
ARM Cortex-A9
ARM v7-A

A programmer’s perspective
Part 2

ARM Instructions

Instruction Classes

Data Processing (largest class): ADD, AND, BIC, CMP, EOR, MOV, ORR, RSB, SUB, TEQ, TST
ASR, ASL, LSL, LSR, ROR, MLA, MLS, MUL, PKH, SDIV, SXT

Branch Instructions: B, BL, BX

Load/Store: LDR, LDRB, LDRW, LDRD, STR, STRB, STRH, STRD, LDM, LDMIA, LDMDA,
LDMDB, LDMIB, STM, STMIA, STMDA, STMDB, STMIB, POP, PUSH

Plus exception handling, coprocessor calls, SIMD, floating point, vector

General Format

Inst Rd, Rn, Rm, Rs

Inst Rd, Rn, #0ximm

cond

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode Rn Rd Rs Rm

Immd8

Immd12

Immd24

Opcode2S
L

cond

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode Op1 Dest. Op. Acc. Op2Opcode2S
L

Loads and Stores

DST_Addr

DST_Clk

SRC1_Sel

SRC2_Sel

ALU_Status

ALU_Func

Immd_Op

Controller

Registers
D_IN

ALU

OP1 OP2

Out

Status

Sel External Source

4 Gbyte Address Space

Data

WE

32
Addr

Memory Controller

OE

ARM CPU

CPUClk

R0: GPR
R1: GPR
R2: GPR
R3: GPR
R4: GPR
R5: GPR
R6: GPR
R7: GPR
R8: GPR
R9: GPR
R10: GPR
R11: GPR

R13: SP
R14: LR
R15: PC

R12: GPR

1GByte DDR

Main Memory

0000 0000

3FFF FFFF

Port 0

AXI bus to

FPGA

4000 0000

7FFF FFFF

Port 1

AXI bus to

FPGA

8000 0000

BFFF FFFF
IOPE000 0000
SMC

SCLR

CPU

PS

QSPI

OCM

E100 0000
F800 0000
F800 1000
F890 0000
FC00 0000
FFFC 0000

Data
Cache

CS

P
o

rt
s

M
a

in
 M

e
m

o
ry

Register File

32

Instruction
Cache

Load and Store

32-bit external addresses (4 Gbytes). ZYNQ supports 30-bit external addresses (1 Gbyte).

Operands residing in memory must be loaded into a register before they can be used, and
new values stored in main memory must be stored from a register.

Loads and stores can operate on words (4 consecutive bytes), half words (2 bytes), or bytes.

Three sets of instructions that interact with main memory

- Single register data transfer (LDR / STR)

- Block register data transfer (LDM / STM)

- Single data swap (SWP)

NO memory-to-memory data operations

Load and Store

Basic load and store operations are: LDR/STR, LDRH/STRH, LDRB/STRB, LDRD/STRD

All load/store instructions require a base address pointer placed in a GPR (Rn). Rn is a
“pointer”, or a 32-bit memory address. Square brackets [] designate a pointer.

LDR Rt, [Rn] @ Load Rt with location pointed at by Rn
STR Rt, [Rn] @ Store Rt at location pointed at by Rn

LDR Rt, [Rn,#<imm>] @ Load Rt with location pointed at by Rn + imm value
STR Rt, [Rn,#- <imm>] @ Store Rt at location pointed at by Rn - imm value

Imm is a 12-bit “immediate” value; if omitted, default is 0. A minus sign subtracts the
immediate value, a plus sign (or no sign) adds the immediate value.

The base address can be modified with an offset applied before access. Examples:

Load and Store

Load at store operations can use the PC to load or store “literal”

LDR Rt, label @ Load Rt with location at label (can be +/- 4096 from PC)

LDR Rt, [Rn, Rm] @ Load Rn from location [Rn + Rn]
STR Rt, [Rn, -Rm] @ Store Rn at location [Rn - Rm]

Base address can be modified with an offset stored in a 2nd GPR.

Load and Store with Indexing

Indexing means modifying the base address, and writing the modified value back into the
base address register, as a part of the execution cycle.

Pre-indexing means doing a transfer first, then updating Rn. Pre-indexing is used
when a ‘!’ is added to the end of any load instruction.

LDR Rt, [Rn, #4]! @ Rt <- [Rn + 4], then Rn is updated with address that was used
STR Rt, [Rn, Rm]! @ Rt <- [Rn + Rm], then Rn is updated with address that was used

Post-indexing means updating Rn first, then doing the transfer. Post-indexing is used
when only the base address is enclosed in square bracket.

LDR Rt, [Rn], #4 @ Rn updated with (Rn+4), then Rt loaded from new address
STR Rt, [Rn], Rm @ Rn is updated with (Rn + Rm), then Rt loaded from new address

Indexing provides a powerful tool for working with regular memory structures like arrays.

A quick aside… the barrel shifter

ARMs shifter is located in one
operand data path, in front of the
ALU.

Shifts can occur as a part of almost
any instruction

Shift instructions (LSR, LSL, ASR, ASL)
work as expected:

LSR Rd, Rm, #imm
LSLS Rd, Rn, Rm

Same with Rotate (ROR):

RORS Rd, Rm, #imm
ROR Rd, Rn, Rm

DST_Addr

DST_Clk

SRC1_Sel

SRC2_Sel

ALU_Status

ALU_Func

Immd_Op

Controller

Registers
D_IN

ALU

OP1 OP2

Out

Status

Sel

Data

WE

32
Addr

Memory Controller

OE

ARM CPU

CPUClk

R0: GPR
R1: GPR
R2: GPR
R3: GPR
R4: GPR
R5: GPR
R6: GPR
R7: GPR
R8: GPR
R9: GPR
R10: GPR
R11: GPR

R13: SP
R14: LR
R15: PC

R12: GPR

Data
Cache

CS

Register File

32

Instruction
Cache

Barrel

Shifter
Immd_Op

5

Load and Store using Barrel Shifter

LDR Rt, [Rn, Rm, LSL #0x4]
STR Rt, [Rn, Rm, LSR #0x3]!

The shifter can also modify the base address used for load and store operations. A 5-bit
immediate field in the opcode encodes shift amount. No extra CPU time is needed.

Load and Store

Additional load and store commands operate on lists of registers. More information in the
Arm Architectural Reference starting on page A8-396.

LDMIA/LDMFD

LDMDA/LDMFA

LDMDB/LDMEA

LDMIB/LDMED

STMIA/STMEA

STMDA/STMED

STMDB/STMFD

STMIB/STMFA

STMDB R13, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14}
LDMIA R13, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14}

Load and Store

No instruction can load a 32-bit immediate constant into a register without performing a
data load from memory (ARM does not embed immediate in the instruction stream).

8 or 12 bit immediates can be loaded and rotated to give a wider range of numbers that can
be generated from immediates.

MOV r0, #0x40, 26 @ load #0x1000 into R0

The pseudo-instruction shown can move any declared constant into a register:

.set myconstant, 0xAAAA5555
LDR r0, =myconstant @ load #0xAAAA5555 into R0

The pseudo-instruction shown below can also be used. In this case, the assembler will use a
MOV or MVN instruction if possible; otherwise, it will create a constant and then load it:

LDR r0, =0xFFFF0C0C

PC-relative Load and Store

The PC can be used as the base address.

The assembler turns this instruction into the following (the assembler calculates offset)

LDR R0, [PC, #4] @ load R0 from location PC + 4

The PC points 8 bytes ahead of executing instructing (why)?

Calculating relative addresses can be tedious. An ARM pseudo-instruction can help.

ADR Rd, label @ load Rd from location label

ADD PC, #offset

MOV

A MOV instruction can move data between registers, or from an immediate to a register. A
MVN instruction also moves information, but does a bit-wise negation in the process.

There are other flavors of MOV instructions to move data into special registers and to
coprocessors. You can get more information about these move instructions from the text
book of from the Arm Architectural Reference starting on page A8-484.

MOV Rd, Rm @ Rd <= Rm.

MOVS Rd, Rm @ Rd <= Rm and updates status bits.

MOV Rd, #0xFFF @ Rd <= FFF (up to 12-bit immediates can be used).

MOVW Rd, #0xFFFF @ Rd <= FFFF (up to 16-bit immediates can be used)

MVN Rd, Rs @ Rd <= NOT Rm (bit-wise inversion).

MOVT Rd, #0xAA @ Top halfword of Rd <= AA; bottom half unchanged

Branch

Conditional and unconditional braches in program execution create loops or if-then
constructs. “Branch with Link” (BL) additionally copies the PC to the Link register, so a
subroutine return can resume execution immediately after where it was called. “Branch and
Exchange” braches to an address stored in a register.

B <label> @ Unconditional branch to instruction after label

BNE <label> @ Branch to instruction after label

BL <label> @ Branch to label and copy PC into R14 (the LR)

BX LR @ Branch to location stored in LR (R14)

Loop_point: @ label

LDR r0, [r1]

B loop_point

Examples:

MOV R0, #10

Loop_point1: SUBS r0, r0, #1

BNE loop_point

ADD

The ADD and ADC (add with carry) instructions add the contents in two 32-bit “source”
registers and place the result in a 32-bit “destination” register (the destination register can
be the same as one of the sources).

More information about add instructions in text book and the Arm Architectural Reference
starting on page A8-300.

ADD r0, r1, r2 @ r0 <= r1 + r2

ADC r0, r1, r2 @ r0 <= r1 + r2 + C

ADCS r3, r2, #0xABC @ r3 <= r2 + 0xABC + C and set status bits (up to 12 bit imm)

ADDEQ r0, r1, r2 @ r0 <= r1 + r2 if Z bit is set

ADD r0, r1, r2, LSL #0x4 @ r0 <= r1 + r2 shifted left four bits

ADD r0, r1, r2, ASR r3 @ r0 <= r1 + r2 shifted left (sign ext.) by number in r3

ADD r1, r1, #1 @ increment value in r1

Subtract

The SUB and SBC (subtract with NOT of carry bit), and reverse-subtract RSB and RSC
instructions subtract the contents of one 32-bit register from another register, and place the
result in a 32-bit destination register (the destination register can be the same as one of the
sources).

More information about sub instructions in text book and the Arm Architectural Reference.

SUB r0, r1, r2 @ r0 <= r1 - r2

SBCS r0, r1, r2 @ r0 <= r1 - r2 - Not C, and update status bits

SUB r0, r1, #0xABC @ r0 <= r1 - 0xABC (up to 12 bit immediate)

SUBNE r0, r1, r2 @ r0 <= r1 - r2 if Z bit is not set

SUB r0, r1, r2, LSL #0x4 @ r0 <= r1 - r2 shifted left four bits

RSB r0, r1, r2 @ r0 <= r2 – r1

SUB r2, r2, #1 @ Decrement value in r2

Shift

The ARM can do arithmetic and logical shifts by up to 32 bits. Arithmetic shifts are right-shift
and sign-extended (i.e, the sign bit is placed in all vacated bits). Logical shift right or left (LSR
or LSL) can shift up to 32 bits, and a ‘0’ will be placed in all vacated bits. The number of bits
to shift can be an immediate or placed in a register.

ASR r0, r1 ,#0x04 @ r0 <= r1 contents shifted right four bits with sign extend

ASR r0, r1, r2 @ r0 <= r1 contents shifted right by the number of bits in the bottom
of r2, sign extends, and places result in r0

LSL r0, r1, #0x06 @ r0 <= r1 shifted left 6 bits with 0 fill

LSR r0, r1, r2 @ r0 <= r1 shifted right by number of bits in bottom of r2, 0 fill

Comparisons

CMP compares by subtracting the operands, updating the status bits, and discarding the
results. No need to use “S” mnemonic extension. CMN adds operands, updates status, and
discards results. TST (test) ANDs operand 1 with operand 2, updates status bits, and discards
results. TEQ (test equivalence) XORs operand 1 with operand 2, updates status bits, and
discards results.

CMP r0, #0ximm @ Subtract imm (12 bit) from r0, discard results, update status bits

CMP r0, r1 @ Subtract r1 from r0, discard results, update status bits

CMP r0, r1, LSL #0x06 @ Subtract left-shifted r1 from r0, discard results, update status bits

CMP r0, r1, ROR r2 @ Subtract r1 (right-rotated by number in r2) from r0, discard, update

CMN r0, #0ximm @ Add imm to r0, discard results, update status bits

CMN r0, r1 @ Add r1 and r0, discard results, update status bits

TST r0, #1 @ ANDs r0 with 1, discard results, update status bits (why?)

TEQ r2, r3 @ Bitwise XOR of r2 and r3, discard results, updates status bits

TEQ r2, #5 @ Bitwise XOR of r2 and 5 (Z = 1 if equal)

Logical Operations

The AND, BIC, EOR, and ORR data processing operators all use the same general addressing
modes as the other data processing instructions.

AND r0, r1, #0ximm @ Bitwise AND r1 with 12-bit immediate and write result to r0

ANDS r0, r1, r2 @ Bitwise AND r1 with r2, write result to r0, update status bits

AND r0, r1, r2 LSR r3 @ Bitwise AND r1 with left-shifted r2, write result to r0

BIC r0, r1, #0ximm @ Bitwise AND r1 with inverse of imm, write to r0, update status bits

BIC r0, r1, r2, LSL 0x#2 @ Bitwise AND r1 with left-shifted r2, write to r0, update status bits

EORS r0, r1, #0ximm @ Bitwise XOR r1 with 12-b imm, write result to r0, update status bits

EOR r0, r1, r2, LSR r3 @ Bitwise XOR r1 with r2 shifted left by r3, write to r0

ORR r2, r3, #0xAA @ Bitwise XOR of r3 and AA, write to r2, update status bits

Multiplication

ARM has three multiplication instructions: MUL to multiply two 32-bit registers, MLA
(multiply and accumulate) to multiply two 32-bit registers and add a third register; and MLS
(multiply and subtract) to multiply two registers and subtract the result from a third register.
For each instruction, the destination register holds the least-significant 32 bits of the result.

MUL r0, r1, r2 @ r0 <= r1 x r2

MUL r0, r1 @ r0 <= r1 x r0

MULS r0, r1, r2 @ r0 <= r1 x r2 and status bits are updated

MLA r0, r1, r2, r3 @ r0 <= r1 x r2 + r3

MLAS r0, r1, r2, r3 @ r0 <= r3 - r1 x r2

MLS r0, r1, r2, r3

