Graph Algorithms

Graphs are important data structures.
Graphs can express arbitrary relationships between objects.

Simple Graphs
e Vertices

e Edges (—, —)

o——O0

Labelled Graphs

e Vertices and vertex labels

e Fdges and edge labels

onto

For now, simple graphs.
A graph G consists of a set of vertices V and a set of edges E such that
(u,v) € E — u, v € V and u is connected to v with an edge.

1

Directed edge: u — v
Undirected edge: u — v

Representation
1. Adjacency lists
2. Adjacency matrix

1. Adjacency list

Array Adj of |V| lists, O(E)
Adj[u] is a pointer to a list of vertices v such that (u,v) € Edges

Memory , Lookup

Adj
o8

-
7

[11]

= 18] 1) [\S)
Lililll

L]
&

\)

2. Adjacency matrix

Matrix A |V| x [V], where
i) = |

Memory ©(V?), Lookup O(1)

1 if (¢,5) e E
0 otherwise

1234 12314
110101 110100
211011 2100 11
310110 310110
411100 411000

Both allow added satellite data easily

w_Jvisit|Ad] 1 2] -

—

N -

Adjacency list better for sparse graphs

Traversing Graphs

Search for paths satisfying various constraints (e.g., shortest path)
Visit some set of vertices (e.g., tours)
Search for subgraphs (e.g., graph matching (isomorphisms))
Techniques:

1. Breadth-First Search (BFS)
2. Depth-First Search (DFS)

Breadth-First Search (BFS)

Input Graph Breadth—First Tree

Breadth-first search produces breadth-first tree.
Path from s to x in BF tree is the shortest path in terms of the number

of edges.
BFS: Given graph G = (V,E) and source s

e Visit every vertex reachable from s in one edge that has not already
been visited

e Visit every vertex reachable from s in two edges that has not already
been visited

BFS Data Structures

A node in a BF tree represents a vertex

pred

vertex

distance

visited

Use a queue to remember frontier of search

Note: Cormen et al.’s BFS algorithm uses color instead of visited.

e Unvisited vertex: white
e Discovered vertex: gray

e Visited vertex: black

Pseudocode

BFS(Gs)

1 foreach vin (V - {s}) ; initialize
2 visited(v) = False

3 pred(v) = NIL

4 distance(v) = oo

5 visited(s) = True ; visit start vertex
6 distance(s) =0

7 pred(s) = NIL

8 Enqueue(Q, s)

9 while not QueueEmpty(Q)

—_
-

u = DeQueue(Q)
11 foreach v in Adj[u]

12 if not visited(v)

13 then visited(v) = True

14 distance(v) = distance(u) + 1
15 pred(v) = u

16 Enqueue(Q, v)

Examples

Analysis

Enqueue / Dequeue operations
each vertex is processed only once
total time scanning adjacency list

BFS running time worst case

Properties

d(s,v) = shortest-path distance from s to v
Theorem 23.4
G = (V, E) directed or undirected
BFS(G,), sin V
Upon termination of BF'S, every vertex v in V reachable from s has
distance(v) = d(s, v)
For vertex v # s reachable from s, one shortest path from s to v is the
shortest path from s to pred(v) followed by edge (pred(v), v)

6

Proof: by induction on distance from s

Print-Path(G, s, v) ; O(V)
ifv=s
then print s
else if pred(v) = NIL
then "no path”
else Print-Path(G, s, pred(v))
print v

Predecessor Subgraph

Gpred = (Vpred, Epred) is a predecessor subgraph of G if
Viored = {v € V | pred(v) # NIL} U {s}
Epred = {(pred(v), v) € B | ¥ € Vyeq - {53}

Lemma 23.5 The pred tree generated by BFS results in a predeces-
sor subgraph G4 which defines a BF tree.

Depth-First Search

S b C
(O Depth-First Forest of Trees
s c

O

Vertex in DFF of T

pred
visited

discover

finish

Note again, Cormen et al. use color instead of visited.

Discover is the time when vertex first visited.

Finish is the time when all vertices reachable from this vertex have
been visited.

DFS

1. Given G
2. Pick an unvisited vertex v, remember the rest
3. Recurse on vertices adjacent to v
DFS(G)
foreach vin V

visited(v) = False
pred(v) = NIL
time = 0
foreach uin V
if not visited(u)
then Visit(u)

Visit(u)
visited(u) = True
time = time + 1
discover(u) = time
foreach v in Adj[u] , O(F)
if not visited(v)
then pred(v) = u
Visit(v)
time = time + 1
finished(u) = time

The total running time for DFS is ©(V + E)

Examples

S b C
—@ Depth—First Forest of Trees
o ©
a
a
b

Topological Sort

Application: Scheduling
Let u represent event 1, and let v represent event 2

@/ -0

u must occur before v occurs @

Problem: Find a schedule for executing the events that preserves the
“before” relation.

Solution: Represent events as vertices and before(u,v) as a directed edge

(u,v).

Let G = (V, E) be a directed, acyclic graph (DAG). If (u,v) € E, then
u appears before v in the ordering of events in the schedule.

10

The vertices and edges in G are referred to as the topology of G.

We want to sort this topology based on some key such that u — v
implies key(u) < key(v) (or key(v) < key(u) reverse sorted).

The finish times assigned by DF'S satisfy this constraint.

Pseudocode

TopologicalSort(G) ;O(V + E)
DFS(G), as each vertex finishes, insert it on the front of
the linked list
return linked list of vertices

Example: Professor Bumstead gets dressed

undershorts

11

DF'S considers vertices in alphabetical order by label.
—
@roershody ook \ ‘@;,@),

_—

Note that a different order for DFS yields a different schedule.

Strongly Connected Components

Many graph applications look for a minimal way to connect each vertex
to every other vertex.
Examples: bridging gaps, identifying bottlenecks

A graph G = (V, E) is if for every pair of
vertices <u,v>, u,v € V, there is a path (~) from u to v (u ~ v) and
from v to u (v ~» u).

A (SCC) of a graph G =
(V, E) is a maximal set U C V such that for every pair <u,v> € U, u ~»
v and v ~ u.

Define: The of graph G = (V, E) is the graph GT =
(V, ET), where ET = {(u,v) | (v,u) € E}.
Time to create GT = O(V+E)

12

Pseudocode

SCC(G)
DFS(G) to compute finishing times
compute G
DFS(GT) considering vertices in main loop in
decreasing order by finish time
output each tree in DFF of T as a SCC

Example

b C
(3)~—(19

DFS(G)
d
b C
@)
d I DFS(G)

SCCs: {c, d}
{s, b, a}

@m em

o)

m‘— O

13

Applications

14

