Design and Analysis of Algorithms

e Understanding of Algorithm
e Upper bounds on specific solutions

e Lower bounds on problems

Algorithms — What Are They?

Definition. An is a well-defined computational proce-
dure that transforms inputs into outputs, achieving the desired input-
output relationship.

Definition. A computational is a specification of the desired
input-output relationship.

Definition. An of a problem is all the inputs needed to
compute a solution to the problem.

Definition. A algorithm halts with the correct output for
every input instance. We can then say the algorithm the
problem.

Example: Sorting

Sorting is a common operation

Many sorting algorithms available, best choice depends on application

PROBLEM:

e INPUT: Sequence of n numbers {(ay, as, . . ., a,)
e OUTPUT: Permutation (reordering) (a}, al,...,al) of the input

sequence such that o] < a) < ... <al

INSTANCE: (6,4,3,7,1,4) —» (1,3,4,4,6,7)

Algorithm: Insertion Sort

In-Place Sort: uses only a fixed amount of storage beyond that needed for
the data.
Pseudocode:
Insertion-Sort(A) ; A is an array of numbers
for j = 2 to length(A)
key = Alj]
i=j-1
while i > 0 and Ali] > key
Ali+1] = Alj]
i=i-1
Ali+1] = key

J O O x W N

Analyzing Algorithms

e Predict resource utilization

e Dependent on architecture

Model of computation
Sequential (RAM model)
Parallel (PRAM model)

e Running Time = F(Problem Size)
= F(Input Size)
= number of primitive operations used to solve problem

e Input Size:

Sorting:

Multiplication:

Graphs:

Operations

Examples: additions, multiplications, comparisons
Constant time C; per i line of pseudocode

3

In reality each operations takes different amount of time

constraints on the input, other than size, resulting in the
fastest possible running time

constraints on the input, other than size, resulting in
the slowest possible running time

average running time over every possible type of
input (usually involves probabilities of different types of input)

Example: Insertion Sort

e n = length(A)

e t; = number of times the while loop test is executed for that value of

J
Insertion-Sort(A) Cost Times (Iterations)
1 forj =2 tolength(A) c1 n
2 key = Alj] co n—1
3 1i=73-1 c3 n—1
4 while i > 0 and Afi] > key 1 E]5t
5 Ali+1] = A[j] cs Tipt;—1
6 i—i-1 6 Tyt — 1
7 Ali+1] = key c; n—1
Analysis

T(n) = cintca(n—1)+cz(n—1)4c4 3 titcs X (ti—1)4cs X (tj—1)+c7(n—1)
j=2 j=2 j=2

4

Best Case: Array already sorted, ¢; = 1 for all j

T(n) = cin+cy(n—1)+c3(n — 1) +ca(n — 1) + ¢5(0) + ¢6(0)
+c7(n — 1)
= (c1+cot+cst+cs+cr)xn—(co+c3+cy+c7)
= an+b (linear in n)

Worst Case: Array in reverse order, t; = j for all 5

Note that =7_, j = ")

Tn) = e;n+ca(n—1)+c3(n —1) + 04(M

n(n —1)

+CGT + c7(n — 1)

= (c4/2+c5/2 + cs/2)n?
+(er + o+ 3+ ca/2—c5/2—cs/24+ cr)n
—(ca+c3+ ¢4+ c7)

— an®+bn +c (quadratic in n)

Average Case: Check half of array on average, t; = j/2 for all j
T(n)=an®+bn +c

Analysis

e Concentrate on worst-case running time
e Upper bound

e Average case not much better

Order of Growth

The of a running-time function © is the fastest growing term,
discarding constant factors.

Insertion Sort:
e Best Case: an+b — O(n)

e Worst Case: an® 4+ bn + ¢ — O(n?)

XYZ-Sort:
e Worst Case: O(n?)

e Now we can say Insertion-Sort better than XYZ-Sort for large inputs.

Designing Algorithms

e Incremental Design

— Iterative

Size n
Complexity 10 20 30 40 50
n .00001 s |.00002 s | .00003 s .00004 s .00005 s
n? 0001 s| .0004s| .0009 s 0016 s 0025 s
n? 00ls| .008s 027 s 064 s 1258
n’ 1s| 32s| 243s 1.7 min 5.2 min
2" 001 s 1.0s|17.9 min 12.7 days 35.7 years
3" 059 s| 58 min | 6.5 years | 3855 centuries | 22108 centuries | 1.3a

— Example: Insertion Sort

e Divide-and-Conquer

— Recursive

— Example: Merge Sort

— 1. problem into smaller subproblems
— 2. subproblems by solving them recursively
— 3. solutions of subproblems

Example: Merge Sort

1. the n element sequence to be sorted into two subsequences

of n/2 elements each.

2. (sort) the two subsequences recursively using merge sort

7

3. (merge) the two sorted subsequences to produce the sorted
answer

Example: Merge Sort

Recursion bottoms out when subproblem contains only one element (p =

r

)

MergeSort(A,p,r)

1 ifp<r

2 thenq=| (p+r)/2 |

3 MergeSort(A,p,q)

4 MergeSort(A,q+1,r)
5 Merge(A,p,q,r)

Example: Merge Sort

Merge(A,p,q,r) procedure has ©(n) running time, n =r-p + 1

Merge(A,p,q,r) - Exercise 1.3-2
1 forj=ptor

> Bfj = Al

3 1=p

4 w=q+1

5 while (p < q)and (w <)

6 if Blp] < B[w]

7 then Ali] = B|p]

8 p=p+1

9 else Ali| = B[w]

10 w=w-+1

11 1=1+1
12 ifp>q

13 thenp=w

14 q=r

15 forj=ptoq
16 Af] = B
17 1=1+1

Analyzing Divide-and-Conquer Algorithms

Definition: A or

describes the running time of a recursive algorithm on a problem of size n
in terms of the running time of the algorithm on smaller inputs.

For small enough input size (n < ¢, for example), running time is con-
stant.

e Example: T(n) = O(n") = O(1)

e Sorting one element in Merge Sort

For larger input size:

e D(n)=

each of size

e Cln) =

Thus we generate the recurrence:

B @(1) ifn<ec
T(n) = { aT(n/b) + D(n)+ C(n) otherwise

Analysis of Merge Sort
Note if n = 1, Then T(n) = ©(1)
1. DIVIDE computes middle of array in constant time: D(n) = ©(1)

2. CONQUER sorts 2 subarrays of size n/2 in time: 2T (n/2)
3. COMBINE (Merge) procedure: C(n) = ©(n)

o) ifn=1
Tn) = { 2T(n)2) + (1) + O(n) ifn> 1

Note that ©(n) dominates O(1).

We will show next class that T(n) = ©(nlgn), where lg = log, n.

Summary

Does the computational difference amount to much?

e Supercomputer running efficient insertion sort

10

— 100 x 10% instructions per second

— 2n? instructions to sort n numbers
e Personal computer running inefficient merge sort

— 1 x 10° instructions per second

— 50n lg n instructions to sort n numbers

e Sorting one million numbers (n = 10°)

2(10%)2 instructions

e Supercomputer:

108 instructions/sec

50(10°) 1g(10°) instructions __

e Personal Computer:

109 instructions/sec

e MORAL: A little computational shrewdness can go a long way.

Growth of Functions

Definition: The efficiency of an algorithm is the order of

growth of the algorithm as the input size approaches the limit (increases
without bound).

The asymptotically more efficient algorithm is usually the better choice
for all but small inputs.

f(n) = ©(g(n)), g(n) is the Asymptotically Tight Bound for f(n)

11

©(g(n)) = {f(n): there exist positive constants ¢;, cg, and ng such that
0 <cig(n) < f(n) < cyg(n) forall n > ng }

“f(n) = ©(g(n))” means f(n) is an element of the set of functions g(n).

Here is a graphical depiction of ©.
Click mouse to advance to next frame.

Example:

Show that n? — 2n = ©(n?) and 200n? — 100n = O(n?).
cin? < n?—=2n < con? egn? <200n% — 100n < con?

c1<1-2/n<c c1 <200 —100/n < ¢
c1 <1/3,¢0>1 c; < 100, ¢p > 200
n>3n>1 n>1n>1
ng =3 ng=1

Because some choice for ¢y, ¢, and ng exists, then the functions are
both ©(n?).

Because coefficients on the high-order term only affect constants, they
are dropped from the © notation.

O(n") = ©(1) constant

12

O(g(n))

f(n) = O(g(n)), g(n) is an Asymptotic Upper Bound for f(n)

O(g(n)) = {f(n): there exist positive constants ¢ and ng such that 0 <
f(n) < c*g(n) for all n > ny }

See Figure 2.1b, page 25, for graphical depiction of O.

Examples:

e n? - 2n = O(n?)

e 200 n? - 100n = O(n?) = O(n?) = ...

e n = 0O(n?

e Does f(n) = O(g(n)) imply f(n) = O(g(n))?
e Does f(n) = O(g(n)) imply f(n) = O(g(n))? __

Omega(g(n))

f(n) = Q(g(n)), g(n) is an Asymptotic Lower Bound for f(n)

Q(g(n)) = {f(n): there exist positive constants ¢ and ng such that 0 <
c*g(n) < f(n) for all n > ng }

See Figure 2.1c, page 25, for graphical depiction of €.
Examples:
e n? - 2n = Q(n?)

13

e 200 n% - 100 n = Q(n?) = Q(n) = Q1)

o n? = Q(n)

e Does f(n) = ©(g(n)) imply f(n) = Q(g(n))?
e Does f(n) = Q(g(n)) imply f(n) = O(g(n))? _

Theorem 2.1

f(n) = ©(g(n)) if and only if f(n) = O(g(n)) and f(n) = Q(g(n)).

Asymptotic Notation in Equations
Example: 2n® + 3n + 1 = 2n% + O(n)

In other words, there is some function f(n) element of ©(n) that makes
the equation true; namely, 3n + 1.

2n% + 3n + 1 = 2n* + O(n) = O(n?).

In other words, for any function f(n) element of ©(n), there is some
function h(n) element of ©(n?); namely, 2n* + f(n).

Summary

o notation f(n) = o(g(n)), g(n) is an upper bound of f(n) that is not
asymptotically tight

14

w notation f(n) = w(g(n)), g(n) is a lower bound of f(n) that is not
asymptotically tight

Example: f(n) = 3n® + 4

e f(n) = O(n3)

e f(n) = O(n?) = O(n?) = ..

e f(n) = Q(n’) = Q(n?) = Q(n) = Q1)
e f(n) = o(n?) = o(n’) =

e f(n) = w(n?) = w(n) = w(1)

Some Useful Mathematical Tools To Remember

e monotonically increasing, strictly increasing

e monotonically decreasing, strictly decreasing

e lg n = [ogon = binary logarithm

e In n = log.n = natural logarithm, e = 2.7182...
e [ogya” = nlogya

e log.(ab) = log.a + log.b

o o — plome

o qlomn — plogya

loge b
loge a

e [0g,b =
e Stirling’s approximation to n! = +/27n (n/e)” (1+ O6(1/n))
e Splitting summations

15

e Mathematical Induction

e Review other tools starting on page 34

16

