ARM Cortex-A9
ARM v7-A

A programmer’s perspective
Part 2

ARM Instructions

General Format
Inst Rd, Rn, Rm, Rs
Inst Rd, Rn, #0ximm

Instruction Classes

Data Processing (largest class):

Branch Instructions:

Load/Store:

Plus exception handling, coprocessor calls, SIMD, floating point, vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

cond Opcode S/L Rn Rd Rs Opcode2 Rm
: i :4 Immd8 >:
| | Immd12 !
| < >
| |
» Immd24 >

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

cond

Opcode

A

Opl

Dest.

Op. Acc.

Opcode?2

Op2

ADD, AND, BIC, CMP, EOR, MOV, ORR, RSB, SUB, TEQ, TST
ASR, ASL, LSL, LSR, ROR, MLA, MLS, MUL, PKH, SDIV, SXT

B, BL, BX

LDR, LDRB, LDRW, LDRD, STR, STRB, STRH, STRD, LDM, LDMIA, LDMDA,
LDMDB, LDMIB, STM, STMIA, STMDA, STMDB, STMIB, POP, PUSH

ARM Instruction Set Format

Condition | OPCODE OPERAND-2 Data processing
Conditon 0 O 0O 0 O 0O A S Rd Rn Rs 1 0 0 1 Rm Multiply
Conditon 0 O 0O 0 1 U A S Rd HIGH Rd LOW Rs 1 0 0 1 Rm Long Multiply
Conditon 0 0 0 1 0 B 0 O Rn Rd 0O 00 01 0 0 1 Rm Swap

Conditon 0 1 | P U B W L Rn Rd OFFSET Load/Store - Byte/Word
Conditon 1 0 0 P U B W L Rn REGISTER LIST Load/Store Multiple
Conditon 0 O O P U 1 W L Rn Rd OFFSET 1 1 S H 1 OFFSET 2 Halfword Transfer Imm Off
Conditon 0 O O P U 0O W L Rn Rd 0 0001 S H 1 Rm Halfword Transfer Reg Off
Condition 1 0 1 L BRANCH OFFSET Branch
Conditon 0 0 0 2 0 0 1 0211111111111 10001 Rn Branch Exchange
Conditon 1 1 0 P U N W L Rn CRd CPNum OFFSET COPROCESSOR DATA XFER
Conditon 1 1 1 O Op-1 CRn CRd CPNum opP-2 0 CRm COPROCESSOR DATA OP
Condition OP-1 L CRn Rd CPNum OP-2 1 CRm COPROCESSOR REG XFER

Condition 1 1 1 1 SWI NUMBER Software Interrupt

Loads and Stores

Main Memory

FFFC 0000
FCOO 0000
F890 0000
F800 1000
F800 0000
E100 0000
EO0O 0000
BFFF FFFF

Ports

8000 0000
7FFF FFFF

4000 0000
3FFF FFFF

0000 0000

—

ot Memory Controller e
= 32 R1: GPR
CPU -«— Addr 2 G
= 32 Data R4: GPR
SELR > R5. GPR
Y —t » Data Cache RS: GPR
e «————CS R7:GPR
1oP R8: GPR
< R9: GPR
WE R10: GPR
Port 1 «—— OF DST_Addr > SEE EEE
AXI bus to DST_Clk - 12 GoF
FPGA R14: LR
| R15: PC
Instruction Register File
Cache
Port 0
AXl bus to l |
FPGA]
o000 .
Immd_Op
N X} vy VY VY
1GByte DDR SRC1_Sel
Main Memory 26 Sl | l
OP1 OoP2

“External Source”

4 Gbyte Address Space

ALU_Func = Se|
ALU_Status tr——— Status

——> CPUCIk
Controller

| ARM CPU

Load and Store

32-bit external addresses (4 Gbytes). ZYNQ supports 30-bit external addresses (1 Gbyte).
Loads and stores can operate on words (4 consecutive bytes), half words (2 bytes), or bytes.

Operands residing in memory must be loaded into a register before they can be used, and
new values stored in main memory must be stored from a register.

Three sets of instructions that interact with main memory

- Single register data transfer (LDR / STR)
- Block register data transfer (LDM / STM)

- Single data swap (SWP)

NO memory-to-memory data operations

Load and Store

Basic load and store operations are: LDR/STR, LDRH/STRH, LDRB/STRB, LDRD/STRD

All load/store instructions require a base address pointer placed in a GPR (Rn). Rn is a
“pointer”, or a 32-bit memory address. Square brackets [] designate a pointer.

LDR Rt, [Rn] @ Load Rt with location pointed at by Rn
STR Rt, [Rn] @ Store Rt at location pointed at by Rn

The base address can be modified with an offset applied before access. Examples:

LDR Rt, [Rn,#<imm>] @ Load Rt with location pointed at by Rn + imm value
STR Rt, [Rn,#- <imm>] @ Store Rt at location pointed at by Rn - imm value

Imm is a 12-bit “immediate” value; if omitted, default is 0. A minus sign subtracts the
immediate value, a plus sign (or no sign) adds the immediate value.

Load and Store

Load at store operations can use the PC to load or store “literal”

LDR Rt, label @ Load Rt with location at label (can be +/- 4096 from PC)

Base address can be modified with an offset stored in a 2"d GPR.

LDR Rt, [Rn, Rm] @ Load Rn from location [Rn + Rn]
STR Rt, [Rn, -Rm] @ Store Rn at location [Rn - Rm]

Load and Store with Indexing

Indexing means modifying the base address, and writing the modified value back into the
base address register, as a part of the execution cycle.

Pre-indexing means doing a transfer first, then updating Rn. Pre-indexing is used
when a ‘I’ is added to the end of any load instruction.

LDR Rt, [Rn, #4]! @ Rt <- [Rn + 4], then Rn is updated with address that was used
STR Rt, [Rn, Rm]! @ Rt <- [Rn + Rm], then Rn is updated with address that was used

Post-indexing means updating Rn first, then doing the transfer. Post-indexing is used
when only the base address is enclosed in square bracket.

LDR Rt, [Rn], #4 @ Rn updated with (Rn+4), then Rt loaded from new address
STR Rt, [Rn], Rm @ Rn is updated with (Rn + Rm), then Rt loaded from new address

Indexing provides a powerful tool for working with regular memory structures like arrays.

A quick aside... the barrel shifter —

Memory Controller

RO: GPR
32 R1: GPR
ARMs shifter is located in one “—— T ot RS GPR
. R4: GPR
operand data path, in front of the —— BT Coche > oo
. T WE R10-GPR
Shifts can occur as a part of almost N— e Raem
any instruction | EEEE
. . . . Register File
Shift instructions (LSR, LSL, ASR, ASL) ke } ... l
work as expected: |
. feefs X} vy vy l
LSR Rd, Rm, #imm e e
ISLS Rd, Rn, Rm 2 5o [
Immd_Op 5,’ > SB ;?.:c:e !
Same with Rotate (ROR): ier
v
RORS Rd, Rm, #imm L
ALU_Func == Se|
ROR Rd; Rn; Rm ALU_Status tm—— Status
> CPUCIk Out
Controller |

| ARM CPU

Load and Store using Barrel Shifter

The shifter can also modify the base address used for load and store operations. A 5-bit
immediate field in the opcode encodes shift amount. No extra CPU time is needed.

LDR Rt, [Rn, Rm, LSL #0x4] Assembler syntax

: , {+/- , <shift>}] Offset; index==TRUE, wback==FALSE
I LDR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <s :
STR Rt' [Rn’ Rm’ LSR #OX3] LDR{<c>}{<g>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]! Pre-indexed: index==TRUE, wback==TRUE

LDR{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>} Post-indexed: index==FALSE, wback==TRUE

where:

<>, <> See Standard assembler syntax fields on page A8-287.

<Rt> The destination register. The SP can be used. The PC can be used. If the PC 1s used, the nstruction
branches to the address (data) loaded to the PC. In ARMvVST and above, this branch 1s an
interworking branch, see Pseudocode details of operations on ARM core registers on page A2-47.

<Rn> The base register. The SP can be used. The PC can be used for offset addressing only.

+/- If + or omitted, the optionally shifted value of <Rm> 1s added to the base register value (add == TRUE
encoded as U == 1).
If —, the optionally shifted value of <Rm> 1s subtracted from the base register value (add == FALSE
encoded as U == 0).

<Rm> The offset that is optionally shifted and applied to the value of <Rn> to form the address.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifis

applied to a register on page A8-291.

Load and Store

Additional load and store commands operate on lists of registers. More information in the
Arm Architectural Reference starting on page A8-396.

AB.8.58 LDM/LDMIA/LDMFD (ARM) LD M IA/LD M F D

Load Multiple Increment After (Load Multiple Full Descending)) loads multiple registers from consecutive memory

locations using an address from a base register. The consecutive memory locations start at this address, and the

address just above the highest of those locations can optionally be written back to the base register. The registers I_ D M DA/ L D M FA
loaded can include the PC, causing a branch fo a loaded address. Related system mstructions are LD (User

registers) on page B9-1988 and LDM (exception refurn) on page B2-1986. L D lVI D B / L D M E A

Encoding A1 ARMv4* ARMvST*, ARMv6*, ARMvT
LDMec> <Rn={'}, <registers: LDMIB/LDMED

3130292827 262624 232221 20191817161514131211109 8 7 6 5§ 4 3 2 1 0

cond |10 001 0[W1] Rn_ | register_list STM|A/ST|\/|EA
For the case when cond is 8b1111, see Unconditional instructions on page A5-216.
STMDA/STMED

if W == 1" && Rn == *1101" && BitCount{register_l1ist) = 1 then SEE POP (ARM):
n = UInt{Rn); registers - register_list; whack - (W — ‘1"):

ifn = 15 || BitC (regi } = 1 then UNPREDICTAELE;
?iF l:hatk fll reglztzggznzeglgfifgé& .ﬂ.rtﬁ'u:pﬁmnf] »= 7 then UNPREDICTAELE; STM DB/STM FD
STMIB/STMFA

STMDB R13,{r4,r5,r6,r7,r8,r9,rl10, r11,rl12,r13, r14}
LDMIA R13, {r4, 5, r6,r7,r8,r9, r10,rl1l, rl12, r13, r14}

Load and Store

No instruction can load a 32-bit immediate constant into a register without performing a
data load from memory (ARM does not embed immediate in the instruction stream).

8 or 12 bit immediates can be loaded and rotated to give a wider range of numbers that can
be generated from immediates.

MOV rO0, #0x40, 26 @ load #0x1000 into RO

The pseudo-instruction shown can move any declared constant into a register:

.set myconstant, OxAAAAS5555
LDR rO, =myconstant @ load #OXxAAAA5555 into RO

The pseudo-instruction shown below can also be used. In this case, the assembler will use a
MOV or MVN instruction if possible; otherwise, it will create a constant and then load it:

LDR rO, =OxFFFFOCOC

PC-relative Load and Store

The PC can be used as the base address.

LDR RO, [PC, #4] @ load RO from location PC + 4

The PC points 8 bytes ahead of executing instructing (why)?

Calculating relative addresses can be tedious. An ARM pseudo-instruction can help.

ADR Rd, label @ load Rd from location label

The assembler turns this instruction into the following (the assembler calculates offset)

ADD PC, #offset

MOV

A MOV instruction can move data between registers, or from an immediate to a register. A
MVN instruction also moves information, but does a bit-wise negation in the process.

MOV Rd, Rm @ Rd <= Rm.

MOVS Rd, Rm @ Rd <= Rm and updates status bits.

MOV Rd, #OxFFF @ Rd <= FFF (up to 12-bit immediates can be used).

MOVW Rd, #0xFFFF @ Rd <= FFFF (up to 16-bit immediates can be used)
MVN Rd, Rs @ Rd <= NOT Rm (bit-wise inversion).

MOVT Rd, #OxAA @ Top halfword of Rd <= AA; bottom half unchanged

There are other flavors of MOV instructions to move data into special registers and to
coprocessors. You can get more information about these move instructions from the text
book of from the Arm Architectural Reference starting on page A8-484.

Branch

Conditional and unconditional braches in program execution create loops or if-then
constructs. “Branch with Link” (BL) additionally copies the PC to the Link register, so a
subroutine return can resume execution immediately after where it was called. “Branch and
Exchange” braches to an address stored in a register.

B <label> @ Unconditional branch to instruction after label
BNE <label> @ Branch to instruction after label
BL <label> @ Branch to label and copy PC into R14 (the LR)

BX LR @ Branch to location stored in LR (R14)
Examples:
Loop_point: @ label MOV RO, #10
LDR rO, [r1] Loop_pointl: SUBS rO, rO, #1

B loop_point BNE loop_point

Conditional Branches

Branch Interpretation Normal uses

B Unconditional Always take this branch

BAL Always Always take this branch

BEQ Equal Comparison equal or zero result

BNE Not equal Comparison not equal or non-zero result

BPL Plus Result positive or zero

BMI Minus Result minus or negative

BCC Carry clear Arithmetic operation did not give carry-out

BLO Lower Unsigned comparison gave lower

BCS Carry set Arithmetic operation gave carry-out

BHS Higher or same Unsigned comparison gave higher or same

BVC Overflow clear Signed integer operation; no overflow occurred
BVS Overflow set Signed integer operation; overflow occurred
BGT Greater than Signed integer comparison gave greater than
BGE Greater or equal Signed integer comparison gave greater or equal
BLT Less than Signed integer comparison gave less than

BLE Less or equal Signed integer comparison gave less than or equal
BHI Higher Unsigned comparison gave higher

BLS Lower or same Unsigned comparison gave lower or same

ADD

The ADD and ADC (add with carry) instructions add the contents in two 32-bit “source”
registers and place the result in a 32-bit “destination” register (the destination register can
be the same as one of the sources).

ADD ro, rl, r2 @rO<=rl+r2

ADC ro, rl, r2 @rO<=r1+r2+C

ADCS r3, r2, #OxABC @ r3 <=r2 + OxABC + C and set status bits (up to 12 bit imm)
ADDEQ rO, r1, r2 @ rO<= rl+r2if Zbitis set

ADD rO, rl, r2, LSL#0x4 @ rO<=r1l + r2 shifted left four bits
ADD r0, r1, r2, ASR r3 @ r0 <=r1 + r2 shifted left (sign ext.) by number in r3
ADD rl, rl, #1 @ increment value in rl

More information about add instructions in text book and the Arm Architectural Reference
starting on page A8-300.

Subtract

The SUB and SBC (subtract with NOT of carry bit), and reverse-subtract RSB and RSC
instructions subtract the contents of one 32-bit register from another register, and place the
result in a 32-bit destination register (the destination register can be the same as one of the
sources).

SUB ro, rl, r2 @rO0<=rl-r2

SBCS 0, r1,r2 @ rO<=rl1-r2 - Not C, and update status bits
SUB r0, rl, #OxABC @ rO <=r1 - OxABC (up to 12 bit immediate)
SUBNE rO, r1, r2 @ rO0<= rl1-r2ifZbitis not set

SUB rO, rl, r2, LSL#0x4 @ rO <=r1l - r2 shifted left four bits

RSB ro, rl, r2 @r0<=r2-rl

SUB r2, r2, #1 @ Decrement value in r2

More information about sub instructions in text book and the Arm Architectural Reference.

Shift

The ARM can do arithmetic and logical shifts by up to 32 bits. Arithmetic shifts are right-shift
and sign-extended (i.e, the sign bit is placed in all vacated bits). Logical shift right or left (LSR
or LSL) can shift up to 32 bits, and a ‘0’ will be placed in all vacated bits. The number of bits
to shift can be an immediate or placed in a register.

ASR rO, r1 ,#0x04 @ rO <=r1 contents shifted right four bits with sign extend

ASR 0, rl, r2 @ r0 <=r1 contents shifted right by the number of bits in the bottom
of r2, sign extends, and places result in rO

LSL rO, r1, #0x06 @ r0 <= r1 shifted left 6 bits with O fill
LSR rO, rl, r2 @ r0 <= r1 shifted right by number of bits in bottom of r2, O fill

Comparisons

CMP compares by subtracting the operands, updating the status bits, and discarding the
results. No need to use “S” mnemonic extension. CMN adds operands, updates status, and
discards results. TST (test) ANDs operand 1 with operand 2, updates status bits, and discards
results. TEQ (test equivalence) XORs operand 1 with operand 2, updates status bits, and
discards results.

CMP
CMP
CMP
CMP
CMN
CMN
TST
TEQ
TEQ

rO, #Oximm @ Subtract imm (12 bit) from r0O, discard results, update status bits
ro, rl @ Subtract rl from r0O, discard results, update status bits

r0, rl, LSL #0x06 @ Subtract left-shifted r1 from rO, discard results, update status bits
r0, rl, RORr2 @ Subtractrl (right-rotated by number in r2) from r0, discard, update
r0, #Oximm @ Add imm to r0O, discard results, update status bits

ro, rl @ Add rl and r0O, discard results, update status bits

ro, #1 @ ANDs rO with 1, discard results, update status bits (why?)
r2, r3 @ Bitwise XOR of r2 and r3, discard results, updates status bits
r2, #5 @ Bitwise XOR of r2 and 5 (Z = 1 if equal)

Logical Operations

The AND, BIC, EOR, and ORR data processing operators all use the same general addressing
modes as the other data processing instructions.

AND rO, rl1, #Oximm @ Bitwise AND r1 with 12-bit immediate and write result to rO

ANDS rO, r1, r2 @ Bitwise AND rl1 with r2, write result to rO, update status bits

AND rO, r1, r2 LSR r3 @ Bitwise AND rl with left-shifted r2, write result to rO

BIC rO, rl, #Oximm @ Bitwise AND rl with inverse of imm, write to rO, update status bits
BIC rO,rl, r2, LSL Ox#2 @ Bitwise AND r1 with left-shifted r2, write to rO, update status bits
EORS rO, r1, #0ximm @ Bitwise XOR r1 with 12-b imm, write result to rO, update status bits
EOR rO,rl, r2, LSR r3 @ Bitwise XOR r1 with r2 shifted left by r3, write to rO

ORR r2,r3, #OxAA @ Bitwise XOR of r3 and AA, write to r2, update status bits

Multiplication

ARM has three multiplication instructions: MUL to multiply two 32-bit registers, MLA

(multiply and accumulate) to multiply two 32-bit registers and add a third register; and MLS
(multiply and subtract) to multiply two registers and subtract the result from a third register.
For each instruction, the destination register holds the least-significant 32 bits of the result.

MUL rO, rl, r2 @rO<=rlxr2
MUL rO, rl @rO<=rl1xr0
MULS rO, rl, r2 @ rO <=r1 x r2 and status bits are updated

MLA r0,r1,r2,r3 @rO<=rlxr2+r3
MLAS rO,rl1,r2,r3 @rO<=r3-rl1xr2
MLS rO,rl,r2,r3

