
thus can naturally be represented using sampling features. Other sensors, such as infrared motion
detectors, do not provide readings at regular time intervals. As a result, researchers typically only
represent these sensors using discrete features. There is a danger, however, on missing valuable
information such as the delay between changes in sensor state, when we only employ discrete
features. For these discrete sensors, we can generate sampling features by replicating the current
state of the sensor at regular time intervals, thus simulating a sampling-type sensor. Because all
of the sampling feature values are represented as numbers, discrete sensor values are mapped to
binary numeric values (e.g., 1 for ON, 0 for OFF).

Similar to the case with discrete features, sampling features are created based on the sensor
values contained within a recent sliding window of sensor sample vectors. AF’s sampling
features are listed in Table 3. All of the sampling features are generated for each sensor. These
statistical features provide information about how each sensor has changed during the current
window, providing more discriminative power for the classifier.

For example, consider the sequence of sensor events in Table 1. With a sample interval of one
second, the feature extraction component generates the sensor state vectors shown in Table 4.
Each sensor’s state is changed in a sample vector if its value changed in the preceding sample
interval. If the sample lag is four seconds, sample features generated for events occurring
between 11:36:30 and 11:36:31 would use the last four sample vectors in the table (starting with
11:36:27). So, for example, the sensorMean and sensorSum for M002 would be 0.25 and 1,
respectively.

The discrete and sampling features generated for each sensor event are combined into a single
feature vector. This vector is then used by the second component of AF, the forecaster.

Table 4: Example sensor state vectors for the sensor events listed in Table 1 with a sampling interval of one second.
Values that have changed since the previous vector are bolded.

Sample	Time	 M001	 M002	 M003	 LS001	
11:36:25	 0	 0	 0	 0	
11:36:26	 0	 1	 0	 27	
11:36:27	 1	 1	 0	 27	
11:36:28	 1	 0	 1	 27	
11:36:29	 1	 0	 1	 27	
11:36:30	 1	 0	 1	 36	
	
3.2	Activity	Forecaster	
The activity forecaster learns a model that maps extracted features to a forecast value. This
forecast value represents the number of time units that will elapse between the time of the current
sensor event and the time when the next occurrence of the target activity will start.

In order to generate a forecast value from the feature vector, AF requires a classifier that can
output a numeric value based on the feature inputs. A simple linear regression could be used to

do this, but it would only be able to model the linear components of the activity relationships.
Any complex nonlinear aspects of the activities would not be represented. Although a support
vector machine (SVM) could be used, such a classifier has high computational cost and thus
could not be quickly retrained. Such retraining is valuable when modeling daily activities for
individuals whose routines may change over time. To address these needs, AF creates a
regression tree to learn the forecasting model. Like decision trees, regression trees are traversed
from the root node to the leaf nodes when generating a forecast value, following the path
determined by split attributes at each node. However, while a decision tree has class labels that
are applied at each leaf node, the regression tree’s leaf nodes contain multivariate linear models
that are used to determine the classification. Figure 1 shows an example regression tree
generated to predict the Bed Toilet Transition activity.

The regression tree must initially be trained using a labeled set of training data. Once trained,
however, the regression tree can be used to quickly generate a forecast value based on the current
context. For example, after an initial training period, the regression tree classifier could be
deployed to provide activity forecasts in a smart home environment based on recent sensor
events.

When the regression tree is trained, the feature extractor generates feature vectors representing
the training data. Each sensor event is labeled with the activity that was occurring when the
event was generated. A human annotator or an activity recognition system may label these
activity labels beforehand. A trained AR algorithm can be used to provide labels for AF to allow
automated generation of new training instances. The classifier uses these activity labels to

Figure 1: Example regression tree to predict the Bed Toilet Transition activity. Labels on the internal nodes indicate the
split attribute and threshold checked at that node. Leaf nodes contain linear regression models used to compute a
numeric activity prediction when the node is reached.

compute the class labels. These class labels represent the actual time that elapses between the
current sensor event and the next occurrence of the target activity (i.e., the first sensor event in
the future that is labeled with the target activity).

The training feature vectors and associated class labels are used to generate the regression tree.
Starting with the collection of training examples, T, we compute the standard deviation of its
class labels, 𝜎(𝑇). We then start building the tree from its root node. At each node, we choose
an attribute to split the tree by finding the attribute that maximizes the reduction in error. For a
particular split attribute, we let Ti denote the subset of examples produced by the ith outcome of
the split. We compute the standard deviation of this subset’s class labels, 𝜎 𝑇% , as an estimate
of the error in the examples in that subset. We then choose a split attribute, attr, which
maximizes the gain, as defined in Equation 2.

𝐺𝑎𝑖𝑛 𝑇, 𝑎𝑡𝑡𝑟 = 	𝜎 𝑇 − 01
0
×𝜎 𝑇%%3456789 5::; (2)

We continue this splitting process recursively with the node’s children to form the tree structure.
The splitting terminates when one of the following occurs: all attributes have been used along the
current path, the number of examples remaining at a node is too small (four or fewer in our case),
the standard deviation of the remaining example class values is less than a percentage of the
original standard deviation (5% in this case), or the tree has reached a maximum depth limit
(5000 nodes deep in this case).

In order to improve the regression tree’s performance and reduce its complexity, we prune the
tree in a bottom-up fashion, starting with the leaf nodes. For each node, we create a linear
regression model using only the examples associated with that node and the attributes used as
split attributes in the node’s children. We then classify the subset of training examples
associated with the node using this model and compute the root mean square (RMSE) of the
computed class labels as shown in Equation 3. Here, we determine the error as the difference
between the predicted and actual class labels (forecast values) for the data point (sensor event).

𝑅𝑀𝑆𝐸 = @;8A%B:8A 8 C5B:756 8 D#FGFHIJ
FKL

#	8M8N:9
 (3)

We also perform the classification using the node’s subtree and compute the RMSE of the
results. If the node’s regression result has lower error than that of its subtree, we prune the
subtree and the node becomes a leaf node instead.

Once the training of the regression tree is complete, it can be used to determine classification
values for new events. We pass the generated features from the feature extraction component to
the regression tree to compute a forecast. Starting from the root node, we compare the value of
the feature specified as the split attribute at each node to decide which child node should be
accessed. When we reach a leaf node, we use the regression model from that node to compute a
class value.

4. Experimental	Results	
4.1	Setup	
To demonstrate the effectiveness of our AF algorithm, we test it using sensor events collected
from CASAS smart homes. In particular, we use data from N=25 smart home testbeds, each

housing one or two adults who were 73 years of age or older. Each of the datasets represents data
collected over time periods ranging from a few weeks to a year while the residents performed
their daily routines. Each of the datasets contains data from discrete sensors (motion, door, and
light switch sensors) and sampling sensors (temperature, light level). The testbeds contain an
average of 51 sensors. The floorplan and sensor layout for one of the testbeds is shown in Figure
2. Also included in the sensor events are battery status events used to periodically update the
system on the wireless sensors’ battery status. Information about the datasets is shown in Table
5.

Figure 2: The floorplan and sensor layout for one of the CASAS smart home testbeds. Sensors labeled with “M”
represent infrared motion sensors, “LS” are light level sensors, “D” are magnetic door sensors, and “T” are temperature
sensors.

Human annotators labeled the sensor events with related activities by observing the home
floorplan and sensor layout, interviewing residents to ascertain their daily routines, and
visualizing the event sequences in software. Each dataset was annotated by multiple individuals
to maximize label accuracy and consistency. In total, the datasets contain 118 activity classes,
although not every activity appears in each dataset. However, there are 30 core activities that
appear in at least 19 of the 25 datasets. These activities represent many aspects of daily living,
including sleeping, bathing, eating, and personal hygiene. They are activities that are likely to be
of interest in order to monitor the inhabitant’s health and daily functioning [57]. Sensor events
that do not fit in one of these core activity classes are labeled as “Other Activity” for these
experiments.

To validate the performance of AF, we employ a sliding window validation. This is similar to a
k-fold cross validation. However, the sequential nature of the sensor events is important for both
model training and for activity prediction, so random data subsets cannot be selected for training
and testing. Instead, this approach uses a sliding window of fixed length and moves it across the
dataset to segment the sensor events. Events within the window are used to train AF, while the

next event after the window is used as a test instance. The window is then shifted by a specified
number of events and the training and testing process is repeated. This approach maintains the
temporal order of the data while also providing results for multiple training and test sets.

Table 5: The 25 CASAS smart home datasets used in our experiment. There are 118 separate labeled activities across all
datasets, but some are only used with one or two datasets. A core group of 30 activities is used in almost all of the
datasets.

Dataset	 Start	Date	 End	Date	 Events	 Labeled	
Activities	

HH101	 7/18/2012	 9/17/2012	 326066	 30	
HH102	 6/15/2011	 8/15/2011	 413142	 30	
HH103	 6/15/2011	 8/11/2011	 167183	 29	
HH104	 6/15/2011	 8/14/2011	 484931	 32	
HH105	 6/15/2011	 8/14/2011	 225820	 30	
HH106	 6/15/2011	 8/15/2011	 263083	 33	
HH107	 7/20/2012	 8/20/2012	 295165	 27	
HH108	 9/1/2011	 10/31/2011	 362164	 31	
HH109	 6/15/2011	 8/14/2011	 569331	 32	
HH110	 6/15/2011	 7/15/2011	 138331	 25	
HH111	 6/15/2011	 8/14/2011	 356496	 33	
HH112	 6/15/2011	 9/30/2011	 669330	 30	
HH113	 6/15/2011	 11/5/2012	 3250290	 32	
HH114	 6/15/2011	 7/15/2011	 194345	 28	
HH115	 6/15/2011	 4/29/2012	 2169339	 64	
HH116	 6/15/2011	 8/15/2011	 507995	 32	
HH117	 6/15/2011	 5/25/2012	 1118020	 37	
HH118	 6/15/2011	 7/15/2011	 254112	 30	
HH119	 1/28/2012	 2/27/2012	 140711	 28	
HH120	 1/28/2012	 3/31/2012	 300037	 32	
HH121	 3/1/2012	 3/11/2012	 170930	 75	
HH122	 4/1/2013	 4/30/2013	 202112	 32	
HH123	 3/2/2013	 4/1/2013	 154068	 30	
HH124	 3/1/2013	 4/30/2013	 76024	 21	
HH125	 3/1/2013	 4/30/2013	 216255	 32	

Although the sliding window approach only uses feature data from events within the window
itself, the buffers used in feature generation are initially seeded with events from just prior to the
window. This allows features to be generated starting with the first event in the window, rather
than waiting for the buffers to fill. This is similar to what might occur in a real-world
environment, where the classifier could observe sensor events for some time to build up the
feature buffers before being trained. This approach also reduces the complexity of the
experiment by allowing event features to be generated only once for each dataset.

Since AF outputs a numeric forecasted time value until the next activity, it is difficult to define
the notion of classification accuracy or true positives. Instead, we determine the success of the
forecaster by examining the difference between the predicted forecast value and the actual time
until the next activity occurrence (the model error for a particular data point). However, since
the time between activities can vary greatly depending on activity frequency and other factors,
the forecast values and actual class labels also vary and differ for each activity. For example, an
activity like toileting may occur multiple times per day, while housekeeping may only occur a
few times per month.

Due to this variability between activities, a measurement of error such as the RMSE cannot be
effectively used to compare the forecasting error for different activities. The mean absolute
percentage error (MAPE), shown in Equation 4, could be used since it normalizes each event’s
forecast error. This measure, however, is subject to distortion due to outliers. For example,
when the actual class label is near zero but the predicted value is only somewhat larger (perhaps
off by only 10 time units), the normalization for that particular error could be very large. This in
turn causes the MAPE to be distorted toward a larger value.

𝑀𝐴𝑃𝐸 = | @;8A%B:8A 8 C5B:756 8 /5B:756 8 |	#FGFHIJ
FKL

#	8M8N:9
∗ 100% (4)

As an alternative, we use a normalized measure of error based on the RMSE called range-
normalized RMSE (RangeNRMSE), defined in Equation 5. The RangeNRMSE is the RMSE
normalized by the range of the actual class labels. It also provides a normalized measure of the
average error, but is not as subject to outliers as MAPE since the normalization occurs on the
averaged error value rather than on a per-event basis. A perfectly accurate forecast would have a
RangeNRMSE value of zero. Greater differences between the forecast and actual times will
result in larger RangeNRMSE values indicating lower performance.

𝑅𝑎𝑛𝑔𝑒𝑁𝑅𝑀𝑆𝐸 = Z[\]
^_` 5B:756 C^ab 5B:756

 (5)

Since the actual class labels for each sensor event are derived based on the annotated activity
labels, we can only provide class values, or elapsed time until the target activity occurs, up until
the target activity is last performed in the dataset. Beyond this point, the next occurrence of the
activity is unknown and the label cannot be determined. Thus, for each activity, sliding window
validation is stopped at the last event labeled with that activity, instead of using the full dataset.
However, the number of windows used for each activity is still sufficiently large and
approximately the same across activities.

4.2	AF	Parameter	Comparison	
We hypothesize that activity occurrences can be accurately learned from sensor data and AR-
based activity labels. We also recognize that the choice of parameters values will affect the
performance of AF. To validate this hypothesis and measure the effect of alternative parameter
choices, we examine the performance of AF with varying window sizes. In addition, we analyze
the effect of adding sampling features based on our discrete event sensors by comparing the
performance with and without these features.

We run three categories of tests. The first category of tests is run by including only the events
from discrete sensors and generating only discrete features for training and testing of AF. This

provides a baseline of comparison for the inclusion of other sensor types and sensor features.
The second category of tests is run by including events from all sensors, but still with only
discrete features. The final category of tests is run using events from all sensors and with both
discrete and sampling features generated.

Within each test category, we run the sliding window validation tests with window sizes of 2,000
and 5,000 events to determine the effect of training window size on performance. The window
sizes must balance the need for a sufficient number of data points in each training window with
the need for a sufficient sample size from which to analyze performance. Although larger
window sizes could be used to capture more events, preliminary testing indicated that smaller
window sizes produced better performance. For all tests we move the window forward by 1,000
events with each iteration. This allows us to obtain a sufficient number of test points while still
maintaining reasonable test complexity.

Figure 3 shows an example of the predicted and actual times until the next occurrence of the
Bathe activity from the test with no sampling sensors, no sampling features, and window size
2000 for the HH101 dataset. The time until the next occurrence of the activity varies from 0 to
95,000 seconds. In most cases, the forecast time to the activity is nearly identical to the actual
value.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Ti
m
e	
Un

til
	A
ct
iv
ity

	N
ex
t	O

cc
ur
s	(
se
co
nd

s)

Time	of	Day

Time	Until	Next	Occurrence	of	Bathe	Activity

Predicted

Actual

Figure 3: Example comparison of AF-predicted and actual times until the next occurrence of the Bathe activity. These
values are from the test with no sampling sensors and no sampling features with a window size of 2000 for the HH101
dataset. The predicted values are almost indistinguishable from the actual values in most cases. Values near zero
indicate that the activity is occurring at that time, while peaks indicate the maximum observed time that will elapse
before the next activity occurrence.

A summary of the test results is shown in Table 6, while Figures 4 and 5 show macro-averaged
RangeNRMSE values by dataset and by activity, respectively. The table indicates that the
highest-performing (lowest-average RangeNRMSE) models are the ones that utilize all sensors,
utilize all features, and employ a sliding window of size 2000 events. The average error for this
test category (0.0102) is lower than the average result without the sampling features (0.0112).
As Table 6 shows, using all features leads to better performance for the greatest number of
datasets. In contrast, using all sensors but only discrete features yields the best performance for
only one dataset. This is supported by the results in Figure 4, where many of the datasets perform
better with all features included. Thus, it appears that the inclusion of both sampling sensors and
sampling features is helpful to the AF algorithm in forming predictions.

In fact, the best set of parameters can vary between different datasets and activities. For
example, while most of the tests have lower performance with a window size of 5000 (compared
to the equivalent test with a window size of 2000), this is not always the case. For both HH106
and HH109, the larger window sizes perform better than their smaller-size counterparts.
Similarly, for some datasets (e.g. HH108 and HH 123), the tests with no sample sensors and no
sample features performed the best. These differences may be due to factors such as the kinds of
sensors used in the dataset and relationships between the activities and sensor events.

Table 6: Average and median RangeNRMSE results for the AF parameter comparison tests. The best-performing tests
by each measure are bolded. The table also shows the number of datasets for which each test has the lowest error
amongst all results for that datasets. The tests are listed by the combination of sensors and features used, along with the
sliding window size. All tests are run with the window moving by 1000 events with each iteration.

Test	 Average	
RangeNRMSE	

Median	
RangeNRMSE	

Number	of	Datasets	
Where	Test	Has	
Lowest	Error	

Disc	Sensors/Disc	Features	2000	 0.0128	 0.0052	 5	
Disc	Sensors/Disc	Features	5000	 0.0184	 0.0062	 1	
All	Sensors/Disc	Features	2000	 0.0112	 0.0043	 1	
All	Sensors/Disc	Features	5000	 0.0106	 0.0048	 4	
All	Sensors/All	Features	2000	 0.0102	 0.0041	 9	
All	Sensors/All	Features	5000	 0.0109	 0.0047	 5	
The activity error plot in Figure 5 provides some insight into how the type of activity and sensors
affect AF performance. Activities such as cooking and eating, which are likely to occur in the
same location and about the same time every day, generally have the lowest error rates.
Activities such as entering and leaving the home, which are likely to occur at variable times of
day and with different sets of preceding and following events, have much higher error with all
parameter configurations.

Some activities, such as Toilet, Morning Meds, or Work At Table, show much better results by
having all sensors included. This indicates that the use of some of the sampling sensors, such as
light level sensors, may help to improve the accuracy of prediction by allowing AF to discern
activity that is more evident with these sensors. For other activities, such as Watch TV or Bed-
Toilet Transition, this difference is less. This may indicate that the information from the
sampling sensors is less important for predicting these activities. This makes sense especially for
the Bed-Toilet Transition activity, which is likely to occur at night and when there is generally
less light throughout the house.

Figure 4: Average RangeNRMSE results for each dataset for the AF parameter comparison tests. Shown are macro-
averages of the RangeNRMSE results for all activities in each dataset. The vertical axis has been limited to more clearly
show results, and those values which were cut off are labeled with their respective values.

Figure 5: Average RangeNRMSE results for each of the core activities for the AF parameter comparison tests. Shown are
macro-averages of the RangeNRMSE results for each activity across all datasets in which that activity occurred. The
vertical axis has been limited to more clearly show results, and those values which were cut off are labeled with their
respective values.

0

0.01

0.02

0.03

0.04

0.05

HH
10
1

HH
10
2

HH
10
3

HH
10
4

HH
10
5

HH
10
6

HH
10
7

HH
10
8

HH
10
9

HH
11
0

HH
11
1

HH
11
2

HH
11
3

HH
11
4

HH
11
5

HH
11
6

HH
11
7

HH
11
8

HH
11
9

HH
12
0

HH
12
1

HH
12
2

HH
12
3

HH
12
4

HH
12
5

Av
er
ag
e	
Ra

ng
eN

RM
SE

RangeNRMSE	for	Parameter	Comparison,	By	Dataset

Disc	Sensors/Disc	Features	2000 Disc	Sensors/Disc	Features	5000 All	Sensors/Disc	Features	2000
All	Sensors/Disc	Features	5000 All	Sensors/All	Features	2000 All	Sensors/All	Features	5000

0.050 0.118 0.107

0

0.01

0.02

0.03

0.04

0.05

Ba
th
e

Be
d	
To

ile
t	T
ra
ns
iti
on

Co
ok

Co
ok
	B
re
ak
fa
st

Co
ok
	D
in
ne

r
Co

ok
	Lu

nc
h

Dr
es
s

Ea
t

Ea
t	B

re
ak
fa
st

Ea
t	D

in
ne

r
Ea
t	L
un

ch
En

te
r	H

om
e

En
te
rt
ai
n	
Gu

es
ts

Ev
en

in
g	M

ed
s

Gr
oo

m
Le
av
e	
Ho

m
e

M
or
ni
ng
	M

ed
s

Pe
rs
on

al
	H
yg
ie
ne

Ph
on

e
Re

ad
Re

la
x

Sl
ee
p

Sl
ee
p	
O
ut
	O
f	B

ed
To

ile
t

W
as
h	
Br
ea
kf
as
t	D

ish
es

W
as
h	
Di
nn

er
	D
ish

es
W
as
h	
Di
sh
es

W
as
h	
Lu
nc
h	
Di
sh
es

W
at
ch
	T
V

W
or
k	
At
	T
ab
le

Av
er
ag
e	
Ra

ng
eN

RM
SE

RangeNRMSE	for	Parameter	Comparison,	By	Core	Activity

Disc	Sensors/Disc	Features	2000 Disc	Sensors/Disc	Features	5000 All	Sensors/Disc	Features	2000

All	Sensors/Disc	Features	5000 All	Sensors/All	Features	2000 All	Sensors/All	Features	5000

0.058 0.050 0.151

4.3	Performance	Relationships	to	Dataset	Characteristics	
Next, we probe deeper to determine what the relationship is, if any, between characteristics of
activities and the ability to forecast their occurrences. We perform this experiment because we
would like to know if we can expect AF’s performance to vary dramatically based on the type of
data it is analyzing or the type of activity it is forecasting. To analyze this, we compare the
correlation between characteristics of the activity and/or the dataset with AF performance (based
on RangeNRMSE values). The results are summarized in Table 7. As the results indicate, none
of the dataset characteristics shows a strong correlation with the error values, which may indicate
that AF is not affected very much by the characteristics of the dataset. There is almost no
correlation between the number of times per day an activity occurs and the error (0.0038), which
suggests that AF does not need activities to occur frequently to provide a useful prediction.
There is also little correlation with the variance in activities’ start and end times, suggesting that
AF is able to predict activities equally well if they happen at consistent times or have diverse
occurrence times.

Table 7: Correlation coefficient of RangeNRMSE results to various dataset statistics for AF with all sensors, all features,
and a window size of 2000. The first five correlation values represent the correlation between the statistic and the
RangeNRMSE results, for all activities on all datasets. The last value is a correlation between the average number of
events per day for each dataset and the median RangeNRMSE results for that dataset.

Statistic	 Correlation	
Activity	Occurrences/Day	 0.0038	
Activity	Circular	Mean	Start	Time	 -0.0220	
Activity	Circular	Mean	End	Time	 -0.0359	
Activity	Start	Time	Circular	Variance	 -0.0031	
Activity	End	Time	Circular	Variance	 -0.0059	
Dataset	Events/Day	 -0.0634	
There is some negative correlation with the start and end times of activities. This indicates that
activities occurring in the evening may be slightly easier to predict (lower error) compared to
those in the morning. This might be because residents are more active during the day and may
follow more consistent schedules than at night or early morning, when they are primarily
sleeping with little activity. Furthermore, there is a slight correlation between the number of
events occurring per day in each dataset and the performance of the datasets. This supports the
notion that having a higher density of events provides more information for AF to compute
forecasts, leading to smaller error. Overall, however, there is not a strong correlation between
the performance of AF and the statistical characteristics of the dataset.

4.4	Classifier	Performance	Comparison	
In order to further evaluate the performance of the AF algorithm, we also perform a set of tests
comparing the forecasting capabilities of AF’s regression tree with two other popular regression
classification methods: linear regression and support vector machine (SVM) regression. For
these tests, the feature extraction component of AF is used to generate features for the sensor
events as in the previous tests. For these tests, all sensors and all of the features are used. We
train and test each of the three classifiers using a sliding window as before. All three classifiers
are trained and tested with the same windows. We then compare the forecast predictions from
the classifiers with the actual class labels for each test event.

Table 8: Average and median RangeNRMSE results for the classifier comparison tests. The best-performing tests by
each measure are bolded. The table also shows the number of datasets for which each test had the lowest error amongst
all results for that datasets. All tests were performed with a window of size 500 and moved by 500 events with each
iteration.

Classifier	Type	 Average	
RangeNRMSE	

Median	
RangeNRMSE	

Number	of	Datasets	Where	
Test	Has	Lowest	Error	

AF	(Regression	Tree)	 0.00996	 0.00479	 18	
Linear	Regression	 9167503	 318159.8	 0	
SVM	 0.01833	 0.00496	 7	
We use the Weka data mining software [58] to implement the LR and SVM classifiers. We use
the linear regression with no attribute elimination. The SVM is trained using the sequential
minimal optimization algorithm [59] with a linear kernel and attribute normalization.

We originally used a window size of 2000 events, as with the previous tests. The regression tree
and linear regression classifiers completed training and testing for all sliding windows for an
activity in 12 hours or less. The SVM classifier had more difficulty with the data, however.
After running for more than 10 hours, it had only completed training and testing for a fraction of
the sliding windows (only completing two or three windows for some activities). We could not
get any of the SVM tests to complete in less than 12 hours. We suspect that the SVM had
difficulty learning a model due to the large number of features and data instances used for each
training window. (There were approximately 2000 or more attributes generated for each data
instance.) This indicates some of the difficulty of using an SVM classifier for the activity
prediction problem due to its complexity and training time. In order to allow the SVM to finish,
we reduce the sliding window size to 500 events, moving the window forward by 500 events
each time.

The results of these tests are summarized in Table 8. The linear regression algorithm yields very
large average and median RangeNRMSE values. These values are primarily due to a few
predictions with very large errors that cause the overall RangeNRMSE to be large. While many
of the linear regression errors are smaller, these large errors indicate that the linear regression
may have trouble dealing with some nonlinear aspects of the activity patterns. They also suggest
that it may be useful in activity forecasting to be able to detect and minimize predictions with
large errors.

The SVM and regression tree classifiers have much lower error. The regression tree has a lower
average and a lower median RangeNRMSE than the SVM. It also had the lowest error values of
all three classifiers in 18 of the 25 datasets. This indicates that the regression tree is able to
perform better than the SVM at forecasting activity occurrences.

Figure 6 shows the average RangeNRMSE results for the SVM and regression tree for each
dataset. While many of the errors for both classifiers are relatively low, there are some large
variations in the SVM results between datasets. In particular, the SVM error is much greater
than the regression tree error for the HH114, HH115, and HH116 datasets. Figure 7 shows the
errors plotted for each of the 30 core activities. Again, the regression tree outperforms the SVM
in most cases. For many of the activities, the discrepancy is wide, with the SVM error much
larger than the corresponding regression tree error. The SVM has particular trouble with some
activities that mostly occur in the morning, such as cooking (especially breakfast), morning
medications, and washing breakfast dishes. For most of these activities, however, the regression

tree has low error. This suggests that the regression tree is able to handle the possible variations
in morning routines that the SVM struggles with. There are some activities for which the
regression tree has lower performance, such as cooking lunch, washing lunch dishes, and
sleeping. However, it shows a strong performance for most activities and consistently has
relatively small error, while the SVM has more variability between activities. Anecdotally, the
regression tree also had a faster training time compared to the SVM. Thus, these results suggest
that the regression tree provides better classification capability for forecasting activities.

Figure 6: Average RangeNRMSE results for each dataset for the classifier comparison tests. Shown are averages of the
RangeNRMSE results for all activities in each dataset. The linear regression results have been excluded due to their
much larger values.

Figure 7: Average RangeNRMSE results for each of the core activities for the classifier comparison tests. Shown are
averages of the RangeNRMSE results for each activity across all datasets in which that activity occurred. The linear
regression results have been excluded due to their much larger values.

0

0.02

0.04

0.06

0.08

0.1

0.12

Av
er
ag
e	
Ra

ng
eN

RM
SE

RangeNRMSE	for	Classifier	Comparison,	By	Dataset

AF	(Regression	Tree)

SVM

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Av
er
ag
e	
Ra

ng
eN

RS
E

RangeNRMSE	for	Classifier	Comparison,	By	Core	Activity

AF	(Regression	Tree)

SVM

5. Discussion	
These experiments demonstrate that AF provides activity forecasts with relatively high accuracy.
Variations between datasets also do not impact the predictions very much, which allows AF to be
applied in a variety of situations. The regression tree classifier of AF provides more accurate
forecasts than either a linear regression or SVM regression.

In this paper, we also demonstrate the sensitivity of AF performance based on selected parameter
values. The number of samples or their frequency can be increased to potentially gain further
performance improvements depending on the desired complexity of the forecasting system. For
example, using sample features can often improve the performance of AF, but they can be
removed if the time to train the regression tree needs to be short. Although the best
RangeNRMSE parameters tend to vary with the dataset and activities being predicted, using AF
with all sensor types and all features with a window size of 2000 is a decent first choice. This
configuration results in the lowest overall average error, performs better than the other
configurations for most of the datasets in our tests, and is likely to perform well in other
situations as well.

Smaller validation window sizes tend to perform better compared to larger ones, as was the case
in our AF parameter comparison tests. This may be because smaller window sizes allow the
training to be more focused on the sensor events occurring around the time of the test event.
When the window size gets small enough, however, the performance starts to decrease. The
higher RangeNRMSE results for a window size of 500 events in the classifier comparison tests
demonstrate this. Consequentially, it may be worthwhile to perform further studies to determine
how the window size impacts performance, especially in a live smart home environment.

We note that the activity learning and forecasting algorithms described in this paper do not rely
on the availability of any particular sensor or suite of sensors. The methods can thus be utilized
for mobile sensors as well, or for sensors that provide more fine-grained information.

6. Prompting	Application	
One use of activity forecasting is to support an activity prompting application. In such an
application, we wish to prompt the user to perform activities based on times predicted by AF. A
prompting application can be a useful tool for enabling a user facing cognitive decline to live
more independently and improving their safety and wellbeing.

We designed a prompting application to run on mobile devices called CAFE (CASAS Activity
Forecasting Environment). Figure 8 shows the application interface. AF runs on the server to
generate activity predictions from observed CASAS sensor events. The application periodically
queries the server to obtain the most recent predictions. When an activity is predicted to occur
within the next few minutes and has not already been detected by the activity recognizer, a
reminder prompt is displayed to the user. The user can then respond to indicate they are
currently performing the activity. These responses, along with the predicted times, are then
stored in a database for further analysis. We are currently testing CAFE in pilot studies and will
analyze the usability of the app in future work.

Figure 8: Layout of our CAFE activity prompting application for iOS mobile devices. AF is used to generate predictions
of the user’s activities. A prompt is shown at the predicted time, and the user responds regarding whether they are
performing the activity.

7. Conclusion	
In this article we have described AF, an algorithm for automated activity prediction in a smart
home environment. AF can be used to provide forecasting services such as triggering activity
prompts or managing home energy usage and resident comfort. It also can be applied in other
forecasting situations where a numeric time prediction is valuable. It has an advantage over
sequence prediction methods in that it produces a forecast conveying the time until an activity
will next occur, allowing for scheduling of system actions that are time-dependent.

We have demonstrated that the inclusion of sampling-type sensors can boost the performance of
the forecasting algorithm, as can the use of features based on samples of the sensor states. We
also compared the performance of the regression tree classifier against two other popular
classifiers. We found that the regression tree is able to produce forecasts of activity start times
with lower error than the linear regression and SVM classifiers. It also has a faster training time
and the ability to handle more complex datasets than the SVM classifier.

In our future work, we intend to explore further variations on the AF forecasting algorithm,
including adapting other types of classifiers to produce improved forecasts with less complexity.
We are also interested in the prospect of combining numeric forecasting techniques with
sequence prediction to improve activity predictions.

We hypothesize that AF can provide a foundation for activity-predictive interventions, such as
generate activity prompts in a smart home system. A prompting component could utilize the
forecasts from AF for activities that require prompting, generating a prompt when a certain time
criteria is met. For example, AF could be used to forecast the time until the medication activity

normally takes place. The prompting intervention could generate a prompt a few minutes before
the forecasted time and repeat the prompt thereafter until the user takes the medication (as
detected by an activity recognition system). We are currently gathering data for such a
prompting-based intervention with a group of older adult participants.

8. Acknowledgments	
This work is supported in part by NIH grant R01EB015853 and by NSF grant IIS-10644628.

9. References	
[1] D. J. Cook and S. K. Das, Smart environments: technology, protocols, and applications,

John Wiley & Sons, Hoboken, New Jersey, 2005.
[2] L. B. Holder and D. J. Cook, “Automated activity-aware prompting for activity initiation,”

Gerontechnology, vol. 11, no. 4, pp. 534-544, 2013.
[3] J. Ziv and A. Lempel, “A compression of individual sequences via variable rate coding,”

IEEE Trans. Inf. Theory, vol. 24, no. 5, pp. 530–536, 1978.
[4] M. Feder, N. Merhav, and M. Gutman, “Universal prediction of individual sequences,”

IEEE Trans. Inf. Theory, vol. 38, pp. 1258–1270, 1992.
[5] A. Bhattacharya and S. K. Das, “LeZi-Update: An Information-theoretic approach for

personal mobility tracking in PCS networks,” Wirel. Networks, vol. 8, pp. 121–135, 2002.
[6] K. Gopalratnam and D. J. Cook, “Online sequential prediction via incremental parsing:

The Active LeZi Algorithm,” IEEE Intell. Syst., vol. 22, 2007.
[7] M. R. Alam, M. B. I. Reaz, and M. A. M. Ali, “SPEED: An inhabitant activity prediction

algorithm for smart homes,” IEEE Trans. on Systems, Man, and Cybernetics Part A:
Systems and Humans, vol. 42, no. 4, pp. 985-990, 2012.

[8] R. Begleiter, R. El-Yaniv, and G. Yona, ”On prediction using variable order Markov
models,” J. Artif. Intell. Res., vol. 22, pp. 385–421, 2004.

[9] G. E. P. Box and G. M. Jenkins, Time series analysis: Forecasting and control, Holden
Day, San Francisco, 1970, revised. 1976.

[10] J. H. Kim, “Forecasting autoregressive time series with bias-corrected parameter
estimators.” International Journal of Forecasting, vol. 19, pp. 493 – 502, 2003.

[11] K. W. Hipel and A. I. McLeod, Time Series Modeling of Water Resources and
Environmental Systems, Elsevier, Amsterdam, 1994.

[12] A. Zellner, An introduction to Bayesian inference in econometrics, Wiley, New York,
1971.

[13] M. H. Quenouille, The analysis of multiple time-series, (2nd ed. 1968), Griffin, London,
1957.

[14] T. Riise, and D. Tjøstheim, “Theory and practice of multivariate ARMA forecasting,”
Journal of Forecasting, vol. 3, pp. 309 – 317, 1984.

[15] G. A. Darbellay and M. Slama, “Forecasting the short-term demand for electricity: Do
neural networks stand a better chance?,” International Journal of Forecasting, vol. 16, pp.
71 – 83, 2000.

[16] R. F. Engle, “Autoregressive conditional heteroscedasticity with estimates of the variance
of the United Kingdom inflation,” Econometrica, vol. 50, pp. 987 – 1008, 1982.

[17] J. K. Aggarwal and M. S. Ryoo, “Human activity analysis: A review,” ACM Comput.
Surv., vol. 43, no. 3, pp. 1–47, 2011.

[18] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, “Sensor-based activity
recognition,” IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev., vol. 42, no. 6, pp. 790–
808, 2012.

[19] S.-R. Ke, H. L. U. Thuc, Y.-J. Lee, J.-N. Hwang, J.-H. Yoo, and K.-H. Choi, “A Review
on Video-Based Human Activity Recognition,” Computers, vol. 2, no. 2, pp. 88–131,
2013.

[20] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity recognition using
body-worn inertial sensors,” ACM Comput. Surv., vol. 46, no. 3, pp. 107–140, 2014.

[21] A. Reiss, D. Stricker, and G. Hendeby, “Towards robust activity recognition for everyday
life: Methods and evaluation,” in Pervasive Computing Technologies for Healthcare,
2013, pp. 25–32.

[22] S. Vishwakarma and A. Agrawal, “A survey on activity recognition and behavior
understanding in video surveillance,” Vis. Comput., vol. 29, no. 10, pp. 983–1009, 2013.

[23] O. Lara and M. A. Labrador, “A survey on human activity recognition using wearable
sensors,” IEEE Commun. Surv. Tutorials, vol. 15, no. 3, pp. 1192–1209, 2013.

[24] L. Chen and I. Khalil, “Activity recognition: Approaches, practices and trends,” in Activity
Recognition in Pervasive Intelligent Environments, L. Chen, C. D. Nugent, J. Biswas, and
J. Hoey, Eds. Atlantis Ambient and Pervasive Intelligence, 2011, pp. 1–31.

[25] P. Tuaraga, R. Chellappa, V. S. Subrahmanian, O. Udrea, and P. Turaga, “Machine
recognition of human activities: A survey,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 18, no. 11, pp. 1473–1488, 2008.

[26] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “A unified framework for gesture
recognition and spatiotemporal gesture segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, pp. 1685–1699, 2008.

[27] J. A. Iglesias, P. Angelov, A. Ledezma, and A. Sanchis, “Human activity recognition
based on evolving fuzzy systems,” Int. J. Neural Syst., vol. 20, no. 5, 2010.

[28] I. L. Liao, D. Fox, and H. Kautz, “Location-based activity recognition using relational
Markov networks,” in International Joint Conference on Artificial Intelligence, 2005, pp.
773–778.

[29] E. Guenterberg, H. Ghasemzadeh, and R. Jafari, “Automatic segmentation and recognition
in body sensor networks using a hidden Markov model,” ACM Trans. Embed. Comput.
Syst., vol. 11, pp. S2:1–S2:19, 2012.

[30] J. R. Doppa, A. Fern, and P. Tadepalli, “Structured prediction via output space search,” J.
Mach. Learn. Res., vol. 15, no. 1, pp. 1317–1350, 2014.

[31] J. R. Doppa, A. Fern, and P. Tadepalli, “HC-Search: Learning heuristics and cost
functions for structured prediction,” J. Artif. Intell. Res., vol. 50, pp. 369–407, 2014.

[32] K. Forster, S. Monteleone, A. Calatroni, D. Roggen, and G. Troster, “Incremental kNN
classifier exploiting correct-error teacher for activity recognition,” in International
Conference on Machine Learning and Applications, 2010, pp. 445–450.

[33] D. Cook, “Learning setting-generalized activity models for smart spaces,” IEEE Intell.
Syst., vol. 27, no. 1, pp. 32–38, 2012.

[34] L. Bao and S. Intille, “Activity recognition from user annotated acceleration data,” in
Pervasive, 2004, pp. 1–17.

[35] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity recognition from
accelerometer data,” in Innovative Applications of Artificial Intelligence, 2005, pp. 1541–
1546.

[36] J. A. Ward, P. Lukowicz, G. Troster, and T. E. Starner, “Activity recognition of assembly
tasks using body-worn microphones and accelerometers,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 28, no. 10, pp. 1553–1567, 2006.

[37] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, “Recognizing independent and joint
activities among multiple residents in smart environments,” Ambient Intell. Humaniz.
Comput. J., vol. 1, no. 1, pp. 57–63, 2010.

[38] J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford, “A hybrid
discriminative/generative approach for modeling human activities,” in International Joint
Conference on Artificial Intelligence, 2005, pp. 766–772.

[39] O. Amft and G. Troster, “On-body sensing solutions for automatic dietary monitoring,”
IEEE Pervasive Comput., vol. 8, pp. 62–70, 2009.

[40] M. Zhang and A. A. Sawchuk, “Motion Primitive-Based Human Activity Recognition
Using a Bag-of-Features Approach,” in ACM SIGHIT International Health Informatics
Symposium, 2012, pp. 631–640.

[41] U. Blanke, B. Schiele, M. Kreil, P. Lukowicz, B. Sick, and T. Gruber, “All for one or one
for all? Combining heterogeneous features for activity spotting,” in IEEE International
Conference on Pervasive Computing and Communications Workshops, 2010, pp. 18–24.

[42] T. van Kasteren, A. Noulas, G. Englebienne, and B. Krose, “Accurate activity recognition
in a home setting,” in ACM Conference on Ubiquitous Computing, 2008, pp. 1–9.

[43] A. Bulling, J. A. Ward, and H. Gellersen, “Multimodal recognition of reading activity in
transit using body-worn sensors,” ACM Trans. Appl. Percept., vol. 9, no. 1, pp. 2:1–2:21,
2012.

[44] S. Wang, W. Pentney, A. M. Popescu, T. Choudhury, and M. Philipose, “Common sense
based joint training of human activity recognizers,” in International Joint Conference on
Artificial Intelligence, 2007, pp. 2237–2242.

[45] J. Lester, T. Choudhury, and G. Borriello, “A practical approach to recognizing physical
activities,” in International Conference on Pervasive Computing, 2006, pp. 1–16.

[46] T. Gu, S. Chen, X. Tao, and J. Lu, “An unsupervised approach to activity recognition and
segmentation based on object-use fingerprints,” Data Knowl. Eng., vol. 69, no. 6, pp. 533–
544, 2010.

[47] F. Niu and M. Abdel-Mottaleb, “HMM-based segmentation and recognition of human
activities from video sequences,” in IEEE International Conference on Multimedia and
ExpoICME, 2005, pp. 804–807.

[48] O. Duchenne, I. Laptev, J. Sivic, F. Bach, and J. Ponce, “Automatic annotation of human
activities in video,” in International Conference on Computer Vision, 2009, pp. 1491–
1498.

[49] Y. Zheng, W.-K. Wong, X. Guan, and S. Trost, “Physical activity recognition from
accelerometer data using a multi-scale ensemble method,” in Innovative Applications of
Artificial Intelligence Conference, 2013, pp. 1575–1581.

[50] X. Hong and C. D. Nugent, “Segmenting sensor data for activity monitoring in smart
environments,” Pers. Ubiquitous Comput., vol. 17, pp. 545–559, 2013.

[51] P. Palmes, H. K. Pung, T. Gu, W. Xue, and S. Chen, “Object relevance weight pattern
mining for activity recognition and segmentation,” Pervasive Mob. Comput., vol. 6, no. 1,
pp. 43–57, 2010.

[52] T. Yamasaki and K. Aizawa, “Motion segmentation and retrieval for 3D video based on
modified shape distribution,” EURASIP J. Appl. Signal Processing, vol. 2007, no. 1, pp.
211–211, 2007.

[53] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time
series,” in IEEE International Conference on Data Mining, 2001, pp. 289–296.

[54] N. Krishnan and D. J. Cook, “Activity recognition on streaming sensor data,” Pervasive
Mob. Comput., vol. 10, pp. 138–154, 2014.

[55] B. Minor and D. J. Cook, “Regression tree classification for activity prediction in smart
homes,” UbiComp AwareCast Workshop, 2014.

[56] D. Cook and N. Krishnan, Activity Learning from Sensor Data, Wiley, 2014.
[57] V. G. Wadley, O. Okonkwo, M. Crowe, and L. A. Ross-Meadows, “Mild cognitive

impairment and everyday function: Evidence of reduced speed in performing instrumental
activities of daily living,” The American Journal of Geriatric Psychiatry, vol. 15, no. 5,
pp. 416-424, 2008.

[58] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
WEKA Data Mining Software: An Update,” SIGKDD Explorations, vol. 11, no. 1, 2009.

[59] S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to
the SMO Algorithm for SVM Regression,” IEEE Transactions on Neural Networks, vol.
11, no. 5, 2000.

