Parallel Algorithms

Improve the running time by distributing the processing over several pro-
CESSOTS.
Issues:

e Accessing and controlling processors

— Single vs. multiple instructions

— Local memory
e Accessing global memory

— Synchronization
— Conflicts

e Message propagation

Example: Cleaning a house

Machines

e Sequent (8 processors, multiple instructions, shared memory)

e Hypercube (8 processors, distributed memory, hypercube topology)
e CM2 (64,000 processors, single instruction)

e CM5 (32,000 processors, single instruction for each 8000 processors)
e Intel Paragon (1,028 processors, 2D mesh topology)

e nCUBE (128 processors, MIMD distributed memory, hypercube topol-
ogy)

Models

RAM (serially random access machine)
PRAM (parallel RAM) unit time accesses

Spatial delayed accesses

PRAM Model
IOO j—
P fe——= shared
memory
Pp-1 ,

p serial processors
Shared memory

Unit time memory access
In reality, memory access time increases with number of processors

Running time measured in terms of number of memory accesses
Depends on size of input and number of processors

Each processor executes the same instruction at the same time

Memory Access

° — multiple processors read from same

memory location at the same time.

° — multiple processors write to same

memory location at the same time.

° — no two processors read from same

memory location at the same time.

° — no two processors write to same

memory location at the same time.
e EREW, CREW, ERCW, and CRCW are all PRAM models
e EREW and CRCW are most prevalent
e EREW is easy to implement (constraint maintained by programmer)

e In the CRCW model, need to determine what to do when two or more
processors write to the same location

— — select actual written value arbitrarily.

— — write value from processor with lowest index.

— — write some combination of values (sum, maxi-

mum).

— — processors must all write same value.

Synchronization And Control

Processors execute same instructions at same time

3

Stopping conditions depend on state of all processors
Processors interconnected somehow
Propagation time

CRCW PRAM can use concurrent writes to detect termination conditions

Pointer Jumping

e Parallel operation on linked lists

e next(i) = next(next(i))
[~ - [[

° time operations on lists with n elements

List Ranking

For each object in the list, compute distance to the end of the list.

~ |0 if next(i) = NIL
d) = {d(next(i))+1 if next(i) # NIL

Serial: O(n)
Parallel: O(lg n)
Idea:

repeat

pointer jump

add number of objects jumped to current distance
until all next(i) = NIL

Speedup: S = T (best serial algorithm) / T (parallel algorithm)

_ Omn)
S = O(lgn)
Pseudocode

List-Rank(L)

foreach processor i, in parallel ; O(1)
if next(i) = NIL
then d(i) = 0
else d(i) =1
while next(i) # NIL for some i ; test
foreach processor i, in parallel ; O(1)
if next(i) # NIL ; synchronize

then d(i) = d(i) + d(next(i))
next(i) = next(next(i))
Click mouse to advance to next frame.
List-Rank halves the lengths of the lists each time, thus O(Ig n) times
through while loop.
The algorithm has run time performance of ©(lgn).

Another Performance Measure

Work = (number of processors) x (running time)
ListRank: Work = ©(nlgn)
A PRAM algorithm A is work-efficient with respect to another algo-
rithm B if Work(A) = ©(Work(B)).
Usually B is the best serial algorithm.

ListRank:

Serial: Work = ©O(n) (one processor needs n time)

PRAM: Work = O(nlgn)
Is the ListRank algorithm work efficient? ___

Efficiency: Speedup / #Processors.
An algorithm is thus work-efficient if Efficiency = ©(1).

Prefix Computation

Given the binary, associative operator ® and xi..rp, compute y, =
1R T X .. QR Tp.
Let
ij] =2:®. ®1j
[i,k] = [i,j] ® [j+1)k], and
[l,l] = Z;.
We can use pointer jumping to change [i,i] to [1,i].

ListPrefix

ListPrefix(L)
foreach processor i, in parallel
y(i) = x() i
while next(i) # NIL for some object i
foreach processor i, in parallel

if next(i) # NIL > [1j] ® [j4+1.k] = [i,K]
then y(next(i)) = y(i) ® y(next(i))
next(i) = next(next(i)) ; pointer jump

Click mouse to advance to next frame.

Analysis (same as List Rank)

Serial: ©(n)
PRAM:

Speedup: S =

Efficiency: E =
Work: W = O(nlgn)

Is ListPrefix work efficient?

Computing Binary Tree Node Depth

Let each node be represented by three processors, A, B and C, which are
part of a singly-linked list.

e A points to A of left child (if exists)
or B (go down)

e B points to A of right child (if exists)
or C (bottom out / backtrack)

e C points to B of parent (if left child)
or C of parent (if right child)
or NIL if root

Example

e Assign 1 to A (going down)

e Assign 0 to B (bottom out)

e Assign -1 to C (going up)

e These steps are O(1) given initial tree
e The depth of the node is stored in C
e A+B+C=0

e The net effect of the subtree is 0

e Serial: O(n)

e Run ListPrefix: g 3n = O(lg n)

e ® here is addition
e Work: W = ©(nlgn)

CRCW vs. EREW

1. CREW helps when finding roots of a forest of trees.
FindRoots(F)
foreach processor i, in parallel
if parent(i) = NIL
then root(i) =i
while some parent(i) # NIL
foreach processor i, in parallel
if parent(i) # NIL
then root(i) = root(parent(i))
parent(i) = parent(parent(i))
Click mouse to advance to next frame.

4 steps

e Multiple concurrent reads since multiple nodes have same parent

e If CR, then O(lg d), d = maximum depth of trees
O(lg d) = O(lg 1g n) for balanced trees.

e If ER, then the number of nodes that contain the correct root at most
doubles each iteration, thus Q(lgn).

10

CRCW vs. EREW

2. Common-CRCW helps find maximum value of array
Common-CRCW: concurrent writes write same value.

Given A[0, .., n-1], define n? processors to compare Ali] with A[j], n
processors store m(i) = TRUE if A[i] > every A[j]

Pseudocode

Fast-Max(A)
n = length(A)
for i = 0 to n-1, in parallel

m(i) = true

fori =0 ton-1,j = 0 to n-1, in parallel © n? Processors
if Ali] < A[j]
then m(i) = false ; CW

for i = 0 to n-1, in parallel
if m(i) = true
then max = Alj] ; CW

return max

Find Max of array containing 1, 2, 3, 4
Processor Compares m max

1 1, 1 false 4
2 1, 2

11

-

-

false

-

-

-

-

false

-

-

-

true

- -

-

O © © ©O ©O © © © 0O NO O d W
DD D DWW W WD NN R -
D WO N E,E DO, DO D W

-

Analysis

O(1) FastMax, but ©(n?) work
EREW PRAM, Again, the number of elements that know they

are not max at most doubles each iteration.
Serial: O(n)

Theorem 30.1

A p-processor CRCW can be no more than times faster than
the best p-processor EREW algorithm for the same problem.

12

Proof: Simulate each step of CRCW algorithm with a O(lg p) time
EREW computation.

Theorem 30.4

What if we do not have enough processors?
Theorem: If a p-processor PRAM algorithm runs in time t, then for any
p’ < p, there is a p’-processor PRAM algorithm A’ for the same problem
that runs in time O(pt/p’).
Example: p=10, p’=5, A = O(t)
A’ =0(10/5t) = O(t)
Work(A) = Work(A”)

Empirical Results

e Compute sum of numbers (16,000,000 integers)
e MIMD distributed network of workstations using PVM

e Divide numbers over processors, host collects and combines partial
sums

e Insert delay (10 units) to create readable results

eS=P

e One processor: 8.75 seconds

e Should be: (1, 8.750), (2, 4.375), (4, 2.187), (8, 1.094), (16, 0.547)

e Collected timings: (1, 8.750), (2, 4.460), (4, 3.360), (8, 2.840), (16,
2.830)

13

e Delay of 100 units should be: (1, 63.790), (2, 31.895), (4, 15.948), (8,
7.974), (16, 3.987)

o Collected timings: (1, 63.790), (2, 31.700), (4, 21.300), (8, 11.640),
(16, 7.400)

14

