$\overline{}$	•	•	• ,	\sim	
1)	10	10	int		10
ட	TO	IL	,,,,,	$\mathcal{O}_{\mathcal{O}}$	ω

Keep keys in disjoint sets

Find set containing key

Union two sets

Application: determine connected components of an undirected graph

make each vertex a set
foreach edge
 union sets containing vertices of edge

Representation

A _____ is a data structure $S = \{S_1, ..., S_k\}$, or a collection of disjoint dynamic sets.

Each set has a ______ element, which never changes unless unioned with another set.

Operations

x = pointer to an object containing some key

```
Make-Set(x)

Create new set S_x with one member x

Representative of S_x is x

Disjoint set = Disjoint set + S_x

Union(x,y)

S_x = \text{set containing x}

S_y = \text{set containing y}

S_u = S_x \cup S_y

\text{rep}(S_u) = \text{rep}(S_x) \text{ or rep}(S_y) ; or any other object in S_u

Disjoint set = Disjoint set -S_x - S_y + S_u

Find-Set(x)

S_x = \text{set containing x}

return \text{rep}(S_x)
```

Application

Finding the connected components of a graph.

```
Connected-Components(Graph)
foreach v in vertices(Graph)
Make-Set(v)
foreach e in edges(Graph)
(u,v) = e
if Find-Set(u) \neq Find-Set(v)
then Union(u,v)

Same-Component(u,v)
if Find-Set(u) = Find-Set(v)
```

Example

Linked-List Representation

Use linked list to represent set of objects.

Each object contains a pointer to the rep, the key, and a pointer to next.

Operations

```
Make-Set(x) ; O(1)
rep(x) = x
next(x) = NIL
Find-Set(x) ; O(1)
return rep(x)
Union(x, y) ; \Theta(size of x)
foreach object in rep(x)
insert object into y
rep(object) = rep(y)
remove x
```

Analysis

The worst case scenario is:

• Make-Set (x_1)

• ...

• Make-Set
$$(x_n)$$
 { $\{x_1\}, \{x_2\}, \{x_3\}, \ldots, \{x_n\}\}$ }

• Union
$$(x_1, x_2)$$
 $\{\{x_1 \to x_2\}, \{x_3\}, \ldots, \{x_n\}\}$

• Union
$$(x_2, x_3)$$
 $\{\{x_1 \to x_2 \to x_3\}, \ldots, \{x_n\}\}$

• ...

• Union
$$(x_{q-1}, x_q)$$
 $\{\{x_1 \to x_2 \to x_3 \to \ldots \to x_n\}$

n = #Make-Set operations

m = #Make-Set, Union, and Find-Set operations

m = n + (q - 1) operations

$$T(m) = \Theta(n) + \sum_{i=1}^{q-1} i$$
$$= \Theta(n + q^2)$$
$$n = \Theta(m) \text{ and } q = \Theta(m)$$

Therefore, $T(m) = \Theta(m^2)$ and the amortized cost is $\Theta(m)$ per operation.

Can we do better?

Weighted-Union Heuristic

Idea: Keep track of the number of objects in a set (length of list). Append shorter list to longer list.

Theorem 22.1

A sequence of m operations, n of which are Make-Set operations, takes $O(m + n \lg n)$ time.

Proof: Since we only change rep(x) for objects in the shorter list for each Union, and lists start at length=1, then each Union at least doubles the size of x's list. Thus, we can do at most $\lceil lgn \rceil$ Unions that require rep(x) changes, and there are n objects.

As a result, there are a total of _____ changes.

If we add the O(1) costs for the O(m) Make-Set and Find-Set operations, we get _____

Disjoint Sets as Forest of Trees

Idea: Represent disjoint sets as a forest of trees.

Object:

Example: $Sc = \{c, b, a\}$

Representatives are roots x = parent(x)

Operations

$$\begin{aligned} Make-Set(x) \\ parent(x) = x \end{aligned}$$

FindSet(x)

```
Follow parent pointers from x to root return root
```

```
Union(x, y)parent(x) = FindSet(y)
```

Performance same as linked lists, but can do better.

Union by Rank

In Union, have parent of shallower tree point to other tree.

Maintain rank(x) as an upper bound on the depth of the tree rooted at x.

```
Make-Set(x)

parent(x) = x

rank(x) = 0

Union(x, y)

repx = FindSet(x)

repy = FindSet(y)

if rank(repx) > rank(repy)

then parent(repy) = repx

else parent(repx) = repy

if rank(repx) = rank(repy)

then rank(repy) = rank(repy) + 1
```

Can we do even better?

Path Compression

While looking for rep(x) by traversing parent pointers, set each one to the resulting rep(x).

Click on mouse to advance to next frame.

Note: Since rank is an ______ on tree height, path compression need not change ranks.

Pseudocode

```
\begin{aligned} & \text{FindSet}(x) \\ & \text{if } x \neq \text{parent}(x) \\ & \text{then } \text{parent}(x) = \text{FindSet}(\text{parent}(x)) \\ & \text{return } \text{parent}(x) \end{aligned} ; \text{Two-Pass Method}
```

Analysis:

Union by Rank Only:

 $\Theta(mlgn)$ m = #operations $n (\leq m) = \#MakeSet operations in m$

Path Compression Only:

$$\Theta(f \log_{(1+f/n)} n)$$
 if $f \ge n$
 $\Theta(n + f \lg n)$ if $f < n$
 $n = \# \text{MakeSet operations}$
There are $\le n\text{-}1$ Unions
 $f = \# \text{FindSet operations}$

Analysis

Union by Rank and Path Compression:

 $O(m * \alpha(m,n))$ worst case running time $\alpha(m,n)$ is inverse of Ackermann's function A(i,j) $\alpha(m,n) = \min\{i \ge 1 \mid A(i, \lfloor \frac{m}{n} \rfloor) > \lg n\}$

Ackermann's Function A(i,j)

- $A(1, j) = 2^{j}$ for $j \ge 1$ A(i, 1) = A(i-1, 2) for $i \ge 2$
- $\bullet \ A(i,\,j) = A(i\text{-}1,\,A(i,\,j\text{-}1)) \qquad \text{for } i,\,j \, \geq \, 2$

Note: A(i,j) is strictly increasing and $\lfloor \frac{m}{n} \rfloor \geq 1$ since $m \geq n$. Therefore $A(4, \lfloor \frac{m}{n} \rfloor) \ge A(4,1) = A(3,2)$ A(3,2) = 2 raised to the power 2 16 times $>> 10^{80}$ 10^{80} = the number of atoms in the observable universe $\alpha(m,n)=4$ for practical uses since lg n is typically less than 10^{80}

Thus,
$$T(m) = O(m)$$
.
O(1) amortized cost per operation

Applications