	Binary Heap	Binomial Heap	Fibonacci Heap
	(worst case)	(worst case)	(amortized)
Make-Heap	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
Minimum	$\Theta(1)$	$\Theta(lgn)$	$\Theta(1)$
Extract-Min	$\Theta(lgn)$	$\Theta(lgn)$	$\Theta(lgn)$
(Union)	$\Theta(n)$	$\Theta(lgn)$	$\Theta(1)$
Decrease-Key	$\Theta(lgn)$	$\Theta(lgn)$	$\Theta(1)$
Delete	$\Theta(lgn)$	$\Theta(lgn)$	$\Theta(lgn)$
Insert	$\Theta(lgn)$	$\Theta(lgn)$	$\Theta(1)$

Mergeable Heaps

Union(H1, H2) Creates and returns a new heap containing all nodes from heaps H1 and H2

Binary Heaps: Union = $\Theta(n)$ worst case

Binomial Heaps: Union = $O(\lg n)$ worst case

Fibonacci Heaps: Union = $\Theta(1)$ amortized

Other operations:

Extract-Min maintains partial ordering over keys.

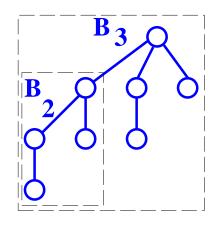
This is useful for many graph algorithms.

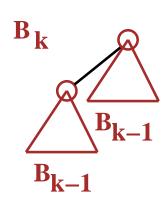
Binomial Heaps

A binomial heap is a set of **binomial trees**.

A **binomial tree** B_K is an ordered tree such that

 $^{\mathbf{B}}_{\mathbf{0}}$ O





B_K properties

- 1. There are 2^k nodes
- 2. Height of tree = k
- 3. There are exactly $\binom{k}{i}$ nodes at depth i (this is why the tree is called a "binomial" tree)

Review: this is $\frac{k!}{i!(k-i)!}$

4. Root has degree k (children) and its children are $B_{k-1}, B_{k-2}, ..., B_0$ from left to right

Prove properties by induction on k

Base Case: Holds for B_0 .

Assume: Holds for $B_0 \dots B_{k-1}$.

- 1. B_k is 2 copies of B_{k-1} , so $2^{k-1} + 2^{k-1} = 2^k$ nodes.
- 2. Depth of B_k is one greater than maximum depth of B_{k-1} . Add one more level: height = (k-1) + 1 = k.
- 3. See book (Lemma 20.1).
- 4. True for children $B_{k-1}, B_{k-2}, ..., B_0$ from left to right. B_{k-1} is left child of B_k , root is also root of B_{k-1} (minus left child), so degrees are $B_{k-1}, B_{k-2}, ..., B_0$.

The root of B_k is a B_{k-1} with one more child (the left child), so root of B_k has degree (k-1) + 1 = k.

Binomial Heap Properties

- 1. Each binomial tree is heap-ordered ($key(x) \ge key(parent(x))$). This is the opposite of previous heap properties.
- 2. There never exist two or more trees with the same degree in the heap.

A binomial heap with n nodes has at most $\lfloor \lg n \rfloor + 1$ binomial trees.

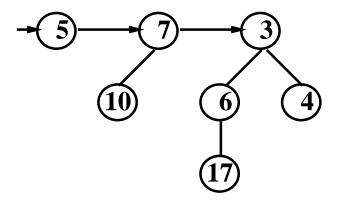
n in binary =
$$< b_k, b_{k-1}, ..., b_0 >$$
 bits $\mathbf{k} = \lfloor \lg n \rfloor, \, \mathbf{n} = \sum_{i=0}^{\lfloor \lg n \rfloor} b_i 2^i$

There is a one-to-one mapping between the binary representation and binomial trees in a binomial heap.

If $b_i = 1$, then B_i is in the heap Recall that there are 2^i nodes in B_i

At most $\lfloor \lg n \rfloor + 1$ bits are needed to express n base 2

Example: Binomial Heap H



$$B_0 \longrightarrow B_1 \longrightarrow B_2$$
 (______ nodes)
 $B_0 \longrightarrow B_2 \longrightarrow B_5$ (_____ nodes)

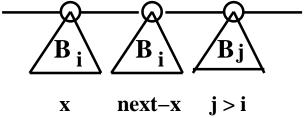
Operations

Make-Heap() $(\Theta(1))$

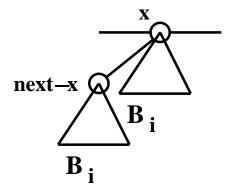
 $Minimum(H) (O(\lg n))$

Find minimum of roots of binomial trees in H

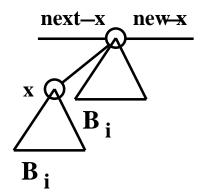
```
Union(H_1, H_2)
Union(H_1, H_2)
   H = \text{new heap containing trees of } H_1 \text{ and } H_2 \text{ merged in}
       non-decreasing order by degree of root
              ; Similar to Merge used in MergeSort
               ; O(lg n): at most two roots of each degree,
                       O(lg n) possible degrees
               ; No more than 2 B_i trees in H at this point
              ; Could be 3 after linking two B_{i-1} trees together
   prev-x = NIL
                      ; three-tree window
   x = head(H)
                     ; look for:
```



```
next-x = sibling(x)
while next-x \neq NIL
   if degree(x) \neq degree(next-x) or
       degree(x) = degree(next-x) = degree(sibling(next-x))
   then move window right by one
   else if key(x) \le key(next-x)
       then:
```



else:



advance window

Running time = $O(\lg n)$ if $n = n_1 + n_2$ nodes in H.

Example

Operations

Insert(H, x)

```
Insert(H,x)
   H' = x
   H = Union(H, H')
                         Running time = O(\lg n)
Extract-Min(H)
Extract-Min(H)
   Find root x with minimum key in H
                                              O(\lg n)
                                             ; \Theta(1)
   Remove x from H
                                                   O(\lg n)
   H' = \text{children of } x \text{ in reverse order}
          ; because children are B_{k-1}, B_{k-2}, ..., B_0
   Union(H, H')
                                            O(\lg n)
                         Running time = O(\lg n)
```

```
Decrease-Key(H, x, k), where k \le \text{key}(x)

Decrease-Key(H, x, k)

\text{key}(x) = k

\text{while parent}(x) \ne \text{NIL and key}(x) < \text{key}(\text{parent}(x))

\text{;; "bubble" new key up}

\text{swap}(\text{key}(x), \text{key}(\text{parent}(x)))

x = \text{parent}(x)

Max depth = \lfloor lgn \rfloor

Running time = O(\lg n)
```

Procedure	Binomial Heap	Fibonacci Heap
	(worst case)	(amortized)
Make-Heap	$\Theta(1)$	$\Theta(1)$
Insert	$O(\lg n)$	$\Theta(1)$
Minimum	$\Theta(\lg n)$	$\Theta(1)$
Extract-Min	$\Theta(\lg n)$	$O(\lg n)$
Union	$O(\lg n)$	$\Theta(1)$
Decrease-Key	$\Theta(\lg n)$	$\Theta(1)$
Delete	$\Theta(\lg n)$	$O(\lg n)$

```
\begin{array}{ll} Delete(H,\,x) \\ Delete(H,\,x) \\ Decrease-Key(H,\,x,\,-\infty) & ; \, O(\lg\,n) \\ Extract-Min(H) & ; \, O(\lg\,n) \end{array}
```

Fibonacci Heaps

- ullet If nodes are never removed, then yields $\Theta(1)$ performance
- Not designed for efficient search

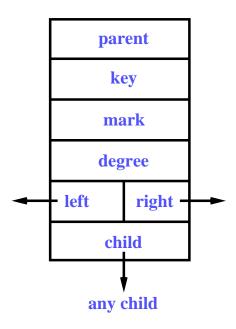
Running time = $O(\lg n)$

Structure of Fibonacci Heaps

A **Fibonacci Heap** is a set of heap-ordered trees. Trees are not ordered binomial trees, because

- 1. Children of a node are unordered
- 2. Deleting nodes may destroy binomial construction

Node Structure:



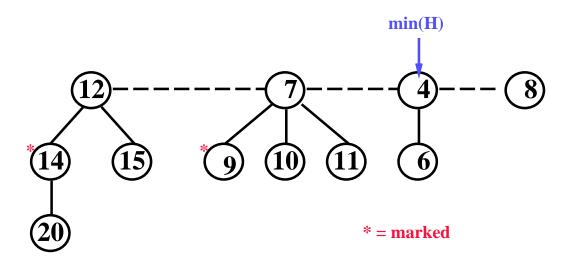
The field "mark" is True if the node has lost a child since the node became a child of another node.

The field "degree" contains the number of children of this node.

The structure contains a doubly-linked list of sibling nodes.

Heap Structure

min(H) pointer to node in root list having smallest key in heap Hn(H) number of nodes in heap H



Potential Function

$$\Phi(H) = t(H) + 2m(H)$$

$$t(H) = \# trees in root list of heap H$$

$$m(H) = \# mark nodes in heap H$$

Example

t(H) = 4, m(H) = 2,
$$\Phi(H)$$
 = __
Empty heap, $\Phi(H_0)$ = 0, $\Phi(H_i) \ge 0$
 $\sum_{i=1}^{n} \hat{c}_i$ is an upper bound on $\sum_{i=1}^{n} c_i$

Maximum Degree

D(n) = upper bound on degree of a node in a Fibonacci Heap with n nodes

By showing $D(n) = O(\lg n)$, we can constrain running times for node removal.

- 1. Make node root
- 2. Delete
- 3. Add O(lg n) children to root list

Mergeable Heap Operations

Make-Heap, Insert, Minimum, Extract-Min, Union

These always yield unordered binomial trees; thus, they maintain the binomial tree properties.

- 1. 2^k nodes
- 2. k = height of tree
- 3. $\binom{k}{i}$ nodes at depth i
- 4. Unordered binomial tree U_k has root with degree k greater than any other node. Children are trees $U_0, U_1, ..., U_{k-1}$ in some order.

For n-node Fibonacci Heap, D(n) is largest if all nodes are in one tree.

The maximum degree is at depth=1, $\binom{k}{1}$ = k for tree with 2^k nodes.

If $n = 2^k$, then $k = \lg n$

$$D(n) \le k = \lg n$$

$$D(n) = O(\lg n)$$

Strategy

- Do not merge trees until necessary
- Merging done in Extract-Min, where new minimum is needed

Operations

```
Make-Heap()
allocate(H)
min(H) = NIL
n(H) = 0
Analysis:
t(H) = m(H) = 0
\Phi(H) = t(H) + 2m(H) = 0
\hat{c}_i = c_i = O(1)
Amortized cost equals actual cost.
```

```
\begin{array}{c} \operatorname{Insert} \\ \operatorname{Insert}(H,\, x) \\ \text{set } x\text{'s fields appropriately} \\ \operatorname{add} x \text{ to root list of } H \end{array} \hspace{0.5cm} ; \, O(1) \end{array}
```

reset
$$min(H)$$
 if needed $n(H) = n(H) + 1$

Analysis:

$$H = initial heap with t(H) trees and m(H) marked nodes H' = new heap, t(H') = t(H) + 1, m(H') = m(H) \hat{c_i} = c_i + \Phi(H') - \Phi(H) = O(1) + [t(H) + 1 + 2m(H)] - [t(H) + 2m(H)] = O(1) + 1 = O(1)$$

Operations

Minimum

Minimum(H) return min(H)

Analysis:

$$H = H'$$

$$\Phi(H) = \Phi(H')$$
 $\hat{c}_i = c_i = O(1)$

Operations

Union

Union (H_1, H_2)

 $H = \text{new heap whose root list contains roots from } H_1 \text{ and } H_2$

$$\begin{aligned} &\mathrm{n}(\mathrm{H}) = \mathrm{n}(H_1) + \mathrm{n}(H_2) \\ &\min(\mathrm{H}) = \min(H_1) \\ &\mathrm{if} \ (\min(H_1) = \mathrm{NIL}) \ \mathrm{or} \ (\min(H_2) \neq \mathrm{NIL} \ \mathrm{and} \ \min(H_2) < \min(H_1)) \\ &\mathrm{then} \ \min(\mathrm{H}) = \min(H_2) \end{aligned}$$

Analysis:

$$t(H) = t(H1) + t(H2)$$

 $m(H) = m(H1) + m(H2)$

$$\hat{c}_i = c_i + \Phi(H) - (\Phi(H_1) + \Phi(H_2))
= O(1) + [t(H_1) + t(H_2) + 2(m(H_1) + m(H_2))]
- [t(H_1) + 2m(H_1) + t(H_2) + 2m(H_2)]
= O(1) + 0
= O(1)$$

Operations

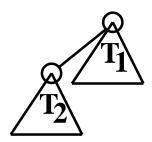
Extract-Min

```
\begin{split} &z = \min(H) \\ &add\ z's\ children\ to\ root\ list &;\ O(D(n(H))) \\ &remove\ z\ from\ root\ list &\\ &if\ root\ list \neq \{\} \\ &then\ Consolidate(H) &;\ O(D(n(H))) \\ &else\ min(H) = NIL \\ &n(H) = n(H) - 1 \end{split}
```

Consolidate

Consolidate(H)

while two trees in H (T1,T2) have same degree change root list to following using Link(H, T2, T1):



for i = 0 to D(n(H))if tree T of degree i has root-key < min(H)then min(H) = T

Example

Click mouse to advance to next frame.

Analysis

$$n(H) = n$$

$$length(rootlist) \le D(n) + t(H) - 1$$

$$T(while loop) \le D(n) + t(H)$$

$$c_i = O(D(n) + t(H))$$

$$\Phi(H) = t(H) + 2m(H)$$

 $\Phi(H') \le D(n) + 1 + 2m(H)$

$$\hat{c}_i = c_i + (D(n) + 1 + 2m(H)) - (t(H) + 2m(H))$$

= $O(D(n) + t(H)) + D(n) + 1 - t(H)$
= $O(D(n))$

Assuming adjustment of potential coefficients to dominate coefficients hidden in O(t(H)).

```
Decrease-Key
Decrease-Key(H, x, k)
   key(x) = k
   p = parent(x)
   if p \neq NIL and key(x) < key(p)
   then Cut(H, x, p)
      Cascading-Cut(H, p)
   if key(x) < key(min(H))
   then min(H) = x
Cut(H, x, p)
   remove x from children of p
   add x to root list of H
   mark(x) = False
Cascading-Cut(H, p)
   next-p = parent(p)
   if next-p \neq NIL
   then if mark(p) = False
      then mark(p) = True
```

```
else Cut(H, p, next-p)
Cascading-Cut(H, next-p)
```

Analysis

Let
$$c_i = O(c)$$
 be the number of cascading cuts

$$\Phi(H') = (t(H) + c) + 2(m(H) - c + 2), c-1 \text{ unmarked, 1 marked}$$

$$\hat{c_i} = O(c) + (t(H) + c) + 2(m(H) - c + 2) - (t(H) + 2m(H))$$

$$= O(c) + 4 - c$$

$$= O(1)$$

Example

Click mouse to advance to next frame.

Operations

Delete

Delete(H, x)

 $\begin{array}{ll} \text{Decrease-Key}(H,\,x,\,-\infty) & ;\,O(1) \text{ amortized} \\ \text{Extract-Min}(H) & ;\,O(D(n)) \text{ amortized} \end{array}$

Analysis:

Running time = O(D(n)) amortized

Bounding Maximum Degree D(n)

Lemma 21.1

 $F_{k+2} = 1 + \sum_{i=0}^{k} F_i$, where F_k is a Fibonacci number.

$$F_k = \begin{cases} k & \text{if } k < 2\\ F_{k-1} + F_{k-2} & \text{if } k \ge 2 \end{cases}$$

Lemma 21.3

For a node x in a Fibonacci heap, where k = degree(x), $size(x) \ge F_{k+2} \ge \phi^k$, where $\phi = \frac{1+\sqrt{5}}{2}$ size(x) = #nodes in subtree rooted at x

Corollary 21.4

$$D(n) = O(lgn)$$

By Lemma 21.3, $n \ge \text{size}(x) \ge \phi^k$, where n = nodes in Fibonacci Heap and k = degree of any node x.

Then $\log_{\phi} n \geq k$, and $k = O(\log_{\phi} n) = O(\lg n)$.

Applications