
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Learning Activity Predictors from Sensor Data:
Algorithms, Evaluation, and Applications
Bryan Minor, Janardhan Rao Doppa, Member, IEEE, and Diane J. Cook, Fellow, IEEE

Abstract—Recent progress in Internet of Things (IoT) platforms has allowed us to collect large amounts of sensing data. However,
there are significant challenges in converting this large-scale sensing data into decisions for real-world applications. Motivated by
applications like health monitoring and intervention and home automation we consider a novel problem called Activity Prediction, where
the goal is to predict future activity occurrence times from sensor data. In this paper, we make three main contributions. First, we
formulate and solve the activity prediction problem in the framework of imitation learning and reduce it to a simple regression learning
problem. This approach allows us to leverage powerful regression learners that can reason about the relational structure of the
problem with negligible computational overhead. Second, we present several metrics to evaluate activity predictors in the context of
real-world applications. Third, we evaluate our approach using real sensor data collected from 24 smart home testbeds. We also
embed the learned predictor into a mobile-device-based activity prompter and evaluate the app for 9 participants living in smart homes.
Our results indicate that our activity predictor performs better than the baseline methods, and offers a simple approach for predicting
activities from sensor data.

Index Terms—Activity prediction; smart environments; digital prompting; regression learning

F

1 INTRODUCTION

L EARNING and understanding observed activities is at
the center of many fields of study. An individual’s ac-

tivities affect that individual, society, and the environment.
Over the past decade, the maturing of data mining and
pervasive computing technologies has made it possible to
automate activity learning from sensor data. This activity
information is now commonly utilized in applications from
security systems to computer games. As a result of this
technology push and application pull, robust approaches
exist for labeling activities that occurred in the past or may
be occurring in the present. In this paper, we propose to
extend this recent work to look at activities that will occur
in the future.

We study a novel problem called Activity Prediction,
where the goal is to predict the future activity occurrence
times from sensor data, and introduce a data-driven method
for performing activity prediction. Activity prediction is
valuable for providing activity-aware services including
energy-efficient home automation, prompting-based inter-
ventions, and anomaly detection. However, activity predic-
tion faces challenges not found in many other data mining
tasks. In particular, sensor data are noisy, activity labels
provided by activity recognition algorithms are subject to
error, and the data contains rich relational and temporal
relationships that must be exploited to be able to make
highly-accurate predictions.

We formulate and solve the activity prediction problem
as an instance of the imitation learning framework, where
the training data provided by an activity recognition algo-
rithm serves as the expert demonstrations. We provide a

• B. Minor, J. Doppa, and D. Cook are with the School of Electrical Engi-
neering and Computer Science, Washington State University, Pullman,
WA, 99164.
E-mail: bminor@eecs.wsu.edu

reduction of activity prediction learning to simple regression
learning. This reduction allows us to leverage powerful off-
the-shelf regression learners to learn an effective activity
predictor that can reason about relational and temporal
structure among the activities. Our approach naturally fa-
cilitates life-long learning, where the predictor can be im-
proved based on new user data.

Selecting performance metrics for activity prediction is
also challenging because there are multiple parameters that
influence the desirability of the algorithm’s performance.
We provide several evaluation metrics and discuss their use-
fulness in the context of real-world applications. We evalu-
ate our activity prediction learning algorithms on twenty-
four smart home sensor datasets and find that our proposed
imitation-based methods not only outperform baseline pre-
dictors but predict a majority of the activities within minutes
of their actual occurrence.

In addition, we embed our activity predictor inside an
activity prompting algorithm and demonstrate the effective-
ness of the prompting app for multiple participants living
in smart homes. This prompting application demonstrates
a potential real-world use of our prediction algorithms. The
predictions are used to remind the users to perform certain
daily activities. These interactions can help users live more
independently and even positively influence their behavior.

We summarize our contributions as follows:

• Study a novel problem called Activity Prediction mo-
tivated by diverse real-world applications.

• Novel formulation of learning activity predictors in
the framework of imitation learning and reduction to
simple regression learning.

• Provide an evaluation methodology to measure the
performance of a given activity predictor.

• Demonstrate good experimental results with our

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

𝒂𝟏 𝒂𝟑𝒂𝟐

Sensor	Event	
Data	xi

Time	t

Activity	
Predictor

Predicted	Output

𝑦& = 𝑦&(, 𝑦&*, 𝑦&+

𝑦∗ = 𝑦(, 𝑦*, 𝑦+
Ground	Truth	Output

𝑡.
𝑡/0 𝑡/1 𝑡/2

𝑦(= 𝑡/0 − 𝑡.
𝑦* = 𝑡/1 − 𝑡.

𝑦+ = 𝑡/2 − 𝑡.

Eating

𝒂𝟏 𝒂𝟐
Taking	medicine

𝒂𝟑
Sleeping

Activities

Fig. 1. A high-level overview of the activity prediction problem. Given features xi ∈ <d extracted from the current sensor event at time ti as input,
the activity predictor needs to predict the relative occurrence time of each activity. In this example, we have three activities: a1 (eating); a2 (taking
medicine); and a3 (sleeping). The starting times of activities a1, a2, and a3 are ta1 , ta2 , and ta3 , respectively. Therefore, the ground-truth output is
y∗ = (y1, y2, y3), where yj = taj − ti stands for the correct relative next occurrence time of activity aj .

imitation-learning-based activity predictor on real
sensor data collected from 24 smart home testbeds.

• Embed the learned predictor into a mobile-device-
based activity prompter and evaluate the app on
multiple participants living in smart homes.

In the next section, we formally describe the problem
setup. This is followed by a description of both our in-
dependent and recurrent activity predictors. Next, we de-
scribe how activity recognition algorithms can be used to
generate training data for learning activity predictors. Then,
we describe various metrics for measuring the prediction
performance, and provide experimental results comparing
different predictors and analyze their performance. Finally,
we describe an activity prompting mobile application we
have used with a number of participants.

2 PROBLEM SETUP

We consider the problem of Activity Prediction from sensor
data. Let A = {a1, a2, · · · , aK} be a set of K activities,
where aj corresponds to the jth activity class. Given features
x ∈ <d extracted from the sensor data as input, an activity
predictor generates ŷ = (ŷ1, ŷ2, · · · , ŷK) as output. ŷj ∈ <
is the predicted relative next occurrence time of activity aj ,
or the predicted number of time units that will pass until aj
occurs again. Fig. 1 provides an illustration of the activity
prediction problem. Note that both the input features and
output predictions correspond to individual sensor events
occurring at specific points in time.

Our training data consists of a sequence of raw sensor
events Λ = (λ1, λ2, · · · , λN), where event λi corresponds
to a sensor reading or sensor value with an associated
timestamp ti. We assume that an activity recognition (AR)
algorithm is available to label each sensor event with its
corresponding activity class and we use this information
to train the activity predictor. An activity recognition algo-
rithm learns a mapping from Λ to the corresponding activity
labels, AΛ. We first label the raw sensor events Λ using the
activity recognizer and use this to generate training data for
activity prediction at each time step ti as illustrated in Fig. 1.
We employ the AR algorithm from Cook et al. [1] that yields
95% recognition accuracy via 3-fold cross validation on the
activities evaluated in this paper.

We further assume the availability of a feature function Φ
that computes a d-dimensional feature vector Φ(λi) ∈ <d

for any sensor event λi using the context of recent sensor
events. We also assume a non-negative loss function L such
that L(x, ŷ, y∗) ∈ <+ is the loss associated with labeling
a particular input x ∈ <d by output ŷ ∈ <K when the
true output is y∗ ∈ <K (e.g., RMSE). Our goal is to return
a function/predictor whose predicted outputs have low
expected loss.

3 LEARNING ALGORITHMS

In this section we describe two algorithms for learning ac-
tivity predictors: 1) The Independent Predictor (IP), a simple
baseline approach, and 2) The Recurrent Activity Predictor
(RAP), which is intended to improve on the baseline.

3.1 Independent Predictor
The Independent Predictor is our baseline activity predictor.
As the name suggests, this predictor completely ignores the
relational and temporal structure of the problem, and makes
predictions using only the information from the most recent
sensor events at a given time. The independent predictor is
trained as follows. For each sensor event λi in the training
sequence Λ, we extract the features xi = Φ(λi) ∈ <d listed
in Table 1 (input) and the ground-truth activity predictions
y∗i ∈ <K (output) from the labeled activity segments (see
Fig. 1 for an illustration). We learn an independent regressor
Πj for each activity aj ∈ A as follows: for each sensor
event λi in the training sequence Λ, we collect the input xi

and output y∗ij (the ground truth prediction for activity aj),

and give the aggregate set of input-output pairs
{
xi, y

∗
ij

}N
i=1

(training examples) to a regression learner to minimize the
given loss function L.

During testing (or inference), we employ the K learned
regressors independently on a given input x = Φ(λ) ∈ <d

to compute the predicted output ŷ = (ŷ1, ŷ2, · · · , ŷK),
where ŷj = Πj(x). The test-time complexity of this pre-
dictor is very low, which is valuable for making real-time
predictions. However, the main weakness of this approach
is that the recent sensor events may not provide sufficient
context to make highly-accurate activity predictions, and it
ignores the rich temporal structure of the problem.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

3.2 Recurrent Activity Predictor

Notice that the independent predictor only uses the most
recent sensor event data at a given time to make its pre-
dictions. To address this limitation, one could consider joint
models by reasoning about the relationships between dif-
ferent activities and accounting for the temporal structure
of the problem. It is important to note that the activity
prediction problem can be viewed as a generalization of
sequence labeling, where each output token is a vector of
K values corresponding to the next activity occurrence time
of each activity (K is the number of activities).

A natural solution would be to define a graphical model
to encode the relationships between input and output vari-
ables at different time steps and learn the parameters from
the training data [2]. However, such a graphical model
may be very complex (large branching factor) and can pose
severe learning and inference challenges. We may consider
simplifying the model to allow for tractable learning and
inference, but that can be detrimental to prediction accuracy.
An alternate solution is to employ a heuristic inference
method (e.g., loopy belief propagation or variational infer-
ence) with the complex model. Even though these methods
have shown some success in practice, it is very difficult to
characterize their solutions and predict when they will work
well for a new problem. Therefore, we provide a simpler but
effective solution that is based on imitation learning.
Imitation Learning Formulation. We formulate and solve
the activity prediction problem in the framework of imi-
tation learning. In traditional imitation learning, the goal
of the learner is to learn to imitate the behavior of an
expert performing a sequential-decision making task (e.g.,
playing a video game) in a way that generalizes to similar
tasks or situations. Typically this is done by collecting a set
of trajectories of the expert’s behavior (e.g., games played
by the expert) on a set of training tasks. Then supervised
learning is used to find a predictor that can replicate the
decisions made on those trajectories. Often the supervised
learning problem corresponds to learning a mapping from
states to actions and off-the-shelf classification tools can
be used. In our activity predictor learning problem, the
expert demonstration corresponds to the correct activity
predictions at different time steps (available for training
data) and the expert behavior corresponds to predicting the
best output y∗i ∈ <K at each time step i (see Fig. 1). In recent
work, imitation learning techniques are successfully applied
to solve a variety of structured prediction tasks in natural
language processing and computer vision [3], [4], [5], [6],
[7], [8]. However, to the best of our knowledge, imitation
learning has not been used to solve activity learning tasks.

Main Challenges. The main challenge in applying im-
itation learning for solving the activity prediction problem
is that the different output variables have structural depen-
dencies as activities are related to each other. Therefore, the
predictor Π should jointly reason about all the activities to
compute the predicted output ŷ = (ŷ1, ŷ2, · · · , ŷK). Unfor-
tunately, the size of the joint output space is exponential,
which renders the straightforward application of the above
imitation learning formulation impractical.

Pseudo-Independent Predictors. To address the afore-
mentioned challenges, we employ pseudo-independent pre-

Algorithm 1 RAP Learning via Exact Imitation
Input: Λ = Training sequence of sensor event data labeled
with activity segments, L = Loss function
Output: Π, the recurrent predictor

1: for each activity predictor j = 1 to K do
2: Initialize the set of regression examples Dj = ∅
3: end for
4: for each time step i = 1 to N do
5: for each activity predictor j = 1 to K do
6: Compute Ψlocal(i) = Φ(λi)
7: Compute Ψcontext(i, j)
8: Joint features Ψij = Ψlocal(i)⊕Ψcontext(i, j)
9: Compute best output y∗ij ∈ < using L

10: Add regression example
(
Ψij , y

∗
ij

)
to Dj

11: end for
12: end for
13: for each activity predictor j = 1 to K do
14: Πj =Regression-Learner(Dj)
15: end for
16: return learned predictor Π = (Π1,Π2, · · · ,ΠK)

dictors to achieve tractability without losing accuracy.
Specifically, we assign one predictor Πj to each activity
aj . These predictors are not completely independent, but
are pseudo-independent in the sense that each predictor
predicts the output for only a single activity but has the
previous predictions from all the other predictors available
as part of the input (context) while making predictions. The
main advantage of this pseudo-independent formulation is
that it allows us to encode arbitrary relationships between
activities and the temporal structure as context features, and
is highly efficient in terms of training and testing without
much loss in accuracy.

Pseudo-Independent Representation. For learning and
making predictions, we need a feature representation for
each of our pseudo-independent predictors. The predic-
tor Πj for activity aj will employ both local features
Ψlocal(i) = Φ(λi) (see Table 1) and prediction context
features Ψcontext(i, j). The context features Ψcontext(i, j)
consist of the activity time predictions ŷ for H previous
events. We exclude the predictions for the activity being
predicted (aj) while including a separate feature indicating
the seconds that elapsed since each of the H previous
events. The context feature vector is of size H ·K .

Exact-Imitation Approach. Algorithm 1 provides the
pseudo-code for our recurrent activity predictor learning via
exact imitation of the correct activity prediction trajectory.
At each time step i, for each activity predictor Πj , we
compute the joint features Ψij = Ψlocal(i) ⊕ Ψcontext(i, j)
(input) and the best activity prediction y∗ij ∈ < (output)
from the training data, where ⊕ refers to the vector concate-
nation operator. Note that for the exact imitation training,
context features consist of ground-truth labels from the
previous events. The aggregate set of input-output pairs{

Ψij , y
∗
ij

}N
i=1

(training examples) for each activity predictor
Πj is given to a regression learner to learn Πj by minimizing
the given loss function L. Typically, incorporating L entails
using labeled training data to learn a mapping from the
feature vector to activity predictions yij . However, using

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

L allows for flexibility in learning the output labels (coarser
or finer) for a given application. If we can learn a function
Π = (Π1,Π2, · · · ,ΠK) that is consistent with all these
imitation examples, then it can be proved that the learned
function will generalize and perform well on new instances
[9].

DAGGER Algorithm. One issue with exact imitation
training is error propagation: errors in early time steps
can propagate to downstream decisions and can lead to
poor global performance [10]. Therefore, we employ a
more advanced imitation learning algorithm called DAG-
GER (Dataset Aggregation) [9] to learn robust predictors.
DAGGER is an iterative algorithm that can be viewed as gen-
erating a sequence of predictors (one per iteration), where
the first iteration corresponds to exact imitation training. In
each subsequent iteration, DAGGER makes decisions with
the predictor from the previous iteration, and generates
additional training examples to learn to recover from any
errors. A new predictor is learned from the aggregate set of
training examples. In the end, the final predictor is selected
based on a validation set. DAGGER has valuable theoretical
properties and can be seen as a no-regret online learning
algorithm [9]. If we deploy the learned recurrent predictor
in a real-life application, then the predictor can be adapted
in real time based on feedback from the users, and the
DAGGER algorithm can be employed to naturally facilitate
a life-long learning setting.

Algorithm 2 provides the pseudo-code for recurrent ac-
tivity predictor learning via DAGGER. In each iteration k of
DAGGER, we combine the predictor from previous iteration
Π̂k and the oracle predictor Π∗ (predicts correctly using
the training data) using a mixture parameter βk ∈ [0, 1] to
form the current policy Πk that will be used to make the
decisions. At each decision step, we flip a coin with bias βk.
If the coin turns up heads, we get the correct prediction from
the oracle predictor Π∗. Otherwise, we ask predictor Πk to
make the prediction. Intuitively, the mixture parameter βk
allows us to generate diverse training examples.

At each time step i, for each activity predictor Πj , we use
the local features Ψlocal(i) (these features do not change dur-
ing training) and the context features Ψcontext(i, j) based
on the predictions of the current policy Πk (these features
can change as they depend on the previous predictions)
to compute the predicted output ŷij . We compare the pre-
dicted output ŷij with the correct output y∗ij using the error
threshold εj . If the difference between the predicted time
and correct time for an activity class aj is more than the
allowed error εj , we call it a mistake. For each mistake, we
use the input vector with context features from Πk that was
used to form the prediction, along with the ground-truth
activity time y∗ij , to generate a new training example and
add it to the aggregate set of examples Dj .

At the end of each DAGGER iteration k, the aggregate
set of training examples Dj for each activity predictor Πj is
given to a regression learner to learn a new Πj by minimiz-
ing the given loss function L. Π̂k+1 = (Π1,Π2, · · · ,ΠK) is
the new recurrent predictor, where Πj is the new regressor
learned from the aggregate set of training examples Dj . In
the end, the final recurrent predictor is selected from the
sequence of predictors based on the validation data.
Regression Learner. Recall that both of our activity pre-

Algorithm 2 RAP Learning via DAGGER

Input: D = Training examples, dmax = dagger iterations, ε =
(ε1, ε2, · · · , εK) = error threshold vector
Output: Π, the recurrent predictor
1: for each activity predictor j = 1 to K do
2: Initialize Dj with regression examples from exact imitation
3: Πj =Regression-Learner(Dj)
4: end for
5: Initialization: Π̂1 = (Π1,Π2, · · · ,ΠK)
6: for each dagger iteration k = 1 to dmax do
7: Current Policy: Πk = βkΠ∗+(1−βk)Π̂k // Π∗ is the oracle predictor
8: for each time step i = 1 to N do
9: for each activity predictor j = 1 to K do

10: Compute Ψlocal(i) = Φ(λi)
11: Compute Ψcontext(i, j) using context predictions from Πk

12: Joint features Ψij = Ψlocal(i)⊕Ψcontext(i, j)
13: Compute predicted output ŷij ∈ < using Πk from Ψij

14: Compute correct output y∗ij ∈ < using oracle predictor Π∗

15: if |Πk(Ψij)−Π∗(Ψij)| ≥ εj then
16: Add regression example

(
Ψij , y

∗
ij

)
to Dj

17: end if
18: end for
19: end for
20: for each activity predictor j = 1 to K do
21: Πj =Regression-Learner(Dj) // learn from aggregate data
22: end for
23: Π̂k+1 = (Π1,Π2, · · · ,ΠK) // new recurrent predictor
24: end for
25: return best predictor Π̂k on the validation data

dictor learning algorithms need a cost-sensitive regression
learner. We have a hard learning problem at hand, which
means linear functions will not suffice. Individual regression
trees did not effectively learn these predictions due to high
variance in activity times. Hence, we employ a random
forest of 100 regression trees for this task [11].

4 TRAINING DATA GENERATION VIA ACTIVITY
RECOGNIZER

Time series forecasting uses a model to predict future values
of a target variable based on previously observed values of
the variable. In the case of activity forecasting, or activity
prediction, the target variable is the number of time units
that will elapse until a particular activity of interest will
occur again. In order to base this prediction on previously
observed values, we need to know when the activity oc-
curred in the past. For this we rely on automated activity
recognition. The challenge of activity recognition is to map
sensor events to a label that indicates the corresponding
activity the individual is performing. As with activity pre-
diction, the activity recognition data consists of raw sensor
events, Λ (see Section 2). Features xi are extracted from the
sensor events at time ti and a supervised learning algorithm
maps the features onto a value from A which indicates the
activity that is being performed.

Our activity recognizer builds on the AR algorithm
from Krishnan and Cook [12] to perform real-time activity
labeling on streaming data. AR extracts features from a
sliding window containing w consecutive sensor events,
λi−w . . . λi, and learns a function that maps the feature
vector xi onto an activity label indicating the activity that
is performed at the time of the last event in the window, or
time ti. The features that are used for the activity models in
this paper are listed in Table 1. While the size of the window

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Fig. 2. Example prompt for the EMA app.

can be adjusted based on the most likely current activities,
for our experiments we set the window size w to be 30.

Because of the insight that automated activity recogni-
tion sheds on human behavior and the valuable context
activity labels bring to technology customization, activity
recognition is a highly-investigated area of research [13],
[14], [15], [16], [17]. Methods have been developed that en-
compass a diversity of sensor platforms including ambient
sensors, wearable or phone sensors, and audio or video
data. While AR utilizes a decision tree to learn activity mod-
els, these models can be created from a variety of learning
approaches including support vector machines, Gaussian
mixture models, and probabilistic approaches such as naı̈ve
Bayes, hidden Markov models, and conditional random
fields [13], [14], [18], [19], [20], [21]. These models trade
off computational cost, the type of sensor data that can be
processed, and recognition accuracy / sensitivity. Unlike
many of these earlier efforts, AR handles data that is col-
lected in real-world settings with no data segmentation or
participant scripting. It handles recognition in environments
with multiple residents and with interwoven activities [12].

To train AR, we provide labels for at least one month of
sensor data from each smart home location. Human annota-
tors label the sensor events in each dataset with correspond-
ing activities based upon interviews with the residents,
photographs of the home, and a floorplan highlighting the
locations of sensors in the space. Sensor events are labeled
with the activity that was determined to be occurring in the
home at that time. The datasets contain 120 activity classes
in total, but many of them appear infrequently. For our ex-
periments, we focus on 11 core activities that occur daily in
a majority of the datasets. These activities, listed in Table 3,
represent complex activities of daily living that are reflective
of the resident’s daily health and functioning [22]. Sensor
events that do not fit into one of the core activity classes are
labeled as “Other Activity” and provide context for AR as
well as for the activity predictor. To maximize consistency of
ground truth labels, multiple annotators look at the datasets
and disagreements between labels are resolved via discus-
sion. The annotators demonstrate an overall interannotator

TABLE 1
Activity prediction features.

Feature Description

lastSensorEventHours+* Hour of day for current event
lastSensorEventSeconds+* Seconds since the beginning of the

day for the current event
windowDuration+* Window duration (sec)
timeSinceLastSensorEvent+* Seconds since previous event
prevDominantSensor1+* Most frequent sensor in the previ-

ous window
prevDominantSensor2+* Most frequent sensor in the win-

dow before that
lastSensorID+* Current event sensor
lastLocation+* Most recent location sensor
sensorCount+** Number of events in the window

for each sensor
sensorElTime+** Time since each sensor fired
timeStamp+* Normalized time since beginning

of the day
laggedTimeStamps* Previous event timeStamps
laggedPredictions*** Previous event predictions
timeSinceLastPrediction**** Time since previous predictions
maximumValue# Maximum value of sensor
minimumValue# Minimum value of sensor
sum# Sum of sensor values
mean# Mean of sensor values
meanAbsoluteDeviation# Average difference from mean
medianAbsoluteDeviation# Avg. difference from median
standardDeviation# Value standard deviation
coeffVariation# Coefficient of value variation
numZeroCrossings# Number of median crossings
percentiles# Number below which a percent-

age of values fall
sqSumPercentile# Sq. sum values < percentile
interQuartileRange# Difference between 25th and 75th

percentiles
binCount# Values binned into 10 bins
skewness# Symmetry of values
kurtosis# Measure of value “peakedness”
signalEnergy# Sum of squares of values
logSignalEnergy# Sum of logs of squares
signalPower# SignalEnergy average
peakToPeak# Maximum - minimum
avgTimeBetweenPeaks# Time between local maxima
numPeaks# Number of peaks

+Used for activity recognition. *Local features Ψlocal, one
of each. **Local features Ψlocal, one sensorCount and one
sensorElTime for each sensor used. ***Context features
Ψcontext, one per activity per context spot. ****Context fea-
ture Ψcontext, one per context spot. #Based on window of
recent values for each sensor.

agreement of κ = 0.85.
We evaluate the accuracy of AR using two methods and

utilize the accuracy results in the analysis of our activity
predictor. First, we measure AR recognition performance
using 10-fold cross validation on the annotated sensor data
for the 11 activities. Using this method, AR achieves a 96%
accuracy for the datasets analyzed in this paper.

Our second evaluation method pairs AR with ecological
momentary assessment (EMA) [23]. EMA is considered a
reliable measurement technique in the psychology and so-
ciology literature for recording events and behavior data in
a natural setting [24], [25]. The idea is to query participants
about the activity they are currently performing in order
to obtain the most accurate, in-the-moment information
about their behaviors. We collect this information using an
EMA app that brings up an activity query at random times

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

throughout the day, as shown in Fig. 2. The queried activity
label is provided by AR. If AR does not guess the current
activity correctly, the user can optionally provide the correct
current activity label in order to better train the model. We
collected 291 query responses from 8 smart home sites. From
the results we observe an 86% accuracy rate for AR. We
will utilize both of these baseline performance results as we
evaluate our activity predictors.

5 EVALUATION METHODOLOGY

In this section, we will review and introduce several metrics
to evaluate activity prediction algorithms in the context
of real-world applications. To compare the effectiveness
of different solution approaches for a given problem, the
evaluation metrics must be carefully chosen. The quality
and usefulness of a particular metric will vary based on
the application and specific evaluation criteria. Many met-
rics tend to emphasize particular aspects of the results, so
choosing multiple metrics can be necessary to completely
understand the effectiveness of an approach.
Challenges. Selecting performance metrics for activity pre-
diction is challenging because there are multiple parameters
that influence the desirability of the algorithm’s perfor-
mance. Activity predictors can be evaluated in multiple
ways, depending upon the type of performance that is
desired. First, activity prediction can be viewed as a type
of classification task in which any prediction that has non-
zero error (or error greater than a threshold) is considered
a mis-labeled data point. In this case, traditional classifier-
based performance measures can be utilized. Second, ac-
tivity prediction can be considered as a type of forecasting
algorithm. Viewed in this light, error is proportionate to the
numeric distance between the predicted and actual values.
In addition, activity prediction relies on the effectiveness of
an online activity recognition algorithm. The performance
of the activity predictor is not anticipated to exceed the
reliability of the activity recognizer that is being used to
train the predictor. The activity recognizer, in turn, is trained
using hand-annotated data which may be inconsistently
labeled.
Evaluation Metrics. We introduce several evaluation met-
rics and employ them to validate our prediction algorithms.
Using our previous notation, ŷi represents a vector of pre-
dicted outputs for a sensor event in the evaluation dataset
with elements ŷij . y∗i is the vector of true values for the same
event with elements y∗ij . Note that we have K activities in
total. Each evaluation metric takes a predicted output ŷi

and ground truth output y∗i as input, and returns a real-
value indicating the quality of the prediction. One could
perform macro-averaging of metric values over different
testing instances and datasets to compute aggregate values.

Mean absolute error (MAE), as defined in (1), pro-
vides a measure of the average absolute error between
the predicted output and ground-truth output. It is similar
to another well-known metric, root mean squared error
(RMSE), defined in (2). Both of these measures provide the
average error in real units and quantify the overall error
rate, with a value of zero indicating a perfect predictor and
no upper limit. Because RMSE squares each term, it does

bring a disadvantage in effectively weighting large errors
more heavily than small ones.

MAE =

∑
|ŷij − y∗ij |
K

(1)

RMSE =

√∑
(ŷij − y∗ij)2

K
(2)

If the activities have varying levels of importance, we may
want to use an error measure that places more empha-
sis on some activities than others (e.g., weighted RMSE).
This might be the case if a particular activity needs to be
predicted very accurately, for example. Additionally, we
may need to compare results across activities or datasets
where the time spacing between activity occurrences may be
different. In these cases, measures such as MAE and RMSE
do not give an indication of the relative error. For example,
an error of 60 minutes in predicting a time-critical activity
(e.g., taking medicine) may be unacceptable, but may be
acceptable for other activities that do not need to happen at a
certain time (e.g., housekeeping). In such situations, we may
want to use a normalized error, such as range-normalized
RMSE (NRMSE), defined in (3). Here, the minimum and
maximum functions are computed over all ground-truth
values of the test instances we are evaluating. This metric
would usually be applied on each activity or dataset that we
wish to separate. While NRMSE is convenient for comparing
results from different sets, it does not have a well-defined
normalization factor with which we can evaluate the actual
magnitude of the errors.

NRMSE =
RMSE

max(y∗ij)−min(y∗ij)
(3)

Another useful normalized metric is mean absolute per-
centage error (MAPE), defined in (4). MAPE normalizes
each error value for each prediction by the true value y∗ij we
are trying to predict. This metric allows us to normalize the
error individually for each prediction. We can also quickly
determine approximately how large the error is since it
is a percentage of the true activity time. However, as y∗ij
approaches zero (i.e., the activity is about to occur), an error
of any insignificant amount can cause the element in the
summation to become large. This leads to inflation of the
MAPE value due to a few outlier cases where the error is
small but the true activity time is even smaller.

MAPE =

∑ |ŷij−y∗
ij |

y∗
ij

K
(4)

Since the metrics we have listed so far are based on finding
the averages of all errors, they are sensitive to possible
distortion by outliers. As a result, the metrics can often have
large values. In order to analyze the effects of outliers, other
evaluation metrics can be used. One metric we introduce
for this purpose is the error threshold fraction (ETF),
defined in (5). I(ŷij , y

∗
ij) = 1 if |ŷij − y∗ij | ≤ v and 0

otherwise. Note that the numerator of the fraction is a count
of the number of events with error below the threshold
v. This metric indicates the fraction of the errors that are
below the time threshold v. v should be non-negative, and
limv→∞ ETF(v) = 1. By varying v we can ascertain how

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

the errors are distributed; if we find that the ETF does not
approach 1 until v is large, this may indicate that there are a
significant number of large-error outliers. ETF(0) indicates
the number of predictions which had zero error.

ETF(v) =

∑
I(ŷij , y

∗
ij)

K
(5)

Yet another metric to consider is Pearson’s r, i.e., the corre-
lation coefficient between the predicted and actual activity
occurrence times. This measure, shown in (6), does not
quantify the amount of error but does indicate the relation-
ship between the predicted and actual values.

r =

∑
(ŷij − ŷij)(y

∗
ij − y∗ij)√∑

(ŷij − ŷij)
√∑

(y∗ij − y∗ij)
(6)

In addition, during evaluation we need to consider the
following sources of error and imprecision in the data:

1) Ground truth labels. Inaccurate class labels represent a
source of error that exists in many datasets. We estimate the
amount of error in ground truth activity labels by measuring
inter-annotator agreement, or the degree of agreement of the
activity labels between multiple annotators. This is typically
represented using Cohen’s kappa [26].

2) Activity recognition accuracy. In general, the activity
recognition model is trained using a limited set of training
data. The trained model will then be used to generate
activity labels for previously-unseen data. The model itself
may be subject to error due to representational limitations,
small training set, or shortcomings of the employed learning
algorithm.

3) Predictor error. In the same way that the activity
recognition algorithm will likely experience some error, so
also an imperfect activity prediction algorithm will generate
erroneous predictions.

Unlike classification algorithms, where an accuracy of
100% is expected, in this case the expected accuracy will
be limited based on the quality of the labels. As a result,
the evaluation metrics that are discussed here can be κ-
normalized to reflect the same accuracy range that would
be considered for a perfect dataset, while being sensitive to
label noise that is known to be present in the data.

6 EXPERIMENTS AND RESULTS

In this section we empirically evaluate and compare our
activity predictors on real-world data using the evaluation
metrics introduced in Section 5.

6.1 Experimental Setup
Datasets. We evaluate our activity prediction algorithm us-
ing sensor and activity data collected from 24 CASAS smart
homes1. Descriptions of the datasets are provided in Table 2.
Each CASAS smart home test bed used in this evaluation
includes at least one bedroom, a kitchen, a dining area, and
at least one bathroom. While the sizes and layouts of the
apartments vary, each home is equipped with combination
motion/light sensors on the ceilings as well as combination
door/temperature sensors on cabinets and external doors.

1. These datasets are available at http://casas.wsu.edu.

TABLE 2
CASAS smart home datasets used to evaluate activity predictors.

ID Residents Time Span Sensors Sensor Events

1 1 2 months 36 219,784
2 1 2 months 54 280,318
3 1 2 months 26 112,169
4 1 2 months 66 344,160
5 1 2 months 60 146,395
6 1 2 months 60 201,735
7 2 1 month 54 199,383
8 1 2 months 54 284,677
9 1 2 months 44 399,135
10 1 1 month 38 98,358
11 1 2 months 54 219,477
12 1 4 months 40 468,477
13 1 12 months 58 1,643,113
14 1 1 month 32 133,874
15 1 10 months 40 1,591,442
16 1 2 months 38 386,887
17 1 12 months 32 767,050
18 1 1 month 46 178,493
19 1 1 month 36 92,000
20 1 2 months 40 217,829
21 2 10 months 62 3,361,406
22 1 2 months 56 247,434
23 1 1 month 32 106,836
24 1 2 months 34 216,245

TABLE 3
Activity classes.

Activity Sensor Events

Bathe 208,119
Bed-Toilet Transition 174,047
Cook 2,614,836
Eat 585,377
Enter Home 174,486
Leave Home 311,164
Personal Hygiene 1,916,646
Relax 2,031,609
Sleep 732,785
Wash Dishes 1,139,057
Work 2,028,419

Sensors unobtrusively and continuously collect data while
residents perform their normal daily routines. Fig. 3 shows
a sample layout and sensor placement for one of the smart
home test beds. Each smart home sensor event is labeled
by AR; these labels are collectively used to determine the
ground-truth activity predictions y∗ at any given time.
The predictors were trained and tested separately for each
dataset. The 11 activities used by both AR and the predictors
are shown in Table 3.
Activity Prediction Algorithms. We evaluate two forms
of our Recurrent Activity Predictor (RAP). The first is
RAP with Exact Imitation (RAP-EI), which uses the exact-
imitation approach described in Section 3.2. The second
version is RAP with DAGGER (RAP-DAGGER), using the
DAGGER approach to improve the predictor with new train-
ing values. We also evaluate the Independent Predictor (IP)
as a informed baseline.

For all three algorithms, we employ the local features
Ψlocal(i) described in Table 1. These features are gener-
ated directly from recent sensor events and highlight in-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

Fig. 3. Floor plan of one CASAS smart home testbed. The location of
each sensor is indicated with the corresponding motion (M), light (LS),
door (D), or temperature (T) sensor number.

formation contained in those events. For the RAP-EI and
RAP-DAGGER algorithms, we also use context features
Ψcontext(i, j) listed in Table 1. For each activity’s predictor
model, these context features consist of the previous predic-
tions for all activities except for the activity being predicted. The
number of previous predictions used is determined by the
context size H . To account for uneven time spacing between
events, the time since each set of previous predictions is also
included.

We also create a second baseline called Exponential,
which is uninformed. This method does not learn a com-
plex model of activity times. Instead, it models the relative
times of each occurrence for each activity as an exponential
distribution. The Exponential method then samples from the
distribution in order to generate activity predictions.

6.2 Evaluation Procedure

To evaluate the performance of our predictors on these
temporal datasets, we employ a sliding window validation
procedure. This method is similar to k-fold cross-validation,
but allows us to maintain the temporal ordering of the sen-
sor event data. We select a window of N=2000 events which
we use along with the corresponding ground-truth values as
the training examples {xi,y

∗
i }

N=2000
i=1 . We learn a predictor

from this training data and employ it to make predictions
for the next 5000 events after the window. The window
is then shifted forward by 1000 events and the process
is repeated. For exact-imitation training, the lag (context)
values are provided using the ground-truth values from
the training data, while the predicted values are employed
during testing.

6.3 Varying Context Size

The performance of the recurrent predictors varies based
on the the context size. In order to determine the optimal
context size, we vary the size and observe the effects on
the RAP-EI and RAP-DAGGER predictors. These tests are
performed using the first month of data from each dataset.

The average MAE for both methods (aggregated across
all one-month datasets) is shown in Fig. 4. As context size

7800

8000

8200

8400

8600

8800

9000

9200

0 20 40 60

M
A

E
(s

)

Context Size (number of lags)

Context Size MAE Comparison

RAP-EI RAP-DAgger

Fig. 4. Average MAE based on context size aggregated over one-month
subsets of all datasets.

increases, performance for both RAP-EI and RAP-DAGGER
improve until performance plateaus. Beyond this point,
adding more context features does not further improve per-
formance. For RAP-EI, this point is around H = 20. RAP-
DAGGER continues to see improvement up until H = 40,
however the most of the improvement has been achieved
by a context size of H = 20.

Based on these results, we find a context size of H = 20
previous events to be a good choice. This provides the
majority of the benefit gained from a larger context size.
Increasing the context size further may provide a small
benefit, however the complexity increases as the context size
increases.

6.4 Comparison of Different Predictors
Building on the results of the previous section, we now
compare the performance of each predictor method using a
context size ofH = 20 previous predictions for the recurrent
predictors. For these tests, we use the full datasets described
in Table 2 and activity labels provided by AR. We compare
the following four methods:

• Exponential Baseline
• Independent Predictor (IP)
• RAP-EI with context H = 20
• RAP-DAGGER with dmax = 5 iterations, β = 0, and

H = 20

For RAP-DAGGER, we chose dmax = 5 based on previ-
ous experience with DAGGER which indicates most per-
formance gains are acheived by the 5th iteration. Previous
experience has also indicated that β close to zero usually
provides the best results.

IP vs RAP-EI. Table 4 shows the average MAE and
RMSE results for each of the methods. IP had an aver-
age MAE of 9,294 seconds (about 2.5 hours). The RAP-EI
method improves on this, reducing the MAE by about 630
seconds. The RMSE is improved by about 1,900 seconds,
or about one half-hour. We also note that the RMSE values
can be dramatically influenced by the outliers. There are a
few datapoints in which the predicted activity time is off by
almost a day. RMSE squares each error there by the average
performance measure can be biased by these few outliers.
We conclude that to examine the overall performance of the
predictors, MAE is a better measure.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

0 5000 10000 15000 20000 25000 30000 35000 40000

Bathe

Bed-Toilet Transition

Cook

Eat

Enter Home

Leave Home

Personal Hygiene

Relax

Sleep

Wash Dishes

Work

Average MAE By Activity (Seconds)

Exponential IP RAP-EI RAP-DAgger

Fig. 5. Average MAE for each activity. These values were averaged for each activity across all datasets.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20000 40000 60000 80000

ET
F(
v)

Threshold v (seconds)

Predictor ETF Comparison

Exponential IP RAP-EI RAP-DAgger

Fig. 6. ETF plotted for each predictor. Threshold values range from one
second up to one day.

TABLE 4
MAE and RMSE results for predictors in seconds, averaged over all
datasets. RAP predictors use context size H=20. A one-way ANOVA
indicates that the performance differences are extremely significant

(p < .01).

Method MAE RMSE

Exponential 13,709.05 27,772.89
IP 9,294.48 21,370.18
RAP-EI 8,661.30 19,439.62
RAP-DAGGER 8,402.01 19,114.13

The average MAE results for each activity are shown in
Fig. 5. RAP-EI outperforms IP on all activities except for
Bed-Toilet Transition. This activity is one which can occur at
different times during the night, usually unrelated to other
activities. Hence, the activity context features used in RAP-
EI do not provide any additional information for predicting
Bed-Toilet Transitions and may result in higher error. We
note that the performance of RAP-EI shows increased im-
provement over IP for activities such as Cook, Eat, Personal
Hygiene, and Wash Dishes. These activities tend to be highly

related to each other (e.g., the resident cooks and then
eats their meal, followed closely by washing dishes and
then brushing their teeth). The context features allow the
recurrent predictor to discover these activity relationships
to improve its performance over the independent predictor.
As with the overall results, these MAE values show that
RAP-EI generally has better performance compared to IP.

We also note that the amount of tolerated error may
be different for each activity. For example, an error of a
few hours may be acceptable when predicting the Relax
activity, while it may be intolerable when predicting Work.
The amount of tolerable error will be dependent on the
context in which the predictions will be used. However,
the error seen here is small enough to be useful for many
applications such as activity prompting and energy-efficient
home automation [27].

Fig. 6 shows the ETF values for varying thresholds. The
independent predictor has about 9% of its errors below
30 seconds. RAP-EI has about twice as many errors (17%)
below 30 seconds. Similarly, 45% of RAP-EI errors are below
30 minutes, compared to only 37% of IP errors. These
results indicate that not only does RAP-EI provide improved
overall performance, but it also is able to have a greater
number of its errors below one hour compared to IP. We also
note that the majority of both IP and RAP-EI predictions are
within one hour of the actual time, which is sufficient for
many applications.

We note that both IP and RAP-EI outperform the random
Exponential predictor in most respects. They show signifi-
cant improvement in terms of overall MAE and RMSE. The
Exponential predictor outperforms IP on the Relax activity.
However, this is likely due to the fact that the Relax activity
occurs frequently throughout the day, resulting in the actual
activity times being similar to the mean of the random
distribution. Consequentially, the Exponential predictor is
able to form predictions that are, on average, closer to the
actual times. However, the ETF values indicate that more
of the Exponential errors are larger than one hour, as the
baseline does not actively adjust its predictions for smaller
time differences. Thus, the informed predictions from IP

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

0

2000

4000

6000

8000

10000

12000

14000

16000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 M
A

E
(s

ec
o

n
d

s)

Test Event Horizon (Number of Events Past Training Window)

MAE By Test Instance Index
Exponential IP RAP-EI RAP-DAgger

Fig. 7. MAE plotted for each predictor against the test horizon. The test horizon indicates how far (in number of events) the test event is from the
end of the training window. MAE values are averaged over all activities and datasets at each test horizon.

and the RAP predictors show an improvement over the
uninformed baseline prediction.

RAP-IE vs RAP-DAGGER. We also examine the perfor-
mance improvement that can be gained using DAGGER to
refine the exact imitation predictor. RAP-DAGGER shows
a greater overall performance in terms of both MAE and
RMSE compared to RAP-EI. This indicates that the diver-
sification of training examples gained through DAGGER
allows the predictor to increase its ability to correct from
errors. This is also demonstrated by the results in Fig. 5,
where RAP-DAGGER outperforms RAP-EI for almost all
activities. We note that the performance improvement is
small compared to that between IP and RAP-EI. However,
adding more DAGGER iterations or increasing the context
size should lead to increased performance.

The ETF plot of Fig. 6 indicates that RAP-EI slightly
outperforms RAP-DAGGER for smaller error sizes. How-
ever, RAP-DAGGER has more of its errors below larger
thresholds such as 6 hours. This indicates that the improve-
ments from DAGGER reduce the number of larger outlier
errors. Furthermore, the fraction differences between the
two predictors are small for the lower thresholds.

Area Under ETF Curves. We note the similarity between
the ETF curves in Fig. 6 and a standard ROC curve. In this
case, the discrimination threshold is based on the time-based
threshold for prediction error. As with the Area Under a
ROC Curve, a perfect predictor will have an Area Under
the ETF Curve (AUETF) of 1.0. The AUETF values for our
predictors are given in Table 5. Consistent with the ETF
plots, the RAP-EI and RAP-DAGGER methods outperform
IP and all informed predictors outperform the Exponential
method.

Behavior Over Time. It is also of interest to examine
how the error for each method changes as we move further
from the training window. Fig. 7 shows the average MAE at
each test horizon against how far that horizon was from the
training window. For all methods except the Exponential,
the average error is relatively low just after the training
window (around 5 minutes). The error generally increases
as the test event gets further from the training window. IP
has a slightly higher error than RAP-EI, which in turn has

TABLE 5
Area under the ETF curve (AUETF) values for each predictor.

Method AUETF

Exponential 0.8672
IP 0.8946
RAP-EI 0.9008
RAP-DAGGER 0.9036

a slightly higher error than RAP-DAGGER. All three have
much lower error at all event horizons compared to the
random Exponential.

For all predictors, the error tends to increase as the event
horizon moves away from the training window. However,
IP and both RAP predictors stabilize after about 2,000 events
at error values of about 2 hours, respectively. We suspect
that the error rates are partially related to the size of the
training window used. While the event frequency is differ-
ent for each dataset, 5000 events is approximately a day
or two in length. At 2000 events, the training window is
relatively small compared to the size of the datasets, but
this window size was chosen to provide a sufficient number
of test windows for computing the evaluation metrics. It is
likely that increasing the training window size (and thus
allowing more of the residents’ activities to be observed)
may reduce the error rates for the predictors. This hypoth-
esis is supported by the results from the prompting app
evaluation, shown in the next section. The predictors used
for the app were trained with more than a month of data
and had error rates below an hour even at more than two
weeks beyond the training window.

7 ACTIVITY PROMPTING

The ability to predict, or forecast, future occurrences of
activities can play a central role in activity prompting.
Activity prompting can be used to remind a memory-
impaired individual of an activity they typically perform
or to encourage integration of a new healthy behavior into a
normal routine. Prompting technologies have been shown to

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

TABLE 6
Description of CAFE testbeds.

Testbed Residents Sensors Training Data Prompting Time Activities Prompts

Group 1: Young Adults

kyoto 2 81 2 months 2 weeks Bathe, Cook, Eat, Leave Home, Relax, Sleep, Work 22
navan 1 28 4 months 2 weeks 90

Group 2: Older Adults

ihs06 2 26 3 weeks 1 month Bed-Toilet Transition, Relax, Work 615
ihs07 1 29 3 weeks 3 weeks Cook, Leave Home 226
ihs08 2 28 3 weeks 1 month Bathe, Sleep 173
ihs09 2 22 3 weeks 1 month Eat, Sleep 414
ihs12 1 + 1 pet 23 5 weeks 2 weeks Eat, Wash Dishes 27
ihs14 4 + 2 pets 29 4 weeks 1 week Cook, Leave Home 8
ihs21 1 23 4 weeks 3 weeks Leave Home, Relax 44

increase adherence to medical interventions, decrease errors
in activities of daily living, and increase both independence
and engagement for individuals with cognitive impairment
[28], [29], [30], [31]. While limited context-based prompt
methods have been explored for medication adherence
and activity initiation [32], [33], [34], [35], [36], [37], [38],
[39], [40], these approaches do not employ knowledge of
current and upcoming activities when delivering prompts.
Similarly, while commercially-available time or location-
based prompting may help individuals use the aid, they
typically require that the user learn how to program the
prompts [30], [34], [41], [42] which may reduce use [43].
Activity awareness may reduce these limitations of current
prompting systems [44].

We evaluated our IP activity predictor in the context of
an activity prompting app called CAFE (CASAS Activity
Forecasting Environment). Rather than relying on manual
setting of reminder times or hand construction of reminder
rules [36], [45], CAFE prompts individuals based on the
predicted times that the activities will occur. The iOS-based
app periodically queries a server for the predicted times
of selected activities. An activity recognition algorithm [12]
and our activity predictor both reside on the server and gen-
erate real-time labels and predictions as sensor data arrive
from the smart homes. When the predicted occurrence time
is reached, CAFE issues a notification, as shown in Fig. 8.

We evaluate CAFE with two sets of smart home resi-
dents. The first set (Group 1) consisted of two smart homes
with young adult participants, while the second (Group
2) consisted of seven smart homes with adult residents
over age 65, as described in Table 6. These homes are
instrumented with sensors for motion, temperature, light,
and door usage. Sensor data is automatically labeled using
the AR activity recognition algorithm. For all homes, we
utilize the generalized AR model that was trained from the
datasets described in Table 2 to generate training data. None
of the homes were part of the training set, so the train-
ing labels rely on the generalization power of the learned
activity recognizer. Using the training data labeled by AR,
we then trained a separate independent activity prediction
model for each site to form predictions for use in CAFE.
The participants responded to CAFE activity prompts over
periods that ranged from one week to one month.

The participants in Group 1 were prompted for seven

Fig. 8. Interface for the CAFE app.

activities. The participants in Group 2 were each prompted
for a different set of two or three activities chosen by
the participants. They provided a total of 1619 responses,
distributed as shown in Fig. 9.

We note that delays may occur between the activity oc-
curring and the prompt being generated. This is partly due
to the fact that the database is updated every 15 minutes,
after which new prompts are generated. Furthermore, par-
ticipants would often not respond to a prompt for a minute
or so. As a result, they sometimes had already started an
activity before they responded to the prompt, even if the
prompt arrived at the correct time. Therefore, they respond
with “I already did it” or “I will do it later”.

Given the nature of the current notification generation,
we also evaluated the prompt timings based on MAE and
range-normalized MAE, as summarized in Table 7. These
values are calculated by comparing the predicted activity
times with the activity start times labeled by the activity
recognizer. Each activity occurred at least once a day and
MAE values were normalized based on a maximum error
of 43,200 seconds, or half of a day. As shown in Table 7, the
MAE averaged over all participants in both groups is 933.73
seconds (about 16 minutes). The average prediction error
aligns closely with the database update and participant
response delays on average. To further assess the error we

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

929439

93

158

I already did it I will do it later

I will do it now I am doing this now

Fig. 9. Distribution of CAFE responses for all participants.

TABLE 7
Evaluation of CAFE prompts (in seconds).

MAE Normalized MAE ETF κ-Normalized ETF

933.73 0.02 0.84 0.92

calculate the ETF value using 30 minutes, the maximum
database and participant delay, as our threshold value.

Finally, we obtained ground truth activity labels during
the same period that participants in Group 1 received ac-
tivity prompts. This was accomplished through the use of
the EMA app. Using the EMA app, participants are queried
every 15 minutes about the activity they are currently per-
forming. The responses are stored in the database and used
to validate our activity recognition algorithms. From the
collected responses, we report AR accuracy of 92% for the
seven activities used. We use this information to generate
the κ-normalized values summarized in Table 7.

Interestingly, the participants noted that the app some-
times actually created a modification in their behavior. One
resident recalled a time when he was debating between
leaving home to get groceries or watching television. Upon
receiving a CAFE prompt to leave home, he left immediately
to perform his errands. On another occasion, a participant
started working earlier than originally planned due to the
prompt notification. Integrating activity prompts into daily
behavioral routines thus raises interesting challenges for
intervention design that need to be carefully considered in
future work.

8 RELATED WORK

Activity learning has been investigated over the last decade
for a plethora of sensor platforms, including ambient sen-
sors, wearable sensors, phone sensors, and audio/video
data [13], [16]. In addition to activity recognition, activity
discovery has been extensively studied utilizing techniques
such as zero-shot learning, topic models, and sequence dis-
covery [1], [46], [47], [48], [49]. In the work by Koppula and
Saxena, the predicted next activity was supplied to robots in
order to provide better assistance.

While activity prediction is not as heavily investigated
as these other areas of activity learning, there are some

representative first efforts in this area. Many of these tech-
niques focus on sequence prediction, which can be adapted
to predict the label of the activity that will occur next in the
sequence. This work includes the Active LeZi algorithm [50]
which is used to predict the identifier of the sensor in a home
that will generate the next event. Other researchers [51], [52],
[53] have investigated the use of probabilistic graph models
to predict next events in video data.

In contrast with the emerging area of activity predic-
tion, activity prompting systems have been developed and
evaluated for quite a while. The majority of existing ap-
proaches are rule-driven or rely upon manually-generated
user schedules [36], [39], [54]. Some recent work has fo-
cused on providing prompts to keep an individual on task
when they fail to complete critical activities [30], [38], [41],
[42], [55], [56], although these require extensive training for
each activity. Other approaches [40] use sensed locations to
generate reminders that are associated with those places.
While these systems may adjust prompts based on user
activities, they require substantial manually-generated in-
formation about an individual’s routine and locations where
activities are performed. In contrast with these approaches,
the method we propose is data-driven. By utilizing activity-
labeled sensor events to learn an individual’s normal rou-
tine, our algorithm can automatically generate activity pre-
dictions and associated activity prompts.

Some work related to activity prediction has occurred
in location-based social networks (LBSNs). Research in this
area typically uses information about a user’s location and
social context to predict a user’s future location [57], [58],
[59]. These methods are simliar to our work in that they uti-
lize multiple pieces of contextual information to predict user
activity. However, many of these works focus on predicting
only the next location a user will check in at [60], [61],
[62], a form of sequence prediction. In contrast, the method
presented here is used to predict the number of time units
until all activities of interest will occur, enabling prediction
beyond just the next activity. Scellato et al. [63] predict
the timing and duration of user locations by looking for
similar sequences in historic data. While this method is able
to predict user locations at different future times, it relies
on the averages of previous data to make its prediction.
In contrast, our method uses nonlinear models to learn
relationships between activities and context, allowing it to
adapt more readily to changes in user behavior.

As an area for continued research, we hypothesize that
activity prediction techniques can benefit from segmenting
sensor data into sequences that represent single activity
types. A number of techniques have been proposed for
this task. Some approaches are unsupervised and utilize
object-use fingerprints [64], [65] or statistical change point
detection [66], [67].

9 SUMMARY AND FUTURE WORK

We studied a data-driven approach for predicting future
occurrences of activities from sensor data. We showed how
powerful regression learners can be leveraged to learn an
effective activity predictor that can reason about relational
and temporal structure among the activities in an efficient
manner. Our extensive experiments on twenty-four smart

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

home datasets validate that our recurrent activity predictor
is effective at forecasting upcoming activity occurrences.
Additionally, we illustrated the use of the predictor as part
of our CAFE activity prompting app.

In the future, we will enhance our approach by incorpo-
rating iterative prediction refinement as well as smoothing,
and perform a large-scale user study. In this paper, we
limited our evaluation to consider only activity initiation,
but an exciting direction will be to predict the length of the
activity as well as individual activity steps. We will study
the theoretical properties of our approach and apply it to
more general prediction problems.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grants 0900781 and 1262814 and
by the National Institute of Biomedical Imaging and Bio-
engineering under Grant R01EB015853.

REFERENCES

[1] D. J. Cook, N. Krishnan, and P. Rashidi, “Activity discovery and
activity recognition: A new partnership,” IEEE Transactions on
Systems, Man, and Cybernstics, Part B, vol. 43, no. 3, pp. 820–828,
2013.

[2] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data,” in ICML, 2001, pp. 282–289.

[3] Hal Daumé III, J. Langford, and D. Marcu, “Search-based struc-
tured prediction,” MLJ, vol. 75, no. 3, pp. 297–325, 2009.

[4] J. R. Doppa, A. Fern, and P. Tadepalli, “Structured prediction via
output space search,” JMLR, vol. 15, pp. 1317–1350, 2014.

[5] ——, “HC-Search: A learning framework for search-based struc-
tured prediction,” JAIR, vol. 50, pp. 369–407, 2014.

[6] C. Ma, J. R. Doppa, W. Orr, P. Mannem, X. Fern, T. Dietterich, and
P. Tadepalli, “Prune-and-Score: Learning for greedy coreference
resolution,” in EMNLP, 2014.

[7] M. Lam, J. R. Doppa, S. Todorovic, and T. Dietterich, “Learning
to detect basal tubules of nematocysts in sem images,” in ICCV
Workshop on Computer Vision for Accelerated Biosciences, 2013.

[8] ——, “HC-Search for structured prediction in computer vision,”
in CVPR, 2015.

[9] S. Ross, G. J. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,”
in AISTATS, 2011.

[10] M. Kääriäinen, “Lower bounds for reductions,” in Atomic Learning
Workshop, 2006.

[11] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[12] N. Krishnan and D. J. Cook, “Activity recognition on streaming
sensor data,” Pervasive and Mobile Computing, vol. 10, pp. 138–154,
2014.

[13] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity
recognition using body-worn inertial sensors,” ACM Computing
Surveys, vol. 46, pp. 107–140, 2015.

[14] O. Lara and M. A. Labrador, “A survey on human activity recogni-
tion using wearable sensors,” IEEE Communication Survey Tutorials,
vol. 15, pp. 1195–1209, 2013.

[15] N. Yala, B. Fergani, and A. Fleury, “Feature extraction for human
activity recognition on streaming data,” in International Symposium
on Innovations in Intelligence Systems and Applications, 2015, pp. 1–6.

[16] Y. Zheng, W.-K. Wong, X. Guan, and S. Trost, “Physical activity
recognition from accelerometer data using a multi-scale ensemble
method,” in Proceedings of the Innovative Applications of Artificial
Intelligence Conference, 2013, pp. 1575–1581.

[17] J.-H. Hong, J. Ramos, and A. K. Dey, “Toward personalized ac-
tivity recognition systems with a semipopulation approach,” IEEE
Trans. Human-Machine Syst., vol. 46, no. 1, pp. 101–112, 2016.

[18] J. K. Aggarwal and M. S. Ryoo, “Human activity analysis: A
review,” ACM Comput. Surv., vol. 43, no. 3, pp. 1–47, 2011.

[19] S. Ke, H. Thuc, Y. Lee, J. Hwang, J. Yoo, and K. Choi, “A review on
video-based human activity recognition,” Computers, vol. 2, no. 2,
pp. 88–131, 2013.

[20] A. Reiss, G. Hendeby, and D. Stricker, “Towards Robust Activ-
ity Recognition for Everyday Life : Methods and Evaluation,”
Proceedings of 7th International Conference on Pervasive Computing
Technologies for Healthcare (PervasiveHealth), no. May, pp. 25–32,
2013.

[21] S. Vishwakarma and A. Agrawal, “A survey on activity recogni-
tion and behavior understanding in video surveillance,” in Visual
Computer, vol. 29, no. 10, 2013, pp. 983–1009.

[22] V. G. Wadley, O. Okonkwo, M. Crowe, and L. A. Ross-Meadows,
“Mild cognitive impairment and everyday function: Evidence
of reduced speed in performing instrumental activities of daily
living,” The American Journal of Geriatric Psychiatry, vol. 15, pp.
416–424, 2008.

[23] B. Minor, J. R. Doppa, and D. J. Cook, “Data-driven
activity prediction: Algorithms, evaluation methodology, and
applications,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’15.
New York, NY, USA: ACM, 2015, pp. 805–814. [Online]. Available:
http://doi.acm.org/10.1145/2783258.2783408

[24] K. E. Heron and J. M. Smyth, “Ecological momentary inter-
ventions: Incorporating mobile technology into psychosocial and
health behavior treatment,” Journal of Health Psychology, vol. 15,
pp. 1–39, 2010.

[25] S. Shiffman, A. a. Stone, and M. R. Hufford, “Ecological momen-
tary assessment,” Annual review of clinical psychology, vol. 4, no. 1,
pp. 1–32, 2008.

[26] K. L. Gwet, Handbook of Inter-Rater Reliability. Advanced Analyt-
ics, LLC, 2014.

[27] B. Thomas and D. J. Cook, “Activity-aware energy-efficient au-
tomation of smart buildings,” Energies, vol. 9, no. 8, p. 624, 2016.

[28] J. Boger and A. Mihailidis, “The future of intelligent assistive
technologies for cognition: Devices under development to support
independent living and aging-with-choice,” NeuroRehabilitation,
vol. 28, no. 3, pp. 271–280, 2011.

[29] M. W. Bewernitz, W. C. Mann, P. Dasler, and P. Belchior, “Feasibil-
ity of Machine-based Prompting to Assist Persons With Demen-
tia,” Assistive Technology, vol. 21, no. 4, pp. 196–207, 2009.

[30] N. Epstein, M. G. Willis, C. K. Conners, and D. E. Johnson,
“Use of technological prompting device to aid a student with
attention deficit hyperactivity disorder to initiate and complete
daily activities: An exploratory study,” Journal of Special Education
Technology, vol. 16, pp. 19–28, 2001.

[31] M. Schmitter-Edgecome, S. Pavawalla, J. T. Howard, L. Howell,
and A. Rueda, Dyadic interventions for Persons with Early-Stage De-
mentia: A Cognitive Rehabilitative Focus. Nova Science Publishers,
2009, ch. 3, pp. 39–56.

[32] J. Hoey, P. Poupart, A. von Bertoldi, T. Craig, C. Boutilier, and
A. Mihailidis, “Automated handwashing assistance for persons
with dementia using video and a partially observable Markov
decision process,” Computer Vision and Image Understanding, vol.
114, pp. 503–519, 2010.

[33] T. Hart, R. Buchhofer, and M. Vaccaro, “Portable electronic devices
as memory and organizational aids after traumatic brain injury:
A consumer survey study,” Journal of Head Trauma Rehabilitation.,
vol. 19, no. 5, pp. 351–365, 2004.

[34] B. Wilson, J. Evans, H. Emslie, and V. Malinek, “Evaluation of
NeuroPage: a new memory aid,” Journal of Neurology, Neurosurgery,
and Psychiatry, vol. 63, no. 1, pp. 113–115, 1997.

[35] T. L. Hayes, K. Cobbinah, T. Dishongh, J. a. Kaye, J. Kimel,
M. Labhard, T. Leen, J. Lundell, U. Ozertem, M. Pavel, M. Phili-
pose, K. Rhodes, and S. Vurgun, “A study of medication-taking
and unobtrusive, intelligent reminding.” Telemedicine journal and
e-health : the official journal of the American Telemedicine Association,
vol. 15, no. 8, pp. 770–6, 2009.

[36] P. Kaushik, S. S. Intille, and K. Larson, “User-adaptive reminders
for home-based medical tasks: A case study,” Methods of Informa-
tion in Medicine, vol. 47, pp. 203–207, 2008.

[37] J. S. Weber and M. E. Pollack, “Evaluating user preferences for
adaptive reminding,” Human Factors in Computing Systems, pp.
2949–2954, 2008.

[38] S. Vurgun, M. Philipose, and M. Pavel, “A statistical reasoning
system for medication prompting,” in International Conference on
Ubiquitous Computing, 2007, pp. 1–18.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[39] J. Modayll, R. Levinson, C. Harman, D. Halper, and H. Kautz,
“Integrating sensing and cueing for more effective activity re-
minders,” AI in Eldercare, 2008.

[40] T. Sohn, K. Li, G. Lee, and I. Smith, “Place-its: A study of location-
based reminders on mobile phones,” in UbiComp’05 Proceedings of
the 7th international conference on Ubiquitous Computing, 2005, pp.
232–250.

[41] G. E. Lancioni, R. Coninx, N. Manders, M. Driessen, J. V. Dijk, and
T. Visser, “Reducing breaks in performance of multihandicapped
students through automatic prompting or peer supervision,” J.
Dev. Phys. Disabil., vol. 3, pp. 115–128, 1991.

[42] H. H. Hsu, C. N. Lee, and Y. F. Chen, “An RFID-based reminder
system for smart home,” in Proceedings - International Conference on
Advanced Information Networking and Applications, AINA, 2011, pp.
264–269.

[43] H. Ferguson, B. S. Myles, and T. Hagiwara, “Using a Personal
Digital Assistant to Enhance the Independence of an Adolescent
with Asperger Syndrome,” Education And Training, vol. 40, no. 6,
pp. 60 – 67, 2011.

[44] A. M. Seelye, M. Schmitter-Edgecombe, B. Das, and D. J. Cook,
“Application of cognitive rehabilitation theory to the development
of smart prompting technologies,” pp. 29–44, 2012.

[45] J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and A. Mihai-
lidis, “A decision-theoretic approach to task assistance for persons
with dementia,” in International Joint Conference on Artificial Intelli-
gence, 2005, pp. 1293–1299.

[46] H.-T. Cheng, M. Griss, P. Davis, J. Li, and D. You, “Towards
zero-shot learning for human activity recognition using semantic
attribute sequence model,” in ACM International Joint Conference on
Pervasive and Ubiquitous Computing, 2013, pp. 355–358.

[47] J. Seiter, O. Amft, M. Rossi, and G. Troster, “Discovery of activ-
ity composites using topic models: An analysis of unsupervised
methods,” Pervasive and Mobile Computing, vol. 15, pp. 215–227,
2014.

[48] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt,
“Sequential deep learning for human action recognition,” in In-
ternational Conference on Human Behavior Understanding, 2011, pp.
29–39.

[49] P. Rashidi, D. J. Cook, L. Holder, and M. Schmitter-Edgecombe,
“Discovering activities to recognize and track in a smart environ-
ment,” IEEE TKDE, vol. 23, no. 4, pp. 527–539, 2011.

[50] K. Gopalratnam and D. J. Cook, “Online sequential prediction via
incremental parsing: The active lezi algorithm,” IEEE Intelligent
Systems, vol. 22, pp. 52–58, 2007.

[51] K. P. Hawkins, N. Vo, S. Bansal, and A. Bobick, “Probabilistic hu-
man action prediction and wait-sensitive planning for responsive
human-robot collaboration,” in IEEE-RAS International Conference
on Humanoid Robots, 2013, pp. 499–506.

[52] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity
forecasting,” in Proceedings of the European Conference on Computer
Vision, 2012.

[53] H. S. Koppula and A. Saxena, “Anticipating human activities
using object affordances for reactive robotic response,” in Robotics:
Sciences and Systems, 2013.

[54] J. Boger, J. Hoey, P. Poupart, C. Boutilier, G. Fernie, and A. Mi-
hailidis, “A planning system based on Markov decision processes
to guide people with dementia through activities of daily living.”
IEEE transactions on information technology in biomedicine : a publica-
tion of the IEEE Engineering in Medicine and Biology Society, vol. 10,
no. 2, pp. 323–333, 2006.

[55] B. Das, D. J. Cook, N. Krishnan, and M. Schmitter-Edgecombe,
“One-class classification-based real-time activity error detection in
smart homes,” IEEE J. Sel. Top. Signal Process., 2016.

[56] A. Mihailidis, J. N. Boger, T. Craig, and J. Hoey, “The COACH
prompting system to assist older adults with dementia through
handwashing: an efficacy study.” Geriatrics, vol. 8, no. 1, pp. 28–
46, 2008.

[57] H. Gao and H. Liu, “Data analysis on location-based social net-
works,” in Mobile social networking. Springer, 2014, pp. 165–194.

[58] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and
mobility: User movement in location-based social networks,”
in Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’11. New
York, NY, USA: ACM, 2011, pp. 1082–1090. [Online]. Available:
http://doi.acm.org/10.1145/2020408.2020579

[59] H. Gao, J. Tang, and H. Liu, “Exploring social-historical ties on
location-based social networks.” in ICWSM, 2012.

[60] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting
locations and travel sequences from gps trajectories,” in
Proceedings of the 18th International Conference on World Wide Web,
ser. WWW ’09. New York, NY, USA: ACM, 2009, pp. 791–800.
[Online]. Available: http://doi.acm.org/10.1145/1526709.1526816

[61] D. Ashbrook and T. Starner, “Using gps to learn significant loca-
tions and predict movement across multiple users,” Personal and
Ubiquitous Computing, vol. 7, no. 5, pp. 275–286, 2003.

[62] H. Gao, J. Tang, X. Hu, and H. Liu, “Modeling temporal effects
of human mobile behavior on location-based social networks,” in
Proceedings of the 22nd ACM international conference on Conference
on information & knowledge management, ser. CIKM ’13. New
York, NY, USA: ACM, 2013, pp. 1673–1678. [Online]. Available:
http://doi.acm.org/10.1145/2505515.2505616

[63] S. Scellato, M. Musolesi, C. Mascolo, V. Latora, and A. T. Campbell,
“Nextplace: a spatio-temporal prediction framework for perva-
sive systems,” in International Conference on Pervasive Computing.
Springer, 2011, pp. 152–169.

[64] T. Gu, S. Chen, X. Tao, and J. Lu, “An unsupervised approach to
activity recognition and segmentation based on object-use finger-
prints,” Data and Knowledge Engineering, vol. 69, no. 6, pp. 533–544,
2010.

[65] P. Palmes, H. K. Pung, T. Gu, W. Xue, and S. Chen, “Object
relevance weight pattern mining for activity recognition and seg-
mentation,” Pervasive and Mobile Computing, vol. 6, no. 1, pp. 43–57,
2010.

[66] I. Cleland, M. Han, C. Nugent, H. Lee, S. McClean, S. Zhang,
and S. Lee, “Evaluation of prompted annotation of activity data
recorded from a smart phone,” Sensors (Switzerland), vol. 14, no. 9,
pp. 15 861–15 879, 2014.

[67] K. D. Feuz, D. J. Cook, C. Rosasco, K. Robertson, and M. Schmitter-
Edgecombe, “Automated Detection of Activity Transitions for
Prompting,” IEEE Transactions on Human-Machine Systems, vol. 45,
no. 5, pp. 575–585, 2015.

Bryan Minor received his B.S. and Ph.D. from
Washington State University. He is a research
associate at Washington State University. His re-
search interests include activity prediction, smart
environments, and human-computer interaction.

Janardhan Rao Doppa received his M.Tech.
from IIT Kanpur and his Ph.D. from the Oregon
State University. He is an Assistant Professor
at Washington State University. His research
interests include artificial intelligence, machine
learning, and data-driven science and engineer-
ing. His work on structured prediction received
an outstanding paper award at the AAAI 2013
conference.

Diane J. Cook received her B.A. from Wheaton
College and her M.S. and Ph.D. from the Univer-
sity of Illinois. She is a Huie-Rogers Chair Pro-
fessor at Washington State University. Her re-
search interests include machine learning, smart
environments, and automated health assess-
ment and intervention.

