Amortized Analysis

Though the worst case performance of an algorithm may be f(n), the
average worst case over n runs may be asymptotically less than n*f(n).
We will study three methods for average worst case analysis:

1. Aggregate Method. Show all n runs take a total worst case time
T, thus the average worst case is T/n.

2. Accounting Method. Performance costs assigned to some of the
n runs are overestimates and are used as credit for underestimates of
other runs.

3. Potential Method. The overestimates add to the “potential en-
ergy”’ of the method.

Example: Binary Counter A[O,...,k-1]

A[0] is the low-order bit.
A[k-1] is the high-order bit.

Increment (A)

i=0

while i < length(A) and A[i] =1
Alil =0

1= 1i+1

if i < length(A)
then A[i] =1
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e The worst case run time is O(k),
e Over n calls, worst case is

e But actual worst-case run time for n calls is

Aggregate Method

Note: Not all k bits flip for each call.
Bit A[0] flips __ times for n calls.

Bit A[1] flips |n/2] times for n calls.

Bit A[2] flips |[n/4] times for n calls.

Bit Alfi] flips [n/2'] times for n calls, wherei =0, 1, ..., [lgn].
Fori > |lgn], Ali] does not flip.

—




Aggregate Method

T(n) is the worst case time for n calls
= £ /2
—nxlml1/9 < pye 172

= n<1—11/2>

The amortized cost of each call is thus O(n)/n = O(1).

Accounting Method

Different operations have different costs.
Cost overestimates fund cost underestimates.

Example
Operation ‘ Cost

bit to 1 2% | overestimate

bit to 0 | 0** | underestimate
Need to set some bits to 1 before set to O.

* one for actual bit flip, one for credit
* use credit from the time when set to 1
Because resetting bits in the while loop are “paid for”, each call to
Increment incurs a cost of 2 for the bit set to 1.
Each callis _ amortized cost

n calls is amortized cost
Constraints

1. The total amortized cost must be an upper bound on the actual cost.
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2. The total credit in data structures must always be nonnegative.

Potential Method

Credit adds to “potential” of whole data structure instead of to individual
objects.

Definitions

e [y = initial data structure

e ¢; = actual cost of ith operation resulting in data structure D; after
operating on D;_; (i=1, ..., n).

e &(D;) = real number potential associated with data structure D;.
® represents the potential function.

e ¢, = amortized cost of ith operation with respect to ®
¢; = actual cost + potential increase
Gi= ¢ + (I)(Dz> — (I)(Dz_l)

e The total amortized cost is

(ci + ®(D;) — ®(Dj-1))

]

n/\
Ci =

n
1=1

This is a > (a; — ai—1) = a, — ag

If ®(D,) > ®(Dy), then the amortized cost is an upper bound on the
actual cost.



However, we do not know n.

If ®(D;) > ®(Dy) for all i, then we always pay in advance.

Let ®(Dy) = 0, thus we want ®(D;) > 0.

This is similar to the accounting method since we credit potential when
d(D;) — ®(D;_1) is positive and debit potential when &(D;) — ®(D;_)
is negative.

Example

In our example, ®(D;) = b;, the number of 1s in D; (counter).
Let t; = number of bits reset to 0 on the ith call to Increment.
Thus, the actual cost ¢; is at most (cost of reset) + (cost to set one) =
t; + 1.
We know that bz S bi—l - tz‘ + 1
ThUS, (I)(DZ> — (I)<D2—1> S (bi—l — tz + 1) — bi—l

— 1 -t
éi = ¢ + (I)(Dz> — q)(Dz—1)
<t +14+ 01 —-1t)
= 2

If ®(Dy) = 0, then &(D;) > 0 for all i, and the total amortized cost
is an upper bound to the actual cost.
The counter starts at zero, ®(Dy) = 0.
¢ = 0(2)

n calls is




Dynamic Tables

Tablelnsert (T, x)

if size(T) =0

then new table[T] with 1 slot
size[T] = 1

if num(T) = size(T)

then create new table with 2*size|[T] slots s> 1/2
copy items from table[T| to new table
free table[T]
table[T]| = new table
size[T] = 2*size[T]

insert x into table|T]

num|T| = num|[T] + 1

© 0 ~J O T = W N+~
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Aggregate Method

Let n = number of items in table.
The worst-case running time of this algorithm is O(n).
For n calls the worst-case running time is O(n?).
Double the table size when full. This expansion is performed once every

power of 2 steps in 1...n.
v if ¢ — 1 is power of 2

)

Assuming ¢; = {1 otherwise

l .
Y1 G SnoF ZynggJ 2’

. . . . " 1_
This is a geometric series £7_, 2% = 2 ;_1 .
< n+ 2n
= 3n

The total amortized cost of a single call to Tablelnsert is 3.
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Accounting Method

Tablelnsert cost should be 3. This cost pays for:

e Insert in existing table
e Copy to new table

e Copy one item already in table

If m = size|T| after expanding, then num|T]| = and
Charge $3 per Insert.

Insert costs $1 (32 left).
For m/2 items, m/2 credit for new items + m/2 credit for existing

1tems.

Potential Method

Define potential function ®.
* num|T] - size[T]

(T) =2
e O(T) = 0 immediately after expansion
(T)
[

Thus, the sum of the amortized costs of n TableInsert operations is an
upper bound on the sum of the actual costs.




Analysis

To analyze the amortized cost of the ith Tablelnsert operation, let
num; denote the number of items stored in the table after the ith
operation
stze; denote the total size of the table after the ith operation
®,; denote the potential after the ith operation
Initially, numgy = 0, sizeqg = 0, and 5 = 0.

Consider two cases based on whether a table expansion is done.
No expansion:
¢ = ¢ + & — D,
= 1 + (2*num-size;) - (2*num;_q - size;_1)
= 1 4+ (2*num-size;) - (2%(num; — 1) - size;)
=1-(-2)=3

Analysis

Expansion: (size;/2 = size; 1 = num; — 1)
¢ = ¢ + & + b, 4
= num; + (2*numg-size;) - (2*num;_; - size;_1)
= num; + (2*num-(2*num; - 2)) - (2*(num; — 1) - (num, - 1))
= num; + 2 - (num; -1)
=3
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Note how potential builds up to number of elements just before expan-
sion.

Applications



