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Abstract 

The growing number of older adults in the population 

has created an increasing need for health-assistive 

systems, including prompting interventions to provide 

activity reminders.  In this paper, we present a new 

regression-tree-based activity forecasting algorithm to 

predict the occurrence of future activities for prompting 

initiation of such activities.  This automated algorithm 

extracts high-level features from sensor events and 

inputs these features to a machine learning algorithm 

which forecasts when a target activity will next occur.  

We compare this system to a standard linear regression 

classification using real data from smart homes.  The 

forecasting algorithm is shown to provide lower error 

rates over the linear regression model. 
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Introduction 

The growing population of older adults has created an 

increasing need for new and innovative assistive 

technologies that are capable of improving users' lives 

while reducing the burden placed on caregivers.  As the 

population of adults over 65 increases in the coming 
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decades, the number of older adults suffering from 

cognitive illnesses is also expected to increase, putting 

a greater burden on healtchare systems and personnel 

[2].  Many older adults with cognitive illnesses have 

difficulties performing daily functional tasks, such as 

cooking, eating, or taking medicine (known as Activities 

of Daily Living, or ADLs) [11].  The need to provide 

care for these older adults highlights the growing 

importance of assistive health technologies. 

The development of smart environments is one way in 

which these problems are being addressed.  These 

environments employ a variety of sensors and 

actuators to monitor inhabitants' behavior and improve 

their comfort, safety, and overall wellbeing, while 

reducing the burdens placed on caregivers and other 

healthcare providers.  These systems can also be used 

to provide feedback to both inhabitants and caregivers 

related to the performance of ADLs and overall health. 

One form of feedback is in the form of prompts that can 

be provided to the inhabitant to remind them to 

perform certain activities.  For example, a prompt could 

be provided to remind the inhabitant to take their 

medications each morning at breakfast.  While a simple 

reminder at a fixed time each morning may be 

sufficient, Kaushik et. al. [6] have found that prompts 

that take into account the inhabitant's activities and 

other context can be more effective.  In order to 

facilitate context-aware prompting, the environment 

needs to be able to detect and predict the inhabitant's 

future activities based on observed sensor data and 

other contextual clues. 

In this paper, we present a method for predicting 

inhabitant activities from sensor events using 

regression tree classification algorithms.  This method 

is used to predict the time to the next occurrence of an 

activity of interest, and we will label it activity 

forecasting (AF).  Our method does not require real-

time activity recognition capabilities, as it relies soley 

on features derived from the sensor events themselves.  

We discuss the implementation of this method and 

evaluate it in comparison to a linear regression-based 

activity forecasting method. 

Related work 

Prompting systems have been developed and studied 

for some time.  Many early systems were rule-driven or 

required knowledge of a user's daily schedule, 

employing dynamic Bayesian networks and similar 

techniques to produce prompts [3, 7, 8, 9, 10].  While 

these systems are able to adjust prompts based on 

user activities, they also required input of a user's daily 

schedule or predefined activity steps. 

More recent work has included the incorporation of the 

user's behavior through activity recognition (AR).  

Holder and Cook [5] developed a system that learns 

relations between activities detected through an AR 

component, creating prompts for a predicted activity 

based on time elapsed since a reference activity.  Das 

et. al. [4] applied data sampling techniques to address 

the imbalance between prompt and non-prompt 

situations and improve prompting performance. 

Other approaches to activity prediction include 

sequential activity prediction using Markov or Bayesian 

models, which attempt to predict the next event in a 

sequence.  Alam et. al. [1] used a modification of the 

Active LeZi algorithm to take into account the ON/OFF 



 

nature of home appliances for prediction of the next 

activity in a sequence. 

While these systems provide automated learning and 

prediction based on a user's activities, many of them 

rely on a separate activity recognition component to 

provide information about current and past activities.  

Our forecasting approach generates the features 

needed for forecasting directly from the sensor events 

themselves, without the need for a real-time 

recognition component or manual construction of rules 

for activity times. 

Methods 

We have designed our AF method as a component in 

the WSU CASAS smart home project.  The CASAS 

smart home system consists of a network of wireless 

motion and door sensors placed throughout the home.  

These sensors monitor movement and door use in the 

home, sending events over a mesh network which are 

processed by the middleware and stored in a database 

on a server.  Our AF component provides activity 

forecasting which can be used by other components in 

the smart home to generate prompts or provide other 

useful services.  Specifically, given a particular target 

activity which we wish to predict, AF provides a 

prediction of the time units that will elapse until the 

activity will next occur. 

Feature Extraction 

The sensor data stored by the CASAS system includes 

the date, time, sensor ID, and sensor message 

associated with each sensor event.  The datasets 

described in this paper utilized motion and door 

sensors, but other sensor types can be included. 

During operation, the feature extraction process stores 

a history of recent events.  For each sensor event, the 

features listed in Table 1 are generated based on the 

context window, the size of which is determined 

dynamically.  The temporal features (e.g., 

lastSensorEventHours, windowDuration) are included to 

provide information about the time of day.  This is 

useful since many activities are likely to occur during 

certain periods of the day.  The dominant sensor 

features (lastLocation, sensorCount and sensorElTime) 

provide information on where the activity has recently 

been occurring within the smart home.  The timestamp 

and lag features provide information on the most 

recent sensor events in the window.  This can help the 

classifier identify whether recent events were spaced 

close together or further apart, giving more information 

on the inhabitant's activities. 

Although window sizes are determined during system 

training based on observed associations between 

sensors and activity classes, the AF feature extraction 

does not use information about the current activity.  

Thus, it does not require the use of a separate AR 

component, instead deriving all features directly from 

the recent sensor events. 

Note that while the AF algorithm is explained here in 

the context of activity forecasting within a smart home, 

the underlying algorithm can be used to forecast 

activities based on any type of sensor data. The 

features that we describe are useful for discrete event 

sensors but can be replaced or integrated as needed 

with sampling-based sensor features as well. 



 

Regression Tree Classifier 

The forecaster portion of AF uses the extracted features 

to predict the value associated with each event.  This 

target value is the time (in seconds) from the current 

event to the start (first event) of the next occurrence of 

the predicted activity.  In order to provide this 

prediction, a classifier was chosen that would be able to 

output a numeric classification value from the feature 

inputs. 

Although a simple linear regression or auto-regressive 

moving average function could be used, these 

techniques are limited in that they may not be able to 

represent the complex non-linear interactions of the 

sensor events and inhabitant activities.  Instead, we 

use a regression tree algorithm.  Regression trees are 

similar to decision trees in that they have a root node 

and are traversed from the root to the leaves, choosing 

the path at each node based on the value of a split 

attribute (feature). 

However, unlike a decision tree, a regression tree 

contains a multivariate linear model at each node, 

which is used to calculate the classification value upon 

reaching a leaf node.  The regression tree is created 

during the training mode and can then be used to 

Feature Name Description 

lastSensorEventHours Hour of the day when the current event occurred 

lastSensorEventSeconds Time since beginning of the day in seconds for the current event 

windowDuration Duration of the window (seconds) 

timeSinceLastSensorEvent Time since the previous sensor event (seconds) 

prevDominantSensor1 The most frequent sensor ID in the previous window 

prevDominantSensor2 The most frequent sensor ID in the window before that 

lastSensorID The sensor ID of the current event 

lastLocation The sensor ID for the most recent motion sensor event 

sensorCount* Number of times each sensor produced an event in the window 

sensorElTime* Time (seconds) since each sensor last produced an event 

timeStamp 
Time since beginning of the day (seconds) normalized by the total number of 
seconds in a day 

lag* timeStamp feature value for previous event 

tsLag* timeStamp feature value for previous event multiplied by current timeStamp value 

*There is one sensorCount and one sensorElTime for each sensor in the smart home.  The lag and tsLag values 
are created for the previous sensor events (for our experiments, the lag size is 12). 

Table 1. List of features generated by the feature extraction process.  These features, based on a window of previous events, are 

used as input to the regression tree classifier. 



 

classify events for activity prediction.  Although the 

regression tree requires construction of the tree from 

training data before use, classification of events with a 

trained tree is performed quickly and efficiently.  This 

allows for quick classification of new events in a smart 

home environment. 

During training mode, a set of training events are 

processed by the feature extraction process to generate 

a set of feature vectors for training.  These events are 

also tagged with the activities that were occurring 

during each event.  (These activity tags could be 

generated by human annotators, an activity recognition 

algorithm, or other means.)  These activity tags are 

used to compute the class label for each event. Here, 

the class label is the actual time that elapsed between 

the observed sensor event and the next occurrence of 

the target activity. 

The regression tree is created from these training 

examples.  We refer to the collection of training 

examples as T.  First, we compute the standard 

deviation of the class labels in T (we label this (T)).  

Then, starting from the root node, we build the tree. 

At each node, we want to choose an attribute to split 

on.  The algorithm selects the attribute that will 

maximize the reduction in error.  Given a particular 

attribute split, we denote Ti as the subset of examples 

that would be produced by ith outcome of the split.  We 

use the standard deviation of the subset (       ) as an 

estimation of the error for the corresponding examples.  

The algorithm will then choose the split attribute at 

each node that maximizes the gain, defined as shown 

in Equation 1. 

                    
    

   
                     (1) 

This splitting process continues recursively with the 

child nodes to form the entire tree structure.  The 

splitting terminates when one of the following occurs: 

all attributes have been chosen along the current path, 

the number of examples remaining at a node is too 

little (in our case, four or fewer), or the standard 

deviation of remaining example class values is less than 

a percent of the original standard deviation (in this 

case, 5%). 

Each node of the tree contains information for a 

multivariate linear model that can be used to calculate 

the class value from appropriate attributes.  This linear 

model has the form                         , where 

ak are attribute values and wk are weight values 

calculated through standard linear regression.  At each 

node, the attributes used in the regression are only 

those that are used as split attributes in the node's 

subtree. 

Pruning is performed on the regression tree bottom-up, 

starting from the leaf nodes.  At each node, the 

regression model from that node is used to classify the 

subset of training examples associated with the node, 

and the root mean square error (RMSE) is computed as 

shown in Equation 2, where error is defined as the 

difference between the predicted class label and the 

value. 
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The RMSE of the node's subtree is also computed.  If 

the node's regression result outperforms the subtree, 

the subtree is pruned and the node becomes a leaf 

node.  This pruning process helps to reduce the 

complexity of the tree and also improve its 

performance. 

Finally, leaf node models are smoothed using their 

parents' regression models.  This helps to improve 

performance when the number of examples used in 

constructing a node is small. 

Once the classifier has been trained, it can be used to 

classify events for activity forecasting.  When a new 

event is examined, the features generated by the 

feature extraction process are passed to the regression 

tree for classification.  Starting at the root node, the 

regression tree compares the feature specified for that 

node to the threshold value to decide which child node 

should be accessed next.  When the algorithm reaches 

a leaf node, the data features are used as inputs to the 

node's linear model and a class value is computed.  

Experimental results 

Setup 

In order to validate the AF method, we test it on sensor 

events collected from CASAS smart homes.  Our 

datasets represent sensor data collected from three 

apartment testbeds, each housing one older adult 

(65+) with no known cognitive impairments.  The 

residents performed their daily routines during the six 

months in which data was collected. 

The data from each apartment was tagged with related 

activities by human annotators by looking at the home 

floorplan and sensor layout, interviewing residents to 

ascertain their daily routines, and using software to 

visualize the event sequence.  Each event is labeled 

with one of 12 ADL activities or an "other" activity if the 

event was not part of an activity of interest.  These 

activities, along with other information about the 

datasets, are shown in Tables 2-4. 

To evaluate AF's performance, a sliding window 

validation approach was used.  This is similar to k-fold 

cross-validation.  However, since the sequential 

ordering of the events is important for the AF 

algorithm, train and test events cannot be chosen at 

random.  Instead, a sliding window of a fixed length is 

moved across the dataset to determine the training 

examples.  AF is trained on the data in the window, and 

then tested on the next event after the window.  The 

window is then shifted by a specified number of events 

and the train and test process is repeated. All events in 

a dataset are used to train AF for each activity, 

including those labeled as an “other” activity. 

Although the sliding window only uses feature data 

from within the sliding window for training, feature 

extraction window sizes and all features are pre-

computed for the entire dataset.  This reflects what 

might occur in a production environment, where AF is 

able to track events and fill event windows before 

performing training and testing.  It also reduces the 

complexity of the validation as feature values are only 

computed once for all of the sliding windows. 

To provide a baseline result for comparison, we also 

implemented a basic linear regression classifier, which 

we will refer to as LR.  This is equivalent to a single-

node regression tree that utilizes all of the feature 

attributes to determine the multivariate model, without 

Dataset: B1 

Data Collected 

Jul. 7, 2009 - Feb. 3, 2010 

658,811 Events 

Activity Events 

Bathing 7,198 

Bed to Toilet 
Transition 

4,170 

Eating 28,771 

Enter Home 3,711 

Housekeeping 3,280 

Leave Home 4,305 

Meal 
Preparation 

101,820 

Personal 
Hygiene 

39,190 

Sleeping (in 
bed) 

33,213 

Sleeping (not 
in bed) 

39,934 

Take Medicine 15,388 

Work 0 

Table 2. Data collection period, 

number of events, and activity 

information for the B1 apartment 

dataset. 



 

any pruning or smoothing.  This classifier was tested 

using the same sliding window validation approach 

used for the full AF algorithm.  The features provided to 

LR were generated by the same feature extraction 

process used in AF for an accurate comparison between 

the full regression tree and the basic linear regression. 

Since the AF algorithm produces a classification value 

indicating the time until the next occurrence of an 

activity, it is difficult to define a notion of a true 

positive rate or accuracy of the classification.  Instead, 

we use an alternative measure of the error to indicate 

how close the predicted values come to the ground-

truth class labels determined from the annotated data. 

The class labels may vary widely in value based on the 

time between activity occurrences, making it difficult to 

compare results for different activities and datasets 

using un-normalized errors.  For example, while an 

activity like Eating may occur multiple times per day, 

Housekeeping may occur only a few times a month.  

The time between occurrences of these two activities 

can be quite different, making it difficult to compare 

their error results. 

To account for this, we utilize a normalized measure of 

error based on the RMSE, defined in Equation 3. The 

range-normalized RMSE (RangeNRMSE) is the RMSE 

normalized by the range of class label values. The 

normalized value is useful as it allows more accurate 

comparison of results for different activities and 

datasets.  A perfectly accurate predictor would have a 

RangeNRMSE value of zero (no error).  The greater the 

value, the larger the difference between the predicted 

and actual times and the lower the performance. 

           
    

                       
  (3) 

Results and Discussion 

We ran an experiment to validate our activity 

forecasting algorithm, to compare the performance of 

AF with a baseline linear regression method (LR), and 

to determine the effect of various parameter choices on 

the performance of the algorithm. 

Our experiment was designed to determine the effects 

of the sliding window size, which determines the 

number of events the algorithm can use for training.  

The window sizes chosen were 1,000, 2,000, and 5,000 

events.  The start of the window was moved forward by 

1,000 events with each iteration, and the tests were 

performed on all three datasets. 

Since the actual class labels for each activity are 

derived from the annotated activity labels, we can only 

accurately compute the time to the next occurrence of 

an activity up to the last event of that activity in the 

dataset.  Beyond this point, we do not know when the 

next occurrence of the activity would be, and thus 

cannot compute accurate labels.  Thus, for each 

activity, the sliding window validation was stopped at 

the last event labeled with that activity, instead of the 

full dataset.  However, the number of windows used for 

each activity was still approximately the same. 

The results of these experiments are shown in Figure 1.  

The normalized RMSE values for the linear regression 

classifier are larger than those for AF in most cases.     

Dataset: B2 

Data Collected 

Jun. 15, 2009 - Feb. 4, 2010 

572,254 Events 

Activity Events 

Bathing 16,295 

Bed to Toilet 
Transition 

14,641 

Eating 24,417 

Enter Home 2,440 

Housekeeping 12,971 

Leave Home 2,476 

Meal 
Preparation 

55,240 

Personal 
Hygiene 

42,704 

Sleeping (in 
bed) 

10,477 

Sleeping (not 
in bed) 

16,996 

Take Medicine 22,524 

Work 0 

Table 3. Data collection period, 

number of events, and activity 

information for the B2 apartment 

dataset. 



 

  
Dataset: B3 

Data Collected 

Aug. 11, 2009 - Feb. 4, 2010 

518,759 Events 

Activity Events 

Bathing 5,151 

Bed to Toilet 
Transition 

4,346 

Eating 39,453 

Enter Home 996 

Housekeeping 0 

Leave Home 1,246 

Meal 
Preparation 

44,842 

Personal 
Hygiene 

37,237 

Sleeping (in 
bed) 

20,693 

Sleeping (not 
in bed) 

8,207 

Take Medicine 1,248 

Work 108,763 

Table 4. Data collection period, 

number of events, and activity 

information for the B3 apartment 

dataset. 
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Figure 1. Range-normalized error plots for the three datasets.  Values in the legend indicate the sliding window size for each group of 

results.  The vertical axis on each of the plots has been shortened to allow better comparison of values.  Some of the larger values 

extend beyond the plots because of this. 



 

The AF error value is usually smaller than the 

corresponding LR value for the same window size and, 

in many cases, the worst-performing AF results are 

better than the best LR results.  The improved 

performance with AF is further supported by the p-

values for the results in Table 5. 

There is no consistent trend across all datasets for the   

effects of sliding window size.  There is some indication 

that the AF-1000 case generally performs well on most 

activities, though it has some difficulty with the 

Personal Hygiene activity for datasets B1 and B2.  

Personal Hygiene is the most frequently-occuring 

activity for both of these datasets, indicating that, for 

frequent activities, AF can benefit from a larger window 

size where it is able to observe the repeatability of the 

activity. 

It is also interesting to examine the cases where AF has 

some trouble with certain activities.  The normalized 

error rates for AF are relatively high for the Enter Home 

activity, especialy for the B1 and B2 datasets.  This 

may be a result of the fact that the inhabitant is outside 

the home before the Enter Home activity begins, so no 

sensor events directly proceed it.  The results may be 

somewhat better for the B3 dataset in this regard if the 

inhabitant's work caused him or her to have a more 

consistent time to return home.  

The relatively high errors for Taking Medicine in B1 may 

be due to the location and schedule of the inhabitant 

for taking medicine - the lower errors for AF with a 

window size of 5,000 here indicate that being able to 

observe more instances of the activity helps to increase 

accuracy, especially if the inhabitant took his or her 

medicine at varying times during the day. 

Overall, however, our AF algorithm performs better 

than the linear regression classification case.  AF’s 

predictions are usually much lower than those for LR, 

indicating its ability to model the non-linear 

components of the inhabitants’ activities can reduce the 

error rate and improve performance.  Thus, using AF in 

a predictive prompting system should allow for 

generation of prompts much more accurately compared 

to a simple linear regression algorithm. 

Conclusions 

In this paper we have proposed an algorithm for 

automated activity forecasting in a smart home 

environment.  This algorithm can be used for prompting 

individuals and other important tasks to enable older 

adults to live more independently in their homes.  

Compared to other algorithms, AF has the advantage 

that it does not rely on a separate AR component, but 

rather derives feature attributes directly from sensor 

event data within the smart home. 

We have also demonstrated the performance of AF 

using datasets from smart homes.  We have found that 

AF performs better than a baseline linear regression 

classification for predicting the time duration to the 

start of various activities. 

In the future, we hope to improve the AF algorithm by 

looking at the importance assigned to each of the 

features by the regression tree model, in order to add 

or remove features to increase performance.  One 

limitation of the results here is that the longest sliding 

window length examined (5,000 events) is only about 

two or three days' worth of sensor events in the 

datasets.  In the future we plan to examine the effects 

of further increasing the training window size, the 

Window 
Size p-Value 

B1 

1000 0.0808 

2000 0.0006* 

5000 0.0001* 

B2 

1000 0.042* 

2000 0.0006* 

5000 0.0059* 

B3 

1000 0.0001* 

2000 0.0328* 

5000 0.0016* 

Table 5. p-values computed for 

different tests.  For each window 

size, the p-value listed is for a 

two-tailed paired t-test between 

the AF and LR RangeNRMSE 

values for each parameter.  

Significant p-values < 0.05 

marked. 



 

relationship between the variability of activities and 

error rates, and including sampling-based features in 

the AF algorithm to account for different patterns in the 

sensor data. 

To date, we have evaluated our prompting algorithms 

on historic data and are pilot testing an activity 

prompting interface for older adults. In our future work 

we will conduct a clinical study to evaluate the impact 

of data-driven activity prompting for older adults in 

their daily lives. 
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