Disjoint Sets

Keep keys in disjoint sets
Find set containing key
Union two sets

Application: determine connected components of an undirected graph

make each vertex a set
foreach edge
union sets containing vertices of edge

Representation

A is a data structure S = {57, .., Sk}, or a collection
of disjoint dynamic sets.

Each set has a element, which never changes un-

less unioned with another set.

Operations

X = pointer to an object containing some key



Make-Set(x)

Create new set S, with one member x

Representative of S, is x
Disjoint set = Disjoint set + S,

Union(x,y)
S; = set containing x
S, = set containing y
Su =S, U S,
rep(Sy) = rep(S;) or rep(Sy)

> or any other object in S,

Disjoint set = Disjoint set —S, — .S, + S,

Find-Set(x)
S, = set containing x
return rep(S;)

Application

Finding the connected components of a graph.

Connected-Components(Graph)
foreach v in vertices(Graph)
Make-Set(v)
foreach e in edges(Graph)
(wv) =e
if Find-Set(u) # Find-Set(v)
then Union(u,v)

Same-Component(u,v)
if Find-Set(u) = Find-Set(v)



then return True
else return False
Example

Linked-List Representation

Use linked list to represent set of objects.
Each object contains a pointer to the rep, the key, and a pointer to
next.

Operations

Make-Set(x) ; O(1)
rep(x) = X
next(x) = NIL

Find-Set(x) ; O(1)
return rep(x)

Union(x, y) ; O(size of x)
foreach object in rep(x)
insert object into y
rep(object) = rep(y)
remove X

Analysis

The worst case scenario is:



e Make-Set(z)

o Make-Set(z),) Hz1}, {za}, {23}, - {20 )}
e Union(zy, z5) {{z1 = 22}, {23}, .., {z0}}

e Union(zy, z3) Hz1 = 29 — 23}, ..., {Tn}}
o ...
e Union(z,_1, z,) Hx1 2> 20 > 23— ... = x,}

n = #Make-Set operations
m = #Make-Set, Union, and Find-Set operations
m = n + (q - 1) operations

T(m) = O(n) + = i
=0(n + ¢’)
n = 06(m) and q = O(m)

Therefore, T(m) = ©(m?) and the amortized cost is ©(m) per opera-
tion.
Can we do better?

Weighted-Union Heuristic

Idea: Keep track of the number of objects in a set (length of list). Append
shorter list to longer list.
Theorem 22.1

A sequence of m operations, n of which are Make-Set operations, takes
O(m + n lg n) time.



Proof: Since we only change rep(x) for objects in the shorter list for
each Union, and lists start at length=1, then each Union at least doubles
the size of x’s list. Thus, we can do at most [Ign] Unions that require
rep(x) changes, and there are n objects.

As a result, there are a total of changes.

If we add the O(1) costs for the O(m) Make-Set and Find-Set operations,
we get

Disjoint Sets as Forest of Trees

Idea: Represent disjoint sets as a forest of trees.

Object: Example: Sc={c, b, a} L)
®
©®
()
L @
(&)

Representatives are roots
X = parent(x)

Operations

Make-Set(x)
parent(x) = x

FindSet(x)



Follow parent pointers from x to root
return root

Union(x, y)
parent(x) = FindSet(y)

Performance same as linked lists, but can do better.

Union by Rank

In Union, have parent of shallower tree point to other tree.
Maintain rank(x) as an upper bound on the depth of the tree rooted at

Make-Set (x)
parent(x) = x
rank(x) = 0

Union(x, y)
repx = FindSet(x)
repy = FindSet(y)
if rank(repx) > rank(repy)
then parent(repy) = repx
else parent(repx) = repy

if rank(repx) = rank(repy)
then rank(repy) = rank(repy) + 1

Can we do even better?




Path Compression

While looking for rep(x) by traversing parent pointers, set each one to the
resulting rep(x).
Click on mouse to advance to next frame.

Note: Since rank is an on tree height, path compres-

sion need not change ranks.

Pseudocode

FindSet(x)
if x # parent(x) ; Two-Pass Method
then parent(x) = FindSet(parent(x))
return parent(x)

Analysis:

Union by Rank Only:
©(mlgn)
m = Foperations
n (< m) = #MakeSet operations in m
Path Compression Only:
O(flogtfmmn) if f > n
O(n + flgn)iff <n
n = #MakeSet operations
There are < n-1 Unions
f = #FindSet operations

7



Analysis

Union by Rank and Path Compression:
O(m * a(m,n)) worst case running time
a(m,n) is inverse of Ackermann’s function A(i,j)
a(mmn) =min{i > 1| A(i, [*]) > Ig n}
Ackermann’s Function A (i,j)
o A(L,j) =2 for j > 1

o A(i, 1) = A(i-1, 2) for i > 2

o Alhj) = AG-1, AG, 1) fori,j> 2

=1 -2 j=8  j=4

=1 51 52 53 4
2
2 2

~ 2 2 2

=2 2,2 52 52
ﬂ 16

5 EI 16 EI 22
=3] ,2° 52 52

Note: A(i,j) is strictly increasing and || > 1 since m > n.
Therefore A(4, [™]) > A(4,1) = A(3,2)
A(3,2) = 2 raised to the power 2 16 times >> 10%
108" = the number of atoms in the observable universe
a(m,n) = 4 for practical uses since Ig n is typically less than 10%

8



Thus, T(m) = O(m).
O(1) amortized cost per operation

Applications



