Encryption

Just because you’re paranoid doesn’t mean they’re not out to get you.

Woody Allen

Security Risks of Internet Communication

Eavesdropping

e Intermediaries listen in on private conversations

e Solution: Encryption (public or private-key)
Manipulation

e Intermediaries change information in a private communication

e Solution: Methods for preserving data integrity (one-way hash
functions and Message Authentication Codes (MACs))

Impersonation

e A sender or receiver communicates under false ID

e Solution: Authentication (digital signature, etc.)

Terminology

A sender (Bob) wants to send a message to a receiver (Alice) securely —
wants to make sure no eavesdropper can read message.
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Encryption ciphertext _ Decryption
E(M) C=EM) " D(C

Plaintext
M =D(C)

N

plaintext — original message

encryption — process of disguising message to hide its contents
ciphertext — encrypted message

decryption — process of turning ciphertext back into plaintext
cryptography — science of keeping messages secure
cryptanalysis — science of breaking ciphertext

Background: Number-Theoretic Algorithms

Useful for public-key encryption schemes
Easy to find large primes

Difficult to factor products of large primes

Size of Inputs

e Few inputs of large integers

e Size of input = #bits



e An algorithm with integer inputs ai,ao,...,a; is a polynomial-
time algorithm if it runs in time polynomial in Ig a4, lg a9, ..., Ig
ay; i.e., polynomial in the lengths of the binary-encoded inputs

Cost of Operations

e Arithmetic on large integers takes time

e Cost is measured in terms of bit operations

e Multiplying two (-bit integers takes ©(3*) bit operations

e Dividing a 3-bit integer by a shorter integer takes ©(3%) bit operations

e Faster methods do exist, but we will use the others in this lecture

Review of Number Theory

7 = set of integers {---,-2,-1,0, 1,2, ---}
N = set of natural numbers {0, 1, 2, - - -}

For two integers d and a, d | a (d divides a) if a = kd, k € Z. In this
case, a is a multiple of d, and d is a divisor of a (if d >= 0). Every
integer divides 0.

Examples: 2 8,319,210
Every integer a has the trivial divisors 1 and a.

Nontrivial divisors are called factors.

Examples: 2 is a factor of 8 and 10, 3 is a factor of 9.
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An integer a > 1 with only trivial divisors is a prime number; otherwise,
a is a composite. The integers {---, -2, -1, 0, 1} are neither prime
nor composite. There are infinitely many prime numbers.

Division Theorem

For any integer a and positive integer n, there are unique integers q and r
such that 0 <r<nanda=qn+r

q (= |a/n]) is the of the division

r (= a mod n) is the

a = |a/n|n + (a mod n) or
amodn =a- |a/n|n

If (a mod n) = (b mod n), then a = b (mod n)
Example

22 mod b =
-13mod 5 =

Equivalence

If (a mod n) = (b mod n), then a is equivalent to b, modulo n, denoted
a =b (mod n).

An equivalence class modulo n containing an integer a
is [a], = {a+ kn | k € Z}.



Example: if a=8, n=3, then q = _, r = __, and some b = a are

The equivalence classes modulo n are
03 = = 3]s = [6]3
s =
23 =

Common Divisors

Ifd|aandd |b, then dis a common divisor of a and b. The greatest
common divisor ged(a,b) is the largest such common divisor d.

(0 ifa=0=0
] ]al if |a|>0,b=0
ged(a,0) =\ |y if |b|>0,a=0
|1 < 2z < min(|al,|b]|) otherwise

For example, some common divisors of 12 and 18 are 1, 2, 3, and 6.
The greatest common divisor of 12 and 18 is 6.

Euclid’s Theorem

If a and b are any integers, not both zero, then ged(a,b) is the smallest
positive element of the set {ax 4+ by: x,y € Z} of linear combinations of
a and b.

Example: ged(9,15) = 3
9x 4+ 15y =3
Xx=2,y=-1




Relative Primes

Two integers a and b are relatively prime if ged(a,b) = 1.

Integers ny, no, ..., ny are pairwise relatively prime if ged(n;, n;)=
1 for all 7 # j.

Example: 8, 9, and 25 are pairwise relatively prime.

Unique Factorization

Theorem 33.7 For all primes p and all integers a and b, if p | ab, then
p|laorp]|b.
Theorem 33.8 A composite integer a can be written in exactly one way
as a product of the form a = pi'p5?-- - pfr, where the p; are prime,
P < py < --- < pr, and the e; are positive integers.

Examples: 675 = 33 * 52
1350 = 2 * 3% % 52
255 = 3 x5 % 17

Finding the gcd

Given prime factorizations of positive integers a and b,

a = pips2--po, b o= pltph2..pl,

where some e;, f; may be 0.
Then ged(a,b) = me(elafl)pgnm(e%fQ) - _p;mn(er,fr)_
Example: ged(255, 675) = 31 x 5! % 179 =3 * 5 = 15
However, factoring is not a polynomial time algorithm.




Euclid’s Algorithm

For any non-negative integer a and any positive integer b, ged(a, b) =
ged(b, a mod b)

Euclid(a,b) - second argument is strictly decreasing

1 ifb=0

2 then return a

3 else return Euclid(b, a mod b)

Example
Let a = 2322, b = 654.
2322 = 654*%3 + 360 gcd(2322,654) = gcd(654,360)
654 = 360*x1 + 294 gcd(654,360) = gcd(360,294)
360 = 294x1 + 66 gcd(360,294) = gcd(294,66)
294 = 66%4 + 30 gcd(294,66) = gcd(66,30)
66 = 30%2 + 6 gcd(66,30) = gcd(30,6)
30 = 6%5 gcd(30,6) = 6

gcd(6,0) = 6 (Elementary property of
Therefore, gcd(2322,654) = 6.

Analysis

For any integer £ > 1,ifa > b > 0 and b < F}1, then Euclid(a,b) makes
fewer than k recursive calls. ,
Remember that I}, = Fjp_ 1 + Fi_9, Fi = ¢ o = 1+27\/5

k+1 k
b<Fk+1:%,b<%

¢ > Vb k > log,Lh
k = O(lg b) recursive calls
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O(B) arithmetic operations
O(/3?) bit operations

Extended Euclid

Since ged(a,b) = ax + by, x, y € Z, finding x and y will be useful for

computing modular multiplicative inverses
Extended-Euclid(a,b)

ifb=20

then return(a, 1, 0)
(d’, x’, y') = Extended-Euclid(b, a mod b)
(d7 X, Y) — (d’7 y77 X - I_ % Jyj)

return(d, x, y)

Running time same as Euclid algorithm.

Example

(d, x, y) = Extended-Euclid(6, 3)

(d’, X’, y;)

Extended-Euclid (3, 0)
(3, 1, 0)
y=1-6/3*0-=1




Correctness of Extended-Euclid

d” = ged(b, a mod b)
= bx’ 4+ (amod b)y’ ; Euclid’s Theorem
=d = ged(a, b) ; Euclid’s Algorithm

d=bx+ (a-[§ |b)y ; Division Theorem
=ay +b(x'-[ 7]y ; Rearrange terms

d=d =ax + by

?

X:y
y=x-[%]y

)

Modular Arithmetic

(a mod n) 4+ (b mod n) = (a + b) mod n
(a mod n) * (b mod n) = ab mod n

a~! mod n =b <+ ab mod n = 1 (inverse)

2c+1

Uses identities a**modn = (a®)*modn and a***'modn = ax*(a®)*modn.

Solving Modular Linear Equations
ax = b (mod n)

Given a, b, n > 0; find x.

Let d = ged(a, n)



Solvable iff d | b

Theorem 33.23 Ifd | b and d = ax’ + ny’ (as computed by Extended-
Euclid) then one solution is 2y = x’(b/d) mod n.

Theorem 33.24 Given one solution zg, there are exactly d distinct
solutions, modulo n, given by z; = z¢ + i(n/d) fori=0,1,2, ..., d-1.

Pseudocode

ModularLinearEquationSolver(a, b, n)  ; O(lgn + ged(a,n))
(d, x’, y') = Extended-Euclid(a, n)  ; arithmetic operations

if (d | b)
then zy = x’(b/d) mod n
fori =0 tod-1

print (¢ + i(n/d)) mod n
else print “no solutions”
Note: Solving ax = 1 (mod n) gives a~! mod n (only one solution).

Chinese Remainder Theorem

Find integers x that leave remainders 2, 3, 2 when divided by 3, 5, 7,
respectively. [Sun-Tsu, 100 A.D.]

Theorem 33.27 Let n = njyng---ng, where n; are pairwise rela-
tively prime and consider the correspondence

a < (&1,&2,. . -7a/k‘)7

where a € Z,,, a; € Z,,, and a; = amod n; fori =1, --- k.
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Chinese Remainder Theorem (33.27 cont.)

Ifa < (a1,a9,---,ar) and b <> (by, by, - -+, by)

Then
(a+b) mod n <> ((a; + b1) mod ny, ..., (ar + b)) mod ny)
(a-b) mod n <> ((a; - by) mod ny, ..., (ag - by) mod ny)
ab mod n < (a1b; mod ny, ..., arby, mod ny).

From a — (ay,---,ax)
(a mod nj;, - - -, a mod ny)

From a,---,a; — a
m; = n/n;fori=1,...,k
ci = m;i(m; ! mod n;)
a = (aic; + -+ + agcg) (mod n)

Example

Given a = 2 (mod 5)
a = 3 (mod 11)
Find ¢ = z (mod 55)

ap =2,a, =3
m; =11, mg =5
ny = 5, N9g — 11
m;! modny =117t mod 5 =1
my ! mod ny = 57! mod 11 =9
ci; = mi(m{! mod ny) = 11(1) = 11
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co = ma(my ' mod ny) = 5(9) = 45

a = 2*11 + 3*45 (mod 55)
= 22 + 135 (mod 55)
= 157 (mod 55)
= 47 (mod 55)

Thus, we can work in modulo n or modulo n;.

Corollary 33.29

If ny, ng, --- ni are pairwise relatively prime and n = ning--- ng,

then for all integers x and a * = a mod n; iff £ = a mod n.

Euler’s phi function

Euler’s phi function ¢(n) is the size of Z* = {[a], € Z,: ged(an) = 1},
the multiplicative group mod n. ¢(p) = p-1 if p is prime.

Euler’s Theorem
For any integer n > 1, a®™ = 1 (mod n) for all @ € Z?.

Fermat’s Theorem

If p is prime, then a?~! = 1 (mod p) for all a € Zy.
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Repeated Squaring

Compute: a® mod n, where a and b are nonnegative integers and n is a
positive integer.

Let b =< bk7bk—17 ceey bl,bo >.

Compute a® mod n by doubling ¢ for each i and incrementing ¢ when
bi= 1.

Pseudocode

Modular-Exponentiation(a, b, n)
c=20
d=1
let b = < bgbr_1,...,b1,by > be binary encoding of b
for i = k downto 0
c=2c
d = (d*d) mod n
if b, =1
thenc=c+ 1
d = (d*a) modn  return d

Modular-Exponentiation(a=5, b=501, n=6) b = 111110101

i=8 |7 16 |65 | 4 3 | 2 1
c=011231671] 1415 | 3031 | 62 - | 124 125 | 250 - |
d=15]115]186]| 1 5] 15] 1-] 1 5] 1-]
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Analysis

If a, b, n are §-bit numbers, there are O(3) arithmetic operations and
O(B3%) bit operations.

Encryption - Symmetric Cryptography

Private Key

Alice and Bob share a key K the adversary does not know
Alice and Bob agree on cryptosystem and key

Bob encrypts plaintext using key, sends ciphertext to Alice
Alice decrypts ciphertext with same key and reads the message
Advantage: fast

Disadvantage: keys must be distributed secretly

Disadvantage: if key is compromised, all is lost

Disadvantage: number of needed keys is n?

Encryption - Public-Key Cryptography

Encryption key is public
Decryption key is private (secret)

Private key cannot be calculated from public key in a reasonable amount
of time

14



RSA Public-Key Cryptosystem

e Rivest, Shamir, and Adleman, 1977
e Most commonly used encryption and authentication algorithm today

e Used in Netscape, Microsoft browsers, Internet and computing stan-
dards

e Send encrypted messages
e Append unforgeable digital signature

e Based on ease of finding large primes and difficulty of factoring their
products

Public Key Cryptography

e Each participant has
— public key — released to others

— secret, key — kept secret
— Example Alice (P4, S4), Bob (Pg, Sp)

e Public and Secret functions are inverses

— M = Sa(Ps(M))
— M = P4(Sa(M))

e Must be able to reveal P4 while S 4 remains uncomputable (or at least
very difficult to compute).

e Security depends on method of computing keys
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— RSA — factoring large integers

— McEliecee — decoding linear code (NP-Complete)
— El Gamal — discrete logarithm problem

— Chor-Rivest — knapsack (NP-Complete)

Protocol for Sending Encrypted Message M

Encryption  ciphertext . Decryption
E(M) C=EMM)

=P(M) =5,(C)

P =Alice'spublickey A\
S =Alicessecret ke B

M = S (PA(M))
M =FA (S (M)

e Bob looks up Alice’s public key Pjy.

e Bob computes ciphertext message C = P4(M) for his original message
M.

e Bob sends C to Alice (eavesdroppers do not have Sy).
e Alice computes S4(C) = Sa(P4(M)) = M.

Protocol for Sending a Signed Message M’

e Alice computes digital signature o = S4(M’).
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e Alice sends (M, o) to Bob.
e Bob checks that M” = Py(0) = P4(Sa(M’)) = M’.

e Message M’ is not encrypted.

Protocol for Sending a Signed, Encrypted Message M

e Bob computes digital signature o = Sg(M), and creates new message
M =< M,o >,

e Bob computes C = P4(M’) and sends C to Alice.

e Alice computes < M, 0 > = 54(C) and then verifies signature using
M = PB(O').

RSA Cryptosystem

Public and secret keys are created as follows:

1. Select at random two large prime numbers p and q (say >100 decimal
digits each).

2. Compute n = pq.
3. Select a small odd integer e that is relatively prime to ¢(n) = (p-1)(q-

1).
4. Compute d = e"'mod ¢(n) (multiplicative inverse).

5. Publish pair P = (e, n) as RSA Public Key.
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6. Keep pair S = (d, n) as RSA Secret Key:.
7. P(M) = M°® (mod n)
8. S(C) = C? (mod n)

Example of RSA Encryption

I.p=41,q9=259
2. n =pq = 2419

3. ¢(n) = (p-1)(g-1) = 40*58 = 2320
Find e such that ged(e, 2320) = 1 and e is small and odd
e = 3 works

4.d = e ! mod ¢(n)
= 37! mod 2320
d = 1547
d*e mod ¢(n) = 1547*3 mod 2320 = 1

5. P = (e, n) = (3, 2419)

6. S = (d, n) = (1547, 2419)
P(M) = M? (mod 2419)
S(M) = M7 (mod 2419)
Note: Only 2419 different messages are possible.
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Implementing RSA

e Bob generates two large primes, p and q
Probabilistic primality testing O((lgn)?)

e Bob computes n = pq and ¢(n) = (p-1)(q-1)

e Bob chooses random e (1 < e < ¢(n)) such that ged(e, ¢p(n)) =1
Euclidean algorithm

e Bob computes d = e~ mod ¢(n)
Extended Euclidean Algorithm O((Ign)?)

e Bob publishes n and e in a directory as his public key

RSA Computation

Using public key P = (e, n) to transform messages M:
P(M) = M¢mod n)
Using secret key S = (d, n) to transform ciphertext C:
S(C) = C%mod n)

Use Modular-Exponentiation:
If|e|=O(1), [d|=|n|= 3
Then Public Key requires O(1) modular multiplications, O(3?) bit oper-
atlons
Secret key requires O(83) modular multiplications
O(3°) bit operations.
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Correctness

P(S(M)) = (M%modn)¢ mod n = M*mod n
S(P(M)) = (M®modn)® mod n = M*mod n
Since d = e~ mod [(p-1)(qg-1)]

Then ed = 1 + k(p-1)(q-1)

If M = 0 (mod p), then M = M (mod p)
If M # 0 (mod p), then
Mt = M(MP~HFa=D(mod p)
M (1))=Y (mod p) Fermat’s Theorem
M (mod p).
Similarly for q, thus
M = M (mod p)
“d = M (mod q)
p and q are prime, n = pq.
Thus, by the Corollary to the Chinese Remainder Theorem, M® =
M (mod n).

<

If the adversary can factor n into p and q, then the code is broken, but
this is hard.

Primality Testing

Finding large primes.

Density Of Primes
The prime distribution function 7(n) specifies number of primes
< n.
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Theorem 33.37 n “%o0 n%’;)n =1

(n) ~ L

For example, m(10%) =~ 48,254,942

The probability that randomly-chosen n is prime ~ in Thus, try

Inn
odd numbers near n to find a prime with high probabiligf. 2
For example, 100-digit number
In10'% ~ 230. Try 115 odd numbers near 10'%.
About 1/230 100-digit numbers are prime.

Break input message M into numerical blocks smaller than n.

Trial Division

Try all odd numbers 3, ..., /n to test n for primality.

Running Time O(y/n), but 8 = [lgn+1)] — n = 0(2°)
(exponential).

This works well only for small n.

Pseudo

7+ = nonzero elements of 7, = {1, 2, ... n-1}.

By Fermat’s Theorem, if n is prime, then a"~! = 1(mod n) for every
a € ZT.
If some a violates, then n is composite.

e Pseudo test tries formula for a=2. If satisfied, declare n prime.

e Does not always work, but the numbers errantly declared prime (base-
a pseudoprimes) are rare.
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e Carmichael Numbers are composites that satisfy formula for all a €
Z;. Very rare.

e Miller-Rabin randomized primality test overcomes this deficiency in
the pseudo test (tries random “a’s).

Integer Factorizations

e Trial division by all integers up to B to factor number up to B?
e Pollard-Rho factors numbers up to B* (usually)

— Works well in practice on numbers with small factors
— Analysis: ©(,/p) to find factor p

To factor B-bit composite number n

Try all prime factors < |4/n]

The run time is nT = 2g arithmetic operations

nzlfﬁ‘o’ — 25 bit operations

Hybrid Cryptosystems

In practice, public-key crypto used to secure and distribute session keys,
which are then used with private-key crypto to secure message traffic.

Applications
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