B-Trees

B-Trees are useful in the following cases:

The number of objects is too large to fit in memory.

Need external storage.

Disk accesses are slow, thus need to minimize the number of disk accesses.

Red-Black trees are not good in these situations, only retrieves one key at a time from memory.

B-Trees

- B-Trees are balanced, like RB trees.
- They have a large number of children (large branching factor), unlike RB trees.
- The branching factor is determined by the size of disk transfers (page size).
- Each object (node) referenced requires a DiskRead.
- Each object modified requires a DiskWrite.
- The root of the tree is kept in memory at all times.
- Insert, Delete, Search = O(h), where h is the height of the tree. O(lgn), though much less in reality $(log_{BF}n)$.

Properties of B-Trees

1. Node x

$$n(x) = \#$$
keys stored here $leaf(x) = true if leaf node$

$$k_1 \leq key_1(x) \leq k_2 \leq key_2(x) \leq \ldots \leq key_{n(x)}(x) \leq k_{n(x)+1}$$

Properties of B-Trees

- 2. Every leaf has the same depth equal to the height of the tree.
- **3.** The number of keys is bounded in terms of the minimum degree $t \ge 2$.

$$\begin{array}{c} n(x) \geq t\text{-}1 \; (\text{except root} \geq 1) \\ \# \text{children}(x) \geq t \; (\text{except root} \geq 0), \; \text{leaves} = 0 \\ n(x) \leq 2t \; \text{-} \; 1 \\ \# \text{children} \leq 2t \; (\text{except leaves which} = 0) \\ \text{If } n(x) = 2t \; \text{-} \; 1 \; \text{then n is a} \underline{\hspace{2cm}}. \end{array}$$

For example, if t = 3:

- Root: $n(x) = \underline{\hspace{1cm}}$, #children = $\underline{\hspace{1cm}}$
- Internal node: $n(x) = \underline{\hspace{1cm}}$, #children = $\underline{\hspace{1cm}}$
- Leaf: $n(x) = \underline{\hspace{1cm}}$, #children = $\underline{\hspace{1cm}}$

What is h in terms of n and t?

Theorem 19.1

Given $n \ge 1$, $t \ge 2$, B-Tree of height h and minimum degree t, and number of keys n,

$$h \leq log_t \frac{n+1}{2}$$

Proof:

 $n \ge minimum \# nodes$ in tree of height h and minimum degree t The minimum # nodes means root has one key (two children) and other nodes have t-1 (minimum) keys.

$$= 1 \text{ key at root} + \\ 2(t-1) \text{ at depth } 1 + \\ 2t(t-1) \text{ at depth } 2 + \\ 2t^{2}(t-1) \text{ at depth } 3 + \dots$$

$$= 1 + (t-1) \sum_{i=1}^{h} 2t^{i-1} = 1 + 2(t-1) \sum_{i=0}^{h-1} t^{i}$$

$$= 1 + 2(t-1)(\frac{t^{h}-1}{t-1})$$

$$= 1 + 2(t^{h}-1)$$

$$= 2t^{h}-1$$

$$n \geq 2t^{h}-1$$

$$n \geq 2t^{h}-1$$

$$t^{h} \leq n+1$$

$$t^{h} \leq \frac{n+1}{2}$$

$$log_{t}t^{h} \leq log_{t}\frac{n+1}{2}$$

$$h \leq log_{t}\frac{n+1}{2}$$

Operations

- Root always in memory
 - Never read
 - Write only when modified
- Nodes passed to operations must have been Read
- All operations go from root down in one pass, O(h)

Search

This is a generalization of binary tree search.

```
Search(x, k)

if k in node x

then return x and i such that key_i(x) = k

else if x is a leaf

then return NIL

else find i such that key_{i-1}(x) < k < key_i(x)

DiskRead(child<sub>i</sub>(x))

return Search(child<sub>i</sub>(x), k)

Click mouse to advance to next frame.
```

Search

- Node size should be _____ disk page size.
- Disk Accesses = $\Theta(\log_t n)$, where n is #keys in B-tree
- Run Time = $O(th) = O(t \log_t n) = O(\lg n)$, if t is constant

Example

```
Disk page size = 2048 bytes
4 bytes per key, 4 bytes per pointer, 4 bytes extra
Full node has (2t - 1) keys and 2t child pointers: 16t bytes per node
16t = 2048, t = 128
```

Insert

• If node x is a non-full (< 2t-1 keys) leaf, then insert new key k in node x

- ullet If node x is non-full but not a leaf, then recurse to appropriate child of x
- If node x is full (2t-1 keys), then "split" the node into x_1 and x_2 , and recurse to appropriate node x_1 or x_2 .

In this example t = 2.

Click mouse to advance to next frame.

Splitting: B-Tree-Split-Child(x, i, y)

Note: If y is root(T), then allocate node x and link to y before calling split.

Splitting: B-Tree-Split-Child(x, i, y)

B-Tree-Split-Child(x, i, y) ; x is parent, y is child in ith subtree Allocate(z) ; n(z)=t-1, leaf(z)=leaf(y)

Copy y's second half keys and children to z

$$n(y) = t-1$$

Shift x's keys and children one to the right from i

```
child_{i+1}(x) = z
key_i(x) = key_t(y)
n(x) = n(x) + 1
Write(x)
DiskWrite(y)
DiskWrite(z)
Running time is <math>\Theta(t) with 3 disk writes
```

Insert: B-Tree-Insert(T, k)

- Start at root(T) moving down the tree looking for the proper leaf to put k
- Split all full nodes along the way

```
 \begin{aligned} & \text{B-Tree-Insert}(T,\,k) \\ & r = \text{root}(T) \\ & \text{if } n(r) = 2t\text{-}1 \\ & \text{then allocate empty node s pointing to r} \\ & \text{B-Tree-Split-Child}(s,\,1,\,r) \\ & \text{B-Tree-Insert-Nonfull}(s,\,k) \\ & \text{else B-Tree-Insert-Nonfull}(r,\,k) \\ \end{aligned}   \begin{aligned} & \text{B-Tree-Insert-Nonfull}(x,\,k) \\ & \text{if leaf}(x) \\ & \text{then shift keys of x higher than k one to the right} \\ & \text{put k in appropriate spot} \\ & n(x) = n(x) + 1 \\ & \text{DiskWrite}(x) \\ & \text{else find smallest i such that } k < \text{key}_i(x) \end{aligned}
```

```
\begin{split} \operatorname{DiskRead}(\operatorname{child}_i(x)) &= \operatorname{2t-1} \; ; \; \operatorname{full} \\ \operatorname{then} \; \operatorname{B-Tree-Split-Child}(x, \, i, \, \operatorname{child}_i(x)) \\ &= \operatorname{if} \; k > \ker_i(x) \\ \operatorname{then} \; i = i+1 \quad ; \; \operatorname{adjust} \; \operatorname{due} \; \operatorname{to} \; \operatorname{new} \; \operatorname{node} \; \operatorname{entry} \; \operatorname{from} \; \operatorname{child} \\ \operatorname{B-Tree-Insert-Nonfull}(\operatorname{child}_i(x), \, k) \end{split}
```

Disk Accesses: O(h)Run Time: $O(th) = O(t \log_t n) = O(\lg n)$, if t constant

Example

Click mouse to advance to next frame.

Note how B-Trees grow from the top, not from the bottom like BSTs or RBTs.

Deletion: B-Tree-Delete(x, k)

- Search down tree for node containing k
- When B-Tree-Delete is called recursively, the number of keys in x must be at least the minimum degree t (the root can have < t keys)
- If x is a leaf, just remove key k and still have at least t-1 keys in x
- If there are not \geq t keys in x, then borrow keys from other nodes.

Deletion

There are three general cases:

[Case 1:] If key k in node x and x is a leaf, then remove k from x.

Click mouse to advance to next frame.

[Case 2:] If k is in x and x is an internal node.

One of three subcases:

Case 2a

If child y _____ k in x has \geq t keys:

- Find predecessor k' of k in subtree rooted at y
- Recursively delete k' (first two steps can be performed in one pass down the tree)
- Replace k by k' in x

Click mouse to advance to next frame.

Case 2b

If child z _____ k in x has \geq t keys:

- Find successor k' of k in subtree y
- Recursively delete k'
- Replace k by k' in x

Click mouse to advance to next frame.

Case 2c

If both y and z have t-1 keys:

- Merge k and all of z into y
- Free z
- Recursively delete k from y

Note: x loses both k and pointer to z, y now contains 2t-1 keys. Click mouse to advance to next frame.

Case 3

```
if k not in internal node x then determine subtree \operatorname{child}_i(x) containing k if \operatorname{child}_i(x) has \geq t keys then B-Tree-Delete(\operatorname{child}_i(x), k) else execute Case 3a or 3b until can descend to node having \geq t keys
```

Case 3a

If $\text{child}_i(\mathbf{x})$ has t-1 keys but has a left or right sibling with \geq t keys, then borrow one from sibling move key from \mathbf{x} to $\text{child}_i(\mathbf{x})$

move key from sibling to xmove child from sibling to child_i(x)

Click mouse to advance to next frame.

Case 3b

If $\text{child}_i(\mathbf{x})$ and its left and right siblings have t-1 keys then merge $\text{child}_i(\mathbf{x})$ with one sibling using median key from \mathbf{x} . Click mouse to advance to next frame.

Analysis

Delete

Disk Accesses: O(h), where $h = O(\log_t n)$ Run Time: O(th)

B-Tree Operations

Disk Accesses: $O(h) = O(\log_t n) = O(\lg n)$ Run Time: $O(th) = O(t \log_t n) = O(\lg n)$

Applications