Maximum Flow

Problem: Given a network of conduits and junctions, where each conduit has a maximum capacity, calculate the maximum flow rate of material between two junctions.

Solution: Represent flow network as a directed graph with vertices as junctions and edges as conduit.

Edge weights are capacities.

Use _____ method to find maximum flow.

Applications: Materials processing

Assembly-line scheduling

Freight transportation

Flow Networks

A flow network G = (V, E) is a directed graph where each edge $(u,v) \in E$ has capacity $c(u,v) \ge 0$.

If $(u,v) \notin E$, then c(u,v) = 0.

Distinguish source ($s \in V$) and sink ($t \in V$) as the vertices between which the flow is to be maximized.

- in-degree(s) = 0
- out-degree(t) = 0

For every $v \in V$, v is on a path from s to t. $s \rightsquigarrow v \rightsquigarrow t$, therefore the graph is connected.

$$|E| \ge |V| - 1$$

FLOW NETWORK

FLOW (Maximum)

Flow

A **flow** $f: VxV \to R$ is a real-valued function representing the rate of flow between u and v, constrained by the following:

- 1. _____ $f(u,v) \le c(u,v)$
- 2. _____ f(u,v) = -f(v,u)
- 3. _____ For every $u \in V$ $\{s,t\}$, $\Sigma_{v \in V} f(u,v) = 0$.

The total flow into and out of a vertex u is 0.

The value of f(u,v) is the **net flow** from vertex u to vertex v.

Note that if (u,v) and $(v,u) \notin E$, then f(u,v) = f(v,u) = 0.

The **value** of a flow f is $|f| = \sum_{v \in V} f(s, v)$.

Maximum-Flow Problem

Given flow network G, with source s and sink t, find flow with maximum value from s to t.

Multiple Sources And Sinks

Ford-Fulkerson Method

Look for paths from s to t that can accept more flow (augmenting path) and increase flow along this path.

```
Ford-Fulkerson-Method(G, s, t)
  flow f = 0
  while an augmenting path p exists
     augment flow f along p
  return f
```

An augmenting path is a path from s to t in a residual network which consists of edges that can admit more flow.

Residual Capacity

Given flow network G = (V, E) with flow f and two vertices $u, v \in V$, define the **residual capacity** $c_f(u, v)$ as the additional net flow possible from u to v, not exceeding c(u,v). Thus

$$c_f(u,v) = c(u,v) - f(u,v).$$

Example

$$c_f(s, v_2) = c(s, v_2) - f(s, v_2) = 4 - 2 = 2$$

 $c_f(v_2, t) = 2 - 2 = 0$
 $c_f(t, v_2) = 0 - (-2) = 2$

Residual Network

Given flow network G = (V, E) and flow f, the **residual network** of G induced by f is $G_f = (V, E_f)$ where

$$E_f = \{(u, v) \in VxV \mid c_f(u, v) > 0\}$$

 $(u,v) \in E_f$ is a residual edge; i.e., any edge that can admit more flow.

FLOW NETWORK

RESIDUAL NETWORK

If there is a path from s to t in the residual network, then it is an augmenting path and indicates where flow can increase.

Augmenting Paths

Given flow network G and flow f, an **augmenting path** p is a simple path from s to t in the residual network G_f .

The minimum net flow along path p in G_f indicates the amount flow can increase along this path in G.

Thus, define the **residual capacity of path p** as

$$c_f(p) = min\{c_f(u,v) \mid (u,v) \text{ is on } p\}$$

Define flow f_p in G_f as

$$f_p(u, v) = \begin{cases} c_f(p) & \text{if } (u, v) \text{ on } p \\ -c_f(p) & \text{if } (v, u) \text{ on } p \\ 0 & \text{otherwise} \end{cases}$$

$$|f_p| = c_f(p) > 0$$

Define **flow sum** $f_1 + f_2$ as $(f_1 + f_2)(u, v) = f_1(u, v) + f_2(u, v)$.

Corollary 27.4

If flow network G has flow f, augmenting path p in G_f , and $f' = f + f_p$, then f' is a flow in G with value $|f'| = |f| + |f_p| > |f|$. So, keep adding augmenting paths until there are no more.

Theorem 27.2

f is a maximum flow in G if and only if residual network G_f has no augmenting paths.

Ford-Fulkerson Algorithm

```
; G = (V, E)
Ford-Fulkerson(G, s, t)
     foreach edge (u,v) in E
1
         f(u,v) = f(v,u) = 0
2
     while exists path p from s to t in residual network G_f
3
         c_f(p) = \min\{c_f(u, v) \mid (u, v) \ on \ p\}
4
5
         foreach edge (u,v) on p
            f(u,v) = f(u,v) + c_f(p)
6
            f(v,u) = -f(u,v)
7
```

Example

Click mouse to advance to next frame.

Example

Click mouse to advance to next frame.

Analysis:

Depends on method for finding augmenting path.

Use breadth-first search (Edmonds-Karp Algorithm). Thus, the augmenting path is shortest from s to t.

Theorem 27.9

The total number of augmentations is _____, ____ per augmentation. Thus the algorithm has run time $\mathrm{O}(VE^2)$.

Preflow-Push method yields $O(V^2E)$ (Section 27.4), and Lift-to-Front method yields $O(V^3)$ (Section 27.5).

Applications