B-Trees

B-Trees are useful in the following cases:

The number of objects is too large to fit in memory.
Need external storage.

Disk accesses are slow, thus need to minimize the number of disk accesses.

Red-Black trees are not good in these situations, only retrieves one key
at a time from memory.

B-Trees

e B-Trees are balanced, like RB trees.

e They have a large number of children (large branching factor), unlike
RB trees.

e The branching factor is determined by the size of disk transfers (page
size).

e Fach object (node) referenced requires a DiskRead.
e Each object modified requires a DiskWrite.
e The root of the tree is kept in memory at all times.

e Insert, Delete, Search = O(h), where h is the height of the tree.
O(lgn), though much less in reality (logprn).

DIG M[P

A[BIC||EIF [[H|I | |K]L N(T';Q'RliTlUl

Properties of B-Trees

1. Node x

n(x) = #keys stored here
leaf(x) = true if leaf node

key () | keyp00 | keydx) | key)

ey, o)

| | | | |
C 1(x) cz(x) C3(X) C 4(x) c5(x)
keyskl keysk2 ke'ysk3 ke'ysk4 keysk5

\
¢ n(x)+£x)

Keysk x)+1

ki < keyi(z) < ko < keya(z) < .o < keyppy () < Ky

Properties of B-Trees

2. Every leaf has the same depth equal to the height of the tree.

3. The number of keys is bounded in terms of the minimum degree t
> 2.
n(x) > t-1 (except root > 1)
#children(x) > t (except root > 0), leaves = 0
n(x) < 2t-1

#children < 2t (except leaves which = 0)

Ifn(x) =2t-1thennisa
For example, if t = 3:

e Root: n(x) = , #children =
e Internal node: n(x) = , #children =
e Leaf: n(x) = , #children =

What is h in terms of n and t?

Theorem 19.1
Given n > 1, t > 2, B-Tree of height h and minimum degree t, and

number of keys n,
h < logt”T“L1
Proof:
n > minimum #nodes in tree of height h and minimum degree t
The minimum #nodes means root has one key (two children) and other
nodes have t-1 (minimum) keys.

= 1 key at root +
2(t-1) at depth 1 +
2t(t-1) at depth 2 +
2t%(t-1) at depth 3 + ...
=1+ @t—1)xh 267 =1+ 2(t-1) =hf
— 1+ 2(t — 1)(2=h)
=1+2(th—1)
=2th — 1

n>oth-1

2th < n+1
h +1
th < Ae

logit" < log"3*

h < logt”TJr1

Operations

e Root always in memory

— Never read

— Write only when modified
e Nodes passed to operations must have been Read

e All operations go from root down in one pass, O(h)

Search

This is a generalization of binary tree search.

4

Search(x, k)
if k in node x
then return x and i such that key;(x) = k
else if x is a leaf
then return NIL
else find i such that key;_;(x) < k < key;(x)
DiskRead(child;(x))
return Search(child;(x), k)

Click mouse to advance to next frame.

Search

e Node size should be disk page size.

e Disk Accesses = O(log, n), where n is #keys in B-tree
e Run Time = O(th) = O(t log,n) = O(Ig n), if t is constant

Example
Disk page size = 2048 bytes
4 bytes per key, 4 bytes per pointer, 4 bytes extra

Full node has (2t - 1) keys and 2t child pointers: 16t bytes per node
16t = 2048, t = 128

Insert

e If node x is a non-full (< 2t-1 keys) leaf, then insert new key k in node
X

e If node x is non-full but not a leaf, then recurse to appropriate child
of X

e If node x is full (2t-1 keys), then “split” the node into z; and x5, and
recurse to appropriate node x1 or xs.

In this example t = 2.
Click mouse to advance to next frame.

Splitting: B-Tree-Split-Child(x, i, y)

keyi_gx\) l;eyi) keyi_gx\) key: (¥) l;eyi () =key, ,(X)
| 14 nonfull nx)=nx)+1
X n(x) keys X keys

] - rT .
y:childl(x) —_— / \
y full Y| nonfull Z | nonfull

2t-1 keys

keyy(y) — key;_gy) key, . {y) — key o)
child {y) — child {y) child t4q) - child &/)
nly’) =t- 1 keys n(z) = t-1 keys

Note: If y is root(T), then allocate node x and link to y before calling
split.

Splitting: B-Tree-Split-Child(x, i, y)

B-Tree-Split-Child(x, i, y) - X is parent, y is child in ith subtree
Allocate(z) > n(z)=t-1, leaf(z) = leaf(y)
Copy y’s second half keys and children to z
n(y) = t-1

Shift x’s keys and children one to the right from i

6

ChﬂdH_l (X) =7
key;(x) = keyy(y)
n(x) =n(x) + 1
Write(x)
DiskWrite(y)
DiskWrite(z)
Running time is O(t) with 3 disk writes

Insert: B-Tree-Insert(T, k)

e Start at root(T) moving down the tree looking for the proper leaf to
put k

e Split all full nodes along the way

B-Tree-Insert(T, k)
r = root(T)
if n(r) = 2t-1 ; full
then allocate empty node s pointing to r
B-Tree-Split-Child(s, 1, r)
B-Tree-Insert-Nonfull(s, k)
else B-Tree-Insert-Nonfull(r, k)

B-Tree-Insert-Nonfull(x, k)
if leaf(x)
then shift keys of x higher than k one to the right
put k in appropriate spot
n(x) = n(x) + 1
DiskWrite(x)
else find smallest i such that k < key;(x)

7

DiskRead(child;(x))
if n(child;(x)) = 2t - 1 ; full
then B-Tree-Split-Child(x, i, child;(x))
if k > key;(x)
theni=1+1 - adjust due to new node entry from child
B-Tree-Insert-Nonfull(child; (x), k)

Disk Accesses: O(h)
Run Time: O(th) = O(t log,n) = O(Ig n), if t constant

Example

Click mouse to advance to next frame.
Note how B-Trees grow from the top, not from the bottom like BST's

or RBTs.

Deletion: B-Tree-Delete(x, k)

e Search down tree for node containing k

e When B-Tree-Delete is called recursively, the number of keys in x
must be at least the minimum degree t (the root can have < t keys)

e If x is a leaf, just remove key k and still have at least t-1 keys in x

e If there are not > t keys in x, then borrow keys from other nodes.

Deletion

There are three general cases:
[Case 1:] If key k in node x and x is a leaf, then remove k from x.
Click mouse to advance to next frame.
[Case 2:] If k is in x and x is an internal node.
One of three subcases:

Case 2a

If child y k in x has > t keys:

e Find predecessor k’ of k in subtree rooted at y

e Recursively delete k' (first two steps can be performed in one pass
down the tree)

e Replace k by k’ in x

Click mouse to advance to next frame.

Case 2b

If child z k in x has > t keys:
e Find successor k’ of k in subtree y
e Recursively delete k’
e Replace k by k’ in x

Click mouse to advance to next frame.

Case 2c

If both y and z have t-1 keys:

e Merge k and all of z into y
e Free 7

e Recursively delete k from y

Note: x loses both k and pointer to z, y now contains 2t-1 keys.
Click mouse to advance to next frame.

Case 3

if k not in internal node x
then determine subtree child;(x) containing k
if child;(x) has > t keys
then B-Tree-Delete(child; (x), k)
else execute Case 3a or 3b until can descend to node having > t keys

Case 3a

If child;(x) has t-1 keys but has a left or right sibling with > t keys, then
borrow one from sibling
move key from x to child;(x)
move key from sibling to x
move child from sibling to child;(x)
Click mouse to advance to next frame.

10

Case 3b

If child;(x) and its left and right siblings have t-1 keys
then merge child;(x) with one sibling using median key from x.
Click mouse to advance to next frame.

Analysis

Delete
Disk Accesses: O(h), where h = O(log, n)
Run Time: O(th)
B-Tree Operations
Disk Accesses: O(h) = O(log, n) = O(Ig n)
Run Time: O(th) = O(t log, n) = O(lg n)

Applications

11

