Minimum Spanning Trees

Given a connected, undirected graph G = (V, E) with edge weights w(u,v)
for each edge (u,v) € E,

the (MST) T = (V, E)) of G, ' C
E, is an acyclic, connected graph such that w(t) = $(,)em w(u,v) is
minimized.

Example

3 4
a ®) © @)
G: 2 / T: 2 1

Applications

Circuit wiring: connecting common pins with minimal wire

Networking

Growing a Minimal Spanning Tree

Greedy approach

Given A C T = MST(G), determine a (u,v) to add to A
such that A U {(u,v)} C T
Greedy-MST(G,w)

A={}

while A is not a spanning tree > includes all vertices of G
find a safe edge (u,v) for A
A=AU{(uv)}

return A

What is a “safe” edge?
A safe edge is an edge connecting a vertex in A C T to a vertex in G
that is not in A such that A U safe edge C MST.

Definitions:

A (S, V-S) of an undirected graph G = (V, E) is a partition of V.

LEN

O——0 /
P 1

2

@

An edge (u,v) € E the cut (S, V-S) ifu € S and v € V-S.

(a,b) and (b,d) cross the cut

Definitions

A cut the set A of edges if no edge in A crosses the cut.

A=(V,E),V={a b cd}, E={(ab), (be)}

An edge is a crossing a cut if its weight is the minimum

of any edge crossing the cut.

(b,d) is the light edge

Theorem 24.1

Given a connected, undirected graph G = (V, E) with edge weights w, A
C MST(G), cut (S, V-S) that respects A, and light edge (u,v) crossing (S,
V-S), then (u,v) is a safe edge.

Proof: Assume T = MST(G) contains edge(x,y) crossing (S, V-S). Note
that (x,y) must be on a unique path connecting u to v. Edge (u,v) would
form a cycle. Removing (x,y) breaks T in 2 parts, but (u,v) reconnects

3

them.
T’ is the new resulting MST.

U O—0O X

Since (u,v) is a light edge, then T = T - {(x,y)} U {(u,v)} is also
MST(G).

Note that this is true because (u,v) and (x,y) cross the same cut and
(u,v) is safe, w(u,v) < w(x,y), w(T’) = w(T) - w(xy) + w(u,v) < w(T).

Since (x,y) € A ((S, V-S) respects A), then A U {(u,v)} C T’ =
MST(G). Thus, (u,v) is a safe edge.

Corollary 24.2

Given A C MST(G) and a connected component C of the forest G 4(V,
A), if (u,v) is a light edge connecting C to some other component in G4,
then (u,v) is safe for A.

Algorithm:

1. Find two unconnected components of G.

2. Connect them using a light edge.

Kruskal’s Algorithm

Kruskal’s Algorithm
repeat

find a light edge (u,v) between two unconnected components
A=A U{(v)}
until all edges have been considered

e Sort the edges by weight

e Use disjoint sets for speed (union by rank and path compression)

MST-Kruskal(G, w) ;G = (V, E)

1 A={}

2 foreach vin V ; O(V)

3 MakeSet(v)

4 sort edges E by nondecreasing weight w ; O(E Ig E)

5 foreach edge (u,v) in E, in order ;. m = |F/| operations
6 if FindSet(u) # FindSet(v) ;n = |V| keys

7 then A = A U {(uv)} ; O(m a(m,n))

8 Union(u,v) ; O(E a(E,V))

9 return A ; a(E)V) = O(lg E)

T(V,E) = O(V) + O(E Ig E) + O(E Ig E), V = O(E)
= O(E Ig E)

Example

3 4
a (©) ©
2 /

Sorted E = {(b,d), (a,d), (a,b), (b,c)}

X
4

©

2 1

Prim’s Algorithm

Prim’s Algorithm
repeat
find minimal edge (u,v) connecting A to a vertex not in A
A=AU{(uv)}

until all vertices are in A

Implementation
Maintain a priority queue Q of vertices of the form

parent | points to neighbor vertex in A along smallest edge

key | weight of smallest edge

(in Q) | true or false

Starting from some root vertex r
Update key and parent slots of vertices on A adjacent to r
Extract minimum-key vertex v from those adjacent to r

r=V

Pseudocode

MST-Prim(G, w, 1)

1 foreach vin V ; O(V), BuildHeap
2 key(v) = oo ; Fibonacci Heap O(E + V 1g V)
3 (inQ(v) = true)
4 Insert(Q, v)
5 key(r)=0
6 parent(r) = NIL
7 while Q # NIL : O(V)
8 u = Extract-Min(Q) ; O(Ig V)
9 (inQ(u) = false) ; Fibonacci Heap O(lg V)
10 foreach v in Adj(u) ; O(E) total
11 if inQ(v) and w(u,v) < key(v) ;2 |E|
12 then parent(v) = u ; O(Ig V), DecreaseKey
13 key(v) = w(u,v) ;O(VIgV+EIgV)
OVIgV+EIgV)=0(EIgV)
Fibonacci Heap: O(E + V Ig V)
Example

MST-Prim(G, w, r)

Click mouse to advance to next frame.

Applications

