Binary Heap | Binomial Heap | Fibonacci Heap

(worst case) | (worst case) (amortized)
Make-Heap O(1) O(1) O(1)
Minimum (1) O(lgn) (1)
Extract-Min O(lgn) O(lgn) O(lgn)
(Union) ©(n) O(lgn) ©(1)
Decrease-Key | O(lgn) O(lgn) ©(1)
Delete O(lgn) O(lgn) O(lgn)
Insert O(lgn) O(lgn) O(1)

Mergeable Heaps

Union(H1, H2) Creates and returns a new heap containing all nodes
from heaps H1 and H2

Binary Heaps: Union = ©(n) worst case
Binomial Heaps: Union = O(lgn) worst case

Fibonacci Heaps: Union = O(1) amortized

Other operations:

Extract-Min maintains partial ordering over keys.
This is useful for many graph algorithms.

Binomial Heaps

A binomial heap is a set of binomial trees.
A binomial tree By is an ordered tree such that

Boo

By properties

1. There are 2* nodes

2. Height of tree = k

3. There are exactly (k) nodes at depth i (this is why the tree is called

i
a “binomial” tree)
k!

Review: this is A=)

4. Root has degree k (children) and its children are By_1, By_o, .., By
from left to right

Prove properties by induction on k

Base Case: Holds for By.

Assume: Holds for By... Bi_1.
1. By, is 2 copies of By_1, so 2871 + 28=1 = 2% podes.

2. Depth of By is one greater than maximum depth of By_1.
Add one more level: height = (k-1) + 1 = k.

3. See book (Lemma 20.1).

4. True for children Bj_1, By_o, .., By from left to right.
By, is left child of By, root is also root of Bj_; (minus left child), so
degrees are By_1, Bi_o, .., By.
The root of By is a Bx_1 with one more child (the left child), so root
of By has degree (k-1) + 1 = k.

Binomial Heap Properties

1. Each binomial tree is heap-ordered (key(x) > key(parent(x)).
This is the opposite of previous heap properties.

2. There never exist two or more trees with the same degree in the heap.
A binomial heap with n nodes has at most [Ilgn| + 1 binomial trees.

n in binary = < bg, by_1, .., by > bits
k= [lgn), n = si& b2

There is a one-to-one mapping between the binary representation and
binomial trees in a binomial heap.

3

If b, = 1, then B; is in the heap
Recall that there are 2¢ nodes in B;

At most |lgn| + 1 bits are needed to express n base 2

Example: Binomial Heap H

~O—(D—3
O &
&)

By — By — By (nodes)
By — By — B; (nodes)
Operations

Make-Heap() (©(1))
Minimum(H) (O(Ign))

Find minimum of roots of binomial trees in H

Operations

Union(H;, Hs)

Union(H;, Hs)
H = new heap containing trees of H; and Hs merged in
non-decreasing order by degree of root
» Similar to Merge used in MergeSort
: O(Ig n): at most two roots of each degree,
; O(lg n) possible degrees
: No more than 2 B; trees in H at this point
- Could be 3 after linking two B;_; trees together
prev-x = NIL * three-tree window
x = head(H look for:

/\/\/BX

next-x j>i

next-x = sibling(x)
while next-x # NIL
if degree(x) # degree(next-x) or
degree(x) = degree(next-x) = degree(sibling(next-x))
then move window right by one
else if key(x) < key(next-x)
then:

else:

next—x _ newx
')

advance window

Running time = O(lg n) if n = ny + ny nodes in H.

Example

Operations

Insert(H, x)

Insert(H,x)
H =x
H = Union(H, H’)
Running time = O(Ig n)
Extract-Min(H)
Extract-Min(H)

Find root x with minimum key in H ; O(lg n)

Remove x from H ; O(1)

H’ = children of x in reverse order ; O(lg n)
: because children are By_1, By_o, ..., By

Union(H, H’) ; O(lg n)

Running time = O(Ig n)

Operations

Decrease-Key(H, x, k), where k < key(x)

Decrease-Key(H, x, k)
key(x) = k
while parent(x) # NIL and key(x) < key(parent(x))
:: "bubble” new key up

swap(key(x), key(parent(x)))
x = parent(x)

Max depth = |lgn]
Running time = O(Ig n)

7

Procedure Binomial Heap | Fibonacci Heap
(worst case) (amortized)
Make-Heap O(1) O(1)
Insert O(lgn) O(1)
Minimum O(lgn) O©(1)
Extract-Min O(lgn) O(lgn)
Union O(lgn) O(1)
Decrease-Key O(lgn) O(1)
Delete O(lgn) O(lgn)
Delete(H, x)
Delete(H, x)
Decrease-Key(H, x, —00) ; O(Ig n)
Extract-Min(H) ; O(lg n)

Running time = O(Ig n)

Fibonacci Heaps

e If nodes are never removed, then yields ©(1) performance

e Not designed for efficient search

Structure of Fibonacci Heaps

A Fibonacci Heap is a set of heap-ordered trees. Trees are not ordered
binomial trees, because

1. Children of a node are unordered
2. Deleting nodes may destroy binomial construction

Node Structure:

parent

key

mar k

degree

- |eft right =p—

child

Y
any child

The field “mark” is True if the node has lost a child since the node
became a child of another node.

The field “degree” contains the number of children of this node.

The structure contains a doubly-linked list of sibling nodes.

Heap Structure

min(H) pointer to node in root list having smallest key in heap H

n(H) number of nodes in heap H

min(H)

SATE

* = marked

Potential Function

®(H) = t(H) + 2m(H)
t(H) = #trees in root list of heap H
m(H) = #mark nodes in heap H

Example

t(H) =4, m(H) =2, §(H) = _

> 1 ¢; 1s an upper bound on %7

i=1Ci

Maximum Degree

D(n) = upper bound on degree of a node in a Fibonacci Heap with n
nodes

10

By showing D(n) = O(lg n), we can constrain running times for node
removal.

1. Make node root
2. Delete
3. Add O(lg n) children to root list

Mergeable Heap Operations

Make-Heap, Insert, Minimum, Extract-Min, Union
These always yield unordered binomial trees; thus, they maintain the
binomial tree properties.

1. 2% nodes

2. k = height of tree

3. ('I;) nodes at depth i

4. Unordered binomial tree Uj has root with degree k greater than any
other node. Children are trees Uy, Uy, .., Ur_1 in some order.

For n-node Fibonacci Heap, D(n) is largest if all nodes are in one tree.
The maximum degree is at depth=1, (]I) — k for tree with 2* nodes.
Ifn=2% thenk=1gn

Strategy

e Do not merge trees until necessary

e Merging done in Extract-Min, where new minimum is needed

Operations

Make-Heap

Make-Heap()
allocate(H)
min(H) = NIL
n(H) =0

Analysis:

Amortized cost equals actual cost.

Operations

Insert

Insert(H, x)
set x’s fields appropriately
add x to root list of H ; O(1)

12

reset min(H) if needed
n(H) =n(H) + 1

Analysis:

)+1m(") = m(H)

H = initial heap with t(H) trees and m(H) marked nodes
H’ = new heap, t(H’) = t(H

é; + ®(H') — ®(H)
=0O(1) + [t(H) ¥ 1 + 2m(H)] - [t(H) + 2m(H)]
=0O(1) +1=0(1)

Operations

Minimum

Minimum(H)
return min(H)

Analysis:
H=H
d(H) = O(H')
CAZ' = C; = O(l)

Operations
Union

Union(Hl, Hg)
H = new heap whose root list contains roots from H; and H

13

n(H) = n(Hy) + n(Hy)

min(H) = min(H;)

if (min(H7) = NIL) or (min(H3) # NIL and min(H3) < min(H))
then min(H) = min(Hs)

Analysis:
t(H) = t(H1) 4+ t(H2)
m(H) = m(H1) + m(H2)

¢ = ¢+ ®(H) — (P(Hi) + ®(Ha))
= O(1) + [t(H1) + t(H2) + 2(m(H1) + m(H>))]
[t(Hl) +2m(Hy) + t(Hs) + 2m(H>))
= O(1) +
= 0(1)
Operations

Extract-Min

Extract-Min(H)
z = min(H)
add z’s children to root list ; O(D(n(H)))
remove z from root list
if root list # {}
then Consolidate(H) ; O(D(n(H)))
else min(H) = NIL
n(H) =n(H) - 1

14

Consolidate

Consolidate(H)
while two trees in H (T1,T2) have same degree
change root list to following using Link(H, T2, T1):

for i = 0 to D(n(H))
if tree T of degree i has root-key < min(H)
then min(H) = T

Example

Click mouse to advance to next frame.

Analysis

n(H) =
length(rootlist) < D(n) 4+ t(H) - 1
T(while loop) < D(n) + t(H)
¢; = O(D(n) + t(H))

¢ =c¢ + (D(n) + 1+ 2m(H)) - (t(H) 4+ 2m(H))
= O(D(n) + t(H)) + D(n) + 1 - t(H)
— O(D(m))
Assuming adjustment of potential coefficients to dominate coefficients hid-
den in O(t(H)).

Operations

Decrease-Key

Decrease-Key(H, x, k)
key(x) = k
p = parent(x)
if p # NIL and key(x) < key(p)
then Cut(H, x, p)

Cascading-Cut(H, p)

if key(x) < key(min(H))
then min(H) = x

Cut(H, x, p)
remove X from children of p
add x to root list of H
mark(x) = False

Cascading-Cut(H, p)
next-p = parent(p)

if next-p # NIL
then if mark(p) = False
then mark(p) = True

16

else Cut(H, p, next-p)
Cascading-Cut(H, next-p)

Analysis

Let ¢; = O(c) be the number of cascading cuts

O(H') = (t(H) + ¢) + 2(m(H) - ¢ + 2), ¢-1 unmarked, 1 marked
¢ = O(c) + (t(H) 4+ ¢) + 2(m(H) - ¢ + 2) - (t(H) + 2m(H))
=0O(c)+4-c
- o[

Example

Click mouse to advance to next frame.

Operations

Delete

Delete(H, x)
Decrease-Key(H, x, -o0) ; O(1) amortized
Extract-Min(H) ; O(D(n)) amortized

Analysis:
Running time = O(D(n)) amortized

17

Bounding Maximum Degree D(n)

Lemma 21.1

Froo =1+ Zfzo F; where F}. is a Fibonacci number.
o k if £ <2
"Tl Fey + Fy if k> 2

Lemma 21.3
For a node x in a Fibonacci heap, where k = degree(x),
size(x) > Fpyo > ¢F, where ¢ = #
size(x) = #nodes in subtree rooted at x

Corollary 21.4
D(n) = O(lgn)
By Lemma 21.3, n > size(x) > ¢*, where n = nodes in Fibonacci Heap
and k = degree of any node x.
Then logyn > k, and k = O(log,n) = O(lg n).

Applications

18

