

Regression Tree Classification for
Activity Prediction in Smart Homes

Abstract

The growing number of older adults in the population

has created an increasing need for health-assistive

systems, including prompting interventions to provide

activity reminders. In this paper, we present a new

regression-tree-based activity forecasting algorithm to

predict the occurrence of future activities for prompting

initiation of such activities. This automated algorithm

extracts high-level features from sensor events and

inputs these features to a machine learning algorithm

which forecasts when a target activity will next occur.

We compare this system to a standard linear regression

classification using real data from smart homes. The

forecasting algorithm is shown to provide lower error

rates over the linear regression model.

Author Keywords

activity forecasting; regression trees; smart homes

ACM Classification Keywords

H.1.2. User/Machine Systems; I.2. Artificial Intelligence

Introduction

The growing population of older adults has created an

increasing need for new and innovative assistive

technologies that are capable of improving users' lives

while reducing the burden placed on caregivers. As the

population of adults over 65 increases in the coming

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from

Permissions@acm.org.

UbiComp '14, September 13 - 17 2014, Seattle, WA, USA

Copyright 2014 ACM 978-1-4503-3047-3/14/09 $15.00.

http://dx.doi.org/10.1145/2638728.2641669

Bryan Minor

Washington State University

PO Box 642752

Pullman, WA 99203 USA

bminor@eecs.wsu.edu

Diane J. Cook

Washington State University

EME 121

PO Box 642752

Pullman, WA 99203 USA

cook@eecs.wsu.edu

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2638728.2641669

decades, the number of older adults suffering from

cognitive illnesses is also expected to increase, putting

a greater burden on healtchare systems and personnel

[2]. Many older adults with cognitive illnesses have

difficulties performing daily functional tasks, such as

cooking, eating, or taking medicine (known as Activities

of Daily Living, or ADLs) [11]. The need to provide

care for these older adults highlights the growing

importance of assistive health technologies.

The development of smart environments is one way in

which these problems are being addressed. These

environments employ a variety of sensors and

actuators to monitor inhabitants' behavior and improve

their comfort, safety, and overall wellbeing, while

reducing the burdens placed on caregivers and other

healthcare providers. These systems can also be used

to provide feedback to both inhabitants and caregivers

related to the performance of ADLs and overall health.

One form of feedback is in the form of prompts that can

be provided to the inhabitant to remind them to

perform certain activities. For example, a prompt could

be provided to remind the inhabitant to take their

medications each morning at breakfast. While a simple

reminder at a fixed time each morning may be

sufficient, Kaushik et. al. [6] have found that prompts

that take into account the inhabitant's activities and

other context can be more effective. In order to

facilitate context-aware prompting, the environment

needs to be able to detect and predict the inhabitant's

future activities based on observed sensor data and

other contextual clues.

In this paper, we present a method for predicting

inhabitant activities from sensor events using

regression tree classification algorithms. This method

is used to predict the time to the next occurrence of an

activity of interest, and we will label it activity

forecasting (AF). Our method does not require real-

time activity recognition capabilities, as it relies soley

on features derived from the sensor events themselves.

We discuss the implementation of this method and

evaluate it in comparison to a linear regression-based

activity forecasting method.

Related work

Prompting systems have been developed and studied

for some time. Many early systems were rule-driven or

required knowledge of a user's daily schedule,

employing dynamic Bayesian networks and similar

techniques to produce prompts [3, 7, 8, 9, 10]. While

these systems are able to adjust prompts based on

user activities, they also required input of a user's daily

schedule or predefined activity steps.

More recent work has included the incorporation of the

user's behavior through activity recognition (AR).

Holder and Cook [5] developed a system that learns

relations between activities detected through an AR

component, creating prompts for a predicted activity

based on time elapsed since a reference activity. Das

et. al. [4] applied data sampling techniques to address

the imbalance between prompt and non-prompt

situations and improve prompting performance.

Other approaches to activity prediction include

sequential activity prediction using Markov or Bayesian

models, which attempt to predict the next event in a

sequence. Alam et. al. [1] used a modification of the

Active LeZi algorithm to take into account the ON/OFF

nature of home appliances for prediction of the next

activity in a sequence.

While these systems provide automated learning and

prediction based on a user's activities, many of them

rely on a separate activity recognition component to

provide information about current and past activities.

Our forecasting approach generates the features

needed for forecasting directly from the sensor events

themselves, without the need for a real-time

recognition component or manual construction of rules

for activity times.

Methods

We have designed our AF method as a component in

the WSU CASAS smart home project. The CASAS

smart home system consists of a network of wireless

motion and door sensors placed throughout the home.

These sensors monitor movement and door use in the

home, sending events over a mesh network which are

processed by the middleware and stored in a database

on a server. Our AF component provides activity

forecasting which can be used by other components in

the smart home to generate prompts or provide other

useful services. Specifically, given a particular target

activity which we wish to predict, AF provides a

prediction of the time units that will elapse until the

activity will next occur.

Feature Extraction

The sensor data stored by the CASAS system includes

the date, time, sensor ID, and sensor message

associated with each sensor event. The datasets

described in this paper utilized motion and door

sensors, but other sensor types can be included.

During operation, the feature extraction process stores

a history of recent events. For each sensor event, the

features listed in Table 1 are generated based on the

context window, the size of which is determined

dynamically. The temporal features (e.g.,

lastSensorEventHours, windowDuration) are included to

provide information about the time of day. This is

useful since many activities are likely to occur during

certain periods of the day. The dominant sensor

features (lastLocation, sensorCount and sensorElTime)

provide information on where the activity has recently

been occurring within the smart home. The timestamp

and lag features provide information on the most

recent sensor events in the window. This can help the

classifier identify whether recent events were spaced

close together or further apart, giving more information

on the inhabitant's activities.

Although window sizes are determined during system

training based on observed associations between

sensors and activity classes, the AF feature extraction

does not use information about the current activity.

Thus, it does not require the use of a separate AR

component, instead deriving all features directly from

the recent sensor events.

Note that while the AF algorithm is explained here in

the context of activity forecasting within a smart home,

the underlying algorithm can be used to forecast

activities based on any type of sensor data. The

features that we describe are useful for discrete event

sensors but can be replaced or integrated as needed

with sampling-based sensor features as well.

Regression Tree Classifier

The forecaster portion of AF uses the extracted features

to predict the value associated with each event. This

target value is the time (in seconds) from the current

event to the start (first event) of the next occurrence of

the predicted activity. In order to provide this

prediction, a classifier was chosen that would be able to

output a numeric classification value from the feature

inputs.

Although a simple linear regression or auto-regressive

moving average function could be used, these

techniques are limited in that they may not be able to

represent the complex non-linear interactions of the

sensor events and inhabitant activities. Instead, we

use a regression tree algorithm. Regression trees are

similar to decision trees in that they have a root node

and are traversed from the root to the leaves, choosing

the path at each node based on the value of a split

attribute (feature).

However, unlike a decision tree, a regression tree

contains a multivariate linear model at each node,

which is used to calculate the classification value upon

reaching a leaf node. The regression tree is created

during the training mode and can then be used to

Feature Name Description

lastSensorEventHours Hour of the day when the current event occurred

lastSensorEventSeconds Time since beginning of the day in seconds for the current event

windowDuration Duration of the window (seconds)

timeSinceLastSensorEvent Time since the previous sensor event (seconds)

prevDominantSensor1 The most frequent sensor ID in the previous window

prevDominantSensor2 The most frequent sensor ID in the window before that

lastSensorID The sensor ID of the current event

lastLocation The sensor ID for the most recent motion sensor event

sensorCount* Number of times each sensor produced an event in the window

sensorElTime* Time (seconds) since each sensor last produced an event

timeStamp
Time since beginning of the day (seconds) normalized by the total number of
seconds in a day

lag* timeStamp feature value for previous event

tsLag* timeStamp feature value for previous event multiplied by current timeStamp value

*There is one sensorCount and one sensorElTime for each sensor in the smart home. The lag and tsLag values
are created for the previous sensor events (for our experiments, the lag size is 12).

Table 1. List of features generated by the feature extraction process. These features, based on a window of previous events, are

used as input to the regression tree classifier.

classify events for activity prediction. Although the

regression tree requires construction of the tree from

training data before use, classification of events with a

trained tree is performed quickly and efficiently. This

allows for quick classification of new events in a smart

home environment.

During training mode, a set of training events are

processed by the feature extraction process to generate

a set of feature vectors for training. These events are

also tagged with the activities that were occurring

during each event. (These activity tags could be

generated by human annotators, an activity recognition

algorithm, or other means.) These activity tags are

used to compute the class label for each event. Here,

the class label is the actual time that elapsed between

the observed sensor event and the next occurrence of

the target activity.

The regression tree is created from these training

examples. We refer to the collection of training

examples as T. First, we compute the standard

deviation of the class labels in T (we label this (T)).

Then, starting from the root node, we build the tree.

At each node, we want to choose an attribute to split

on. The algorithm selects the attribute that will

maximize the reduction in error. Given a particular

attribute split, we denote Ti as the subset of examples

that would be produced by ith outcome of the split. We

use the standard deviation of the subset () as an

estimation of the error for the corresponding examples.

The algorithm will then choose the split attribute at

each node that maximizes the gain, defined as shown

in Equation 1.

 (1)

This splitting process continues recursively with the

child nodes to form the entire tree structure. The

splitting terminates when one of the following occurs:

all attributes have been chosen along the current path,

the number of examples remaining at a node is too

little (in our case, four or fewer), or the standard

deviation of remaining example class values is less than

a percent of the original standard deviation (in this

case, 5%).

Each node of the tree contains information for a

multivariate linear model that can be used to calculate

the class value from appropriate attributes. This linear

model has the form , where

ak are attribute values and wk are weight values

calculated through standard linear regression. At each

node, the attributes used in the regression are only

those that are used as split attributes in the node's

subtree.

Pruning is performed on the regression tree bottom-up,

starting from the leaf nodes. At each node, the

regression model from that node is used to classify the

subset of training examples associated with the node,

and the root mean square error (RMSE) is computed as

shown in Equation 2, where error is defined as the

difference between the predicted class label and the

value.

 (2)

The RMSE of the node's subtree is also computed. If

the node's regression result outperforms the subtree,

the subtree is pruned and the node becomes a leaf

node. This pruning process helps to reduce the

complexity of the tree and also improve its

performance.

Finally, leaf node models are smoothed using their

parents' regression models. This helps to improve

performance when the number of examples used in

constructing a node is small.

Once the classifier has been trained, it can be used to

classify events for activity forecasting. When a new

event is examined, the features generated by the

feature extraction process are passed to the regression

tree for classification. Starting at the root node, the

regression tree compares the feature specified for that

node to the threshold value to decide which child node

should be accessed next. When the algorithm reaches

a leaf node, the data features are used as inputs to the

node's linear model and a class value is computed.

Experimental results

Setup

In order to validate the AF method, we test it on sensor

events collected from CASAS smart homes. Our

datasets represent sensor data collected from three

apartment testbeds, each housing one older adult

(65+) with no known cognitive impairments. The

residents performed their daily routines during the six

months in which data was collected.

The data from each apartment was tagged with related

activities by human annotators by looking at the home

floorplan and sensor layout, interviewing residents to

ascertain their daily routines, and using software to

visualize the event sequence. Each event is labeled

with one of 12 ADL activities or an "other" activity if the

event was not part of an activity of interest. These

activities, along with other information about the

datasets, are shown in Tables 2-4.

To evaluate AF's performance, a sliding window

validation approach was used. This is similar to k-fold

cross-validation. However, since the sequential

ordering of the events is important for the AF

algorithm, train and test events cannot be chosen at

random. Instead, a sliding window of a fixed length is

moved across the dataset to determine the training

examples. AF is trained on the data in the window, and

then tested on the next event after the window. The

window is then shifted by a specified number of events

and the train and test process is repeated. All events in

a dataset are used to train AF for each activity,

including those labeled as an “other” activity.

Although the sliding window only uses feature data

from within the sliding window for training, feature

extraction window sizes and all features are pre-

computed for the entire dataset. This reflects what

might occur in a production environment, where AF is

able to track events and fill event windows before

performing training and testing. It also reduces the

complexity of the validation as feature values are only

computed once for all of the sliding windows.

To provide a baseline result for comparison, we also

implemented a basic linear regression classifier, which

we will refer to as LR. This is equivalent to a single-

node regression tree that utilizes all of the feature

attributes to determine the multivariate model, without

Dataset: B1

Data Collected

Jul. 7, 2009 - Feb. 3, 2010

658,811 Events

Activity Events

Bathing 7,198

Bed to Toilet
Transition

4,170

Eating 28,771

Enter Home 3,711

Housekeeping 3,280

Leave Home 4,305

Meal
Preparation

101,820

Personal
Hygiene

39,190

Sleeping (in
bed)

33,213

Sleeping (not
in bed)

39,934

Take Medicine 15,388

Work 0

Table 2. Data collection period,

number of events, and activity

information for the B1 apartment

dataset.

any pruning or smoothing. This classifier was tested

using the same sliding window validation approach

used for the full AF algorithm. The features provided to

LR were generated by the same feature extraction

process used in AF for an accurate comparison between

the full regression tree and the basic linear regression.

Since the AF algorithm produces a classification value

indicating the time until the next occurrence of an

activity, it is difficult to define a notion of a true

positive rate or accuracy of the classification. Instead,

we use an alternative measure of the error to indicate

how close the predicted values come to the ground-

truth class labels determined from the annotated data.

The class labels may vary widely in value based on the

time between activity occurrences, making it difficult to

compare results for different activities and datasets

using un-normalized errors. For example, while an

activity like Eating may occur multiple times per day,

Housekeeping may occur only a few times a month.

The time between occurrences of these two activities

can be quite different, making it difficult to compare

their error results.

To account for this, we utilize a normalized measure of

error based on the RMSE, defined in Equation 3. The

range-normalized RMSE (RangeNRMSE) is the RMSE

normalized by the range of class label values. The

normalized value is useful as it allows more accurate

comparison of results for different activities and

datasets. A perfectly accurate predictor would have a

RangeNRMSE value of zero (no error). The greater the

value, the larger the difference between the predicted

and actual times and the lower the performance.

 (3)

Results and Discussion

We ran an experiment to validate our activity

forecasting algorithm, to compare the performance of

AF with a baseline linear regression method (LR), and

to determine the effect of various parameter choices on

the performance of the algorithm.

Our experiment was designed to determine the effects

of the sliding window size, which determines the

number of events the algorithm can use for training.

The window sizes chosen were 1,000, 2,000, and 5,000

events. The start of the window was moved forward by

1,000 events with each iteration, and the tests were

performed on all three datasets.

Since the actual class labels for each activity are

derived from the annotated activity labels, we can only

accurately compute the time to the next occurrence of

an activity up to the last event of that activity in the

dataset. Beyond this point, we do not know when the

next occurrence of the activity would be, and thus

cannot compute accurate labels. Thus, for each

activity, the sliding window validation was stopped at

the last event labeled with that activity, instead of the

full dataset. However, the number of windows used for

each activity was still approximately the same.

The results of these experiments are shown in Figure 1.

The normalized RMSE values for the linear regression

classifier are larger than those for AF in most cases.

Dataset: B2

Data Collected

Jun. 15, 2009 - Feb. 4, 2010

572,254 Events

Activity Events

Bathing 16,295

Bed to Toilet
Transition

14,641

Eating 24,417

Enter Home 2,440

Housekeeping 12,971

Leave Home 2,476

Meal
Preparation

55,240

Personal
Hygiene

42,704

Sleeping (in
bed)

10,477

Sleeping (not
in bed)

16,996

Take Medicine 22,524

Work 0

Table 3. Data collection period,

number of events, and activity

information for the B2 apartment

dataset.

Dataset: B3

Data Collected

Aug. 11, 2009 - Feb. 4, 2010

518,759 Events

Activity Events

Bathing 5,151

Bed to Toilet
Transition

4,346

Eating 39,453

Enter Home 996

Housekeeping 0

Leave Home 1,246

Meal
Preparation

44,842

Personal
Hygiene

37,237

Sleeping (in
bed)

20,693

Sleeping (not
in bed)

8,207

Take Medicine 1,248

Work 108,763

Table 4. Data collection period,

number of events, and activity

information for the B3 apartment

dataset.

0

0.02

0.04

0.06

0.08

0.1
RangeNRMSE for Different Window Sizes for B1 Dataset

AF - 1000

LR - 1000

AF - 2000

LR - 2000

AF - 5000

LR - 5000

0

0.01

0.02

0.03

0.04
RangeNRMSE for Different Window Sizes for B2 Dataset

AF - 1000

LR - 1000

AF - 2000

LR - 2000

AF - 5000

LR - 5000

0

0.05

0.1

0.15
RangeNRMSE for Different Window Sizes for B3 Dataset

AF - 1000

LR - 1000

AF - 2000

LR - 2000

AF - 5000

LR - 5000

Figure 1. Range-normalized error plots for the three datasets. Values in the legend indicate the sliding window size for each group of

results. The vertical axis on each of the plots has been shortened to allow better comparison of values. Some of the larger values

extend beyond the plots because of this.

The AF error value is usually smaller than the

corresponding LR value for the same window size and,

in many cases, the worst-performing AF results are

better than the best LR results. The improved

performance with AF is further supported by the p-

values for the results in Table 5.

There is no consistent trend across all datasets for the

effects of sliding window size. There is some indication

that the AF-1000 case generally performs well on most

activities, though it has some difficulty with the

Personal Hygiene activity for datasets B1 and B2.

Personal Hygiene is the most frequently-occuring

activity for both of these datasets, indicating that, for

frequent activities, AF can benefit from a larger window

size where it is able to observe the repeatability of the

activity.

It is also interesting to examine the cases where AF has

some trouble with certain activities. The normalized

error rates for AF are relatively high for the Enter Home

activity, especialy for the B1 and B2 datasets. This

may be a result of the fact that the inhabitant is outside

the home before the Enter Home activity begins, so no

sensor events directly proceed it. The results may be

somewhat better for the B3 dataset in this regard if the

inhabitant's work caused him or her to have a more

consistent time to return home.

The relatively high errors for Taking Medicine in B1 may

be due to the location and schedule of the inhabitant

for taking medicine - the lower errors for AF with a

window size of 5,000 here indicate that being able to

observe more instances of the activity helps to increase

accuracy, especially if the inhabitant took his or her

medicine at varying times during the day.

Overall, however, our AF algorithm performs better

than the linear regression classification case. AF’s

predictions are usually much lower than those for LR,

indicating its ability to model the non-linear

components of the inhabitants’ activities can reduce the

error rate and improve performance. Thus, using AF in

a predictive prompting system should allow for

generation of prompts much more accurately compared

to a simple linear regression algorithm.

Conclusions

In this paper we have proposed an algorithm for

automated activity forecasting in a smart home

environment. This algorithm can be used for prompting

individuals and other important tasks to enable older

adults to live more independently in their homes.

Compared to other algorithms, AF has the advantage

that it does not rely on a separate AR component, but

rather derives feature attributes directly from sensor

event data within the smart home.

We have also demonstrated the performance of AF

using datasets from smart homes. We have found that

AF performs better than a baseline linear regression

classification for predicting the time duration to the

start of various activities.

In the future, we hope to improve the AF algorithm by

looking at the importance assigned to each of the

features by the regression tree model, in order to add

or remove features to increase performance. One

limitation of the results here is that the longest sliding

window length examined (5,000 events) is only about

two or three days' worth of sensor events in the

datasets. In the future we plan to examine the effects

of further increasing the training window size, the

Window
Size p-Value

B1

1000 0.0808

2000 0.0006*

5000 0.0001*

B2

1000 0.042*

2000 0.0006*

5000 0.0059*

B3

1000 0.0001*

2000 0.0328*

5000 0.0016*

Table 5. p-values computed for

different tests. For each window

size, the p-value listed is for a

two-tailed paired t-test between

the AF and LR RangeNRMSE

values for each parameter.

Significant p-values < 0.05

marked.

relationship between the variability of activities and

error rates, and including sampling-based features in

the AF algorithm to account for different patterns in the

sensor data.

To date, we have evaluated our prompting algorithms

on historic data and are pilot testing an activity

prompting interface for older adults. In our future work

we will conduct a clinical study to evaluate the impact

of data-driven activity prompting for older adults in

their daily lives.

Acknowledgements

This work was supported in part by NSF grant DGE-

0900781 and NIH grant R01EB015853.

References
[1] Alam, M. R., Reaz, M. B. I. and Ali, M. A. M.
SPEED: An inhabitant activity prediction algorithm for
smart homes. IEEE Trans. on Systems, Man, and
Cybernetics- Part A: Systems and Humans 42, 4
(2012), 985-990.

[2] Bates, J., Boote, J. and Beverley, C. Psychosocial
interventions for people with a milder dementing
illness: a systematic review. Journal of Advanced
Nursing 45, 6 (2004), 553-676.

[3] Boger, J., Poupart, P., Hoey, J., Boutilier, C.,
Fernie, G. and Mihailidis, A. A decision-theoretic
approach to task assistance for persons with dementia.

Proc. IJCAI 2005, Morgan Kaufmann Publishers (2005),
1293-1299.

[4] Das, B., Cook, D.J., Schmitter-Edgecombe, M. S.,
and Seelye, A. M. PUCK: An automated prompting

system for smart environments: Toward achieving
automated prompting - Challenges involved. Personal
and Ubiquitous Computing 16, 7 (2012), 859-873.

[5] Holder, L. B. and Cook, D. J. Automated activity-

aware prompting for activity initiation. Gerontechnology
11, 4 (2013), 534-544.

[6] Kaushik, P., Intille, S. S., and Larson, K. User-
adaptive reminders for home-based medical tasks: A
case study. Methods of Information in Medicine 47, 3
(2008), 203-207.

[7] Lim, M., Choi, J., Kim, D., and Park, S. A smart
medication prompting system and context reasoning in
home environments. Proc. 4th International Conference
on Networked Computing and Advanced Information
Management, IEEE (2008), 115-118.

[8] Pineau, J., Montemerlo, M., Pollack, M., Roy, N.,

and Thrun, S. Towards robotic assistants in nursing
homes: Challenges and results. Robotics and
Autonomous Systems 42 (2003), 271-281.

[9] Pollack, M. E., Brown, L., Colbry, D., McCarthy, C.
E., Orosz, C., Peintner, B., Ramakrishnan, S. and
Tsamardinos, I. Autominder: An intelligent cognitive
orthotic system for people with memory impairment.
Robotics and Autonomous Systems 44, 3-4 (2003),

273-282.

[10] Rudary, M., Singh, S. and Pollack, M. E. Adaptive
cognitive orthotics: Combining reinforcement learning
and constraint-based temporal learning. Proc. ICML
2004, ACM Press (2004), 91-98.

[11] Wadley, V. G., Okonkwo, O., Crowe, M. and Ross-
Meadows, L. A. Mild cognitive impairment and everyday
function: Evidence of reduced speed in performing
instrumental activities of daily living. The American
Journal of Geriatric Psychiatry 15, 5 (2008), 416-424.

