next up previous
Next: Up: Previous:

RSA Computation

Using public key P = (e, n) to transform messages M:

\begin{displaymath}P(M) \;=\; M^e (mod \;n)\end{displaymath}

Using secret key S = (d, n) to transform ciphertext C:

\begin{displaymath}S(C) \;=\; C^d (mod \;n)\end{displaymath}

Use Modular-Exponentiation:

If \(\mid e \mid\) = O(1), \(\mid d \mid \;=\; \mid n \mid \;=\; \beta\)
Then Public Key requires O(1) modular multiplications,
\(O(\beta^2)\)bit operations
Secret key requires
\(O(\beta)\) modular multiplications
\(O(\beta^3)\) bit operations.


next up previous
Next: Up: Previous: