Amortized Analysis

Though the worst case performance of an algorithm may be f(n), the average worst case over n runs may be asymptotically less than n*f(n).

We will study three methods for average worst case analysis:

- 1. **Aggregate Method.** Show all n runs take a total worst case time T, thus the average worst case is T/n.
- 2. **Accounting Method.** Performance costs assigned to some of the n runs are overestimates and are used as credit for underestimates of other runs.
- 3. **Potential Method.** The overestimates add to the "potential energy" of the method.

Example: Binary Counter A[0,...,k-1]

```
A[0] is the low-order bit.

A[k-1] is the high-order bit.
```

```
Increment(A)
    i = 0
    while i < length(A) and A[i] = 1
        A[i] = 0
        i = i+1
    if i < length(A)
    then A[i] = 1</pre>
```

- The worst case run time is $\Theta(k)$,
- Over n calls, worst case is _____
- But actual worst-case run time for n calls is _____

Aggregate Method

Note: Not all k bits flip for each call.

Bit A[0] flips _ times for n calls.

Bit A[1] flips $\lfloor n/2 \rfloor$ times for n calls.

Bit A[2] flips $\lfloor n/4 \rfloor$ times for n calls.

Bit A[i] flips $\lfloor n/2^i \rfloor$ times for n calls, where i = 0, 1, ..., $\lfloor \lg n \rfloor$.

For $i > \lfloor lgn \rfloor$, A[i] does not flip.

Aggregate Method

T(n) is the worst case time for n calls $= \sum_{i=0}^{\lfloor lgn \rfloor} n/2^{i}$ $= n \sum_{i=0}^{\lfloor lgn \rfloor} 1/2^{i} < n \sum_{i=0}^{\infty} 1/2^{i}$ $= n(\frac{1}{1-1/2})$ = 2n T(n) = O(n)

The amortized cost of each call is thus O(n)/n = O(1).

Accounting Method

Different operations have different costs.

Cost overestimates fund cost underestimates.

Example

Operation	Cost	
bit to 1	2*	overestimate
bit to 0	0**	underestimate

Need to set some bits to 1 before set to 0.

Because resetting bits in the while loop are "paid for", each call to Increment incurs a cost of 2 for the bit set to 1.

Constraints

1. The total amortized cost must be an upper bound on the actual cost.

^{*} one for actual bit flip, one for credit

^{*} use credit from the time when set to 1

2. The total credit in data structures must always be nonnegative.

Potential Method

Credit adds to "potential" of whole data structure instead of to individual objects.

Definitions

- $D_0 = \text{initial data structure}$
- c_i = actual cost of ith operation resulting in data structure D_i after operating on D_{i-1} (i = 1, ..., n).
- $\Phi(D_i)$ = real number potential associated with data structure D_i . Φ represents the potential function.
- \hat{c}_i = amortized cost of ith operation with respect to Φ \hat{c}_i = actual cost + potential increase $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$.
- The total amortized cost is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}))$$
This is a
$$\sum_{i=1}^{n} (a_{i} - a_{i-1}) = a_{n} - a_{0}$$

$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0}).$$

If $\Phi(D_n) \geq \Phi(D_0)$, then the amortized cost is an upper bound on the actual cost.

However, we do not know n.

If $\Phi(D_i) \geq \Phi(D_0)$ for all i, then we always pay in advance.

Let $\Phi(D_0) = 0$, thus we want $\Phi(D_i) \geq 0$.

This is similar to the accounting method since we credit potential when $\Phi(D_i) - \Phi(D_{i-1})$ is positive and debit potential when $\Phi(D_i) - \Phi(D_{i-1})$ is negative.

Example

In our example, $\Phi(D_i) = b_i$, the number of 1s in D_i (counter).

Let $t_i = \text{number of bits reset to 0 on the ith call to Increment.}$

Thus, the actual cost c_i is at most (cost of reset) + (cost to set one) = $t_i + 1$.

We know that
$$b_i \leq b_{i-1} - t_i + 1$$

Thus, $\Phi(D_i) - \Phi(D_{i-1}) \leq (b_{i-1} - t_i + 1) - b_{i-1}$
 $= 1 - t_i$
 $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$
 $\leq t_i + 1 + (1 - t_i)$
 $= 2$

If $\Phi(D_0) = 0$, then $\Phi(D_i) \geq 0$ for all i, and the total amortized cost is an upper bound to the actual cost.

The counter starts at zero, $\Phi(D_0) = 0$.

$$\hat{c}_i = \mathrm{O}(2)$$

n calls is

Dynamic Tables

```
TableInsert(T, x)
      if size(T) = 0
1
      then new table[T] with 1 slot
2
3
          size[T] = 1
      if \operatorname{num}(T) = \operatorname{size}(T)
4
      then create new table with 2*size[T] slots
                                                              ; \alpha \geq 1/2
5
          copy items from table [T] to new table
6
7
          free table[T]
          table[T] = new table
8
9
          size[T] = 2*size[T]
10
       insert x into table[T]
11
       num[T] = num[T] + 1
```

Aggregate Method

Let n = number of items in table.

The worst-case running time of this algorithm is O(n).

For n calls the worst-case running time is $O(n^2)$.

Double the table size when full. This expansion is performed once every power of 2 steps in 1...n.

Assuming
$$c_i = \begin{cases} i & \text{if } i-1 \text{ is power of } 2\\ 1 & \text{otherwise} \end{cases}$$
,
$$\sum_{i=1}^n c_i \leq n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j$$
This is a geometric series
$$\sum_{k=0}^n x^k = \frac{x^{n+1}-1}{x-1} < n+2n = 3n$$

The total amortized cost of a single call to TableInsert is 3.

Accounting Method

TableInsert cost should be 3. This cost pays for:

- Insert in existing table
- Copy to new table
- Copy one item already in table

If m = size[T] after expanding, then $num[T] = \underline{\hspace{1cm}}$ and $\underline{\hspace{1cm}}$ Charge \$3 per Insert.

Insert costs \$1 (\$2 left).

For m/2 items, m/2 credit for new items + m/2 credit for existing items.

Potential Method

Define potential function Φ .

- $\Phi(T) = 2 * \text{num}[T] \text{size}[T]$
- $\Phi(T) = 0$ immediately after expansion
- $\Phi(T)$ approaches size[T] when T gets full
- $\operatorname{num}[T] \ge \operatorname{size}[T]/2$, so $\Phi(T) \ge 0$

Thus, the sum of the amortized costs of n TableInsert operations is an upper bound on the sum of the actual costs.

Analysis

To analyze the amortized cost of the ith TableInsert operation, let num_i denote the number of items stored in the table after the ith operation

 $size_i$ denote the total size of the table after the ith operation Φ_i denote the potential after the ith operation Initially, $num_0 = 0$, $size_0 = 0$, and $\Phi_0 = 0$.

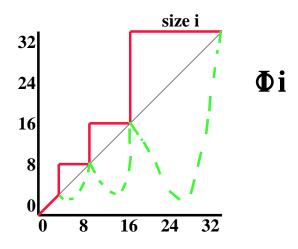
Consider two cases based on whether a table expansion is done. No expansion:

$$\begin{array}{rcl} \hat{c_i} &= c_i + \Phi_i - \Phi_{i-1} \\ &= 1 + (2*num_i \text{-} size_i) \text{-} (2*num_{i-1} \text{-} size_{i-1}) \\ &= 1 + (2*num_i \text{-} size_i) \text{-} (2*(num_i - 1) \text{-} size_i) \\ &= 1 \text{-} (-2) = 3 \end{array}$$

Analysis

Expansion:
$$(size_i/2 = size_{i-1} = num_i - 1)$$

 $\hat{c}_i = c_i + \Phi_i + \Phi_{i-1}$
 $= num_i + (2*num_i-size_i) - (2*num_{i-1} - size_{i-1})$
 $= num_i + (2*num_i-(2*num_i - 2)) - (2*(num_i - 1) - (num_i - 1))$
 $= num_i + 2 - (num_i - 1)$
 $= 3$



Note how potential builds up to number of elements just before expansion.

Applications