## **String Matching**

Find all occurrences of a pattern in a text

String Matching Problem:

Given text array T[1..n] and pattern array P[1..m] of characters from alphabet  $\Sigma$ , find all s such that T[s+1..s+m] = P[1..m], i.e., P occurs with shift s in T.

# Example

| r | О | W | r | О | W | r | О | W | у | О | u | r | b | О | a | t |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   | Р | у | О |   |   |   |   |   |   |

$$s = 12$$
  
 $\Sigma = \{a, b, o, r, t, u, w, y\}$ 

T: yoyoyoyo

P: yoyo

## **String Matching**

- Simple problem with many applications
  - text editing
  - pattern recognition

## • Algorithms

- Naive O((n-m+1)m) worst case
- Rabin and Karp O((n-m+1)m) worst case, but better on average
- Finite Automaton  $O(n+m|\Sigma|)$
- Knuth-Morris-Pratt O(n+m)
- Boyer and Moore O((n-m+1)m+|  $\Sigma$  |) worst case, but better (best overall) in practice

## **Naive String Matching**

```
Naive(T, P)
n = length(T)
m = length(P)
for s = 0 to n-m \qquad O(n-m+1)
if P[1..m] = T[s+1..s+m] \qquad O(m)
then print "Pattern occurs with shift" s
This algorithm takes <math>O((n-m+1)m) time.
```

However, there is more information in a failed match:

| T: | a | a | a | a | р | a | a | ••• |
|----|---|---|---|---|---|---|---|-----|
| P: | a | a | a | a | a |   |   |     |

$$s = s + m$$

No need to consider \_\_\_\_\_

## Rabin-Karp Algorithm

- Let characters be digits in radix- $|\Sigma|$  notation.
- Choose a prime number q such that  $|\Sigma|q$  fits within a computer word to speed computations.
- Algorithm:

Compute (P mod q)  $\begin{array}{l} \text{Compute } (P mod \ q) \\ \text{Compute } (T[s+1, ..., s+m] \ mod \ q) \ for \ s=0 \ .. \ n-m \\ \text{Test against P only those sequences in T having the same } (mod \ q) \\ \text{value} \end{array}$ 

• (T[s+1, .., s+m] mod q) can be incrementally computed by subtracting the high-order digit, shifting, adding the low-order bit, all in modulo q arithmetic.

$$\Sigma = \{0, 1, ..., 9\}$$
 $P = 12, P \mod 3 = 0$ 
 $q = 3$ 



## **Analysis**

The Rabin-Karp algorithm takes  $\Theta((n-m+1)m)$  time in the worst case. O(n) + O(m(v+n/q)) average case, v = #valid shifts If  $q \ge m$  and v = O(1), then O(n+m).

#### Finite Automata

A finite automata  $M = (Q, q_0, A, \Sigma, \delta)$ , where

- $Q = \text{set of states } (s_i)$
- $q_0 = \text{start state } (s_0)$
- $\bullet$  A = set of accepting states
- $\Sigma = \text{input alphabet}$
- $\delta = \text{transition function } Qx\Sigma \to Q$

## Example

Here is a finite automaton accepting strings with an even number of "a"s.  $\Sigma = \{a, b, c\}.$ 



$$\delta(s_0, a) = s_1$$
 $\delta(s_0, b) = \delta(s_0, c) = s_0$ 
 $\delta(s_1, a) = s_2$ 
 $\delta(s_1, b) = \delta(s_1, c) = s_1$ 
 $\delta(s_2, a) = s_1$ 
 $\delta(s_2, b) = \delta(s_2, c) = s_2$ 

$$A = \{s_2\}$$

Consider input string w. If w ends at state  $s \in A$ , then the FA accepts w; otherwise, the FA rejects w.

Example: str = bccabaccaba

Accept

## String Matching FA

- 1. Compute FA accepting P (m+1 states)
- 2. Run FA with input string T, printing shift whenever accepting state is reached.

$$P = yoyo, m=4$$

$$T = spin your yoyo$$

$$\Sigma = \{i, n, o, p, r, s, u, y\}$$

$$Let X = \Sigma - \{y, o\}$$



# Analysis

```
Computing \delta: O(m| \Sigma |)
```

```
\begin{aligned} & \text{FA-Matcher}(\mathbf{T},\,\delta,\,\mathbf{m}) & ; \, \mathbf{O(n)} \\ & \mathbf{n} = \mathbf{length}(\mathbf{T}) \\ & \mathbf{s} = s_0 \\ & \text{for i} = 1 \text{ to n} \\ & \mathbf{s} = \delta(\mathbf{s},\,\mathbf{T[i]}) \\ & \text{if s} = s_m \\ & \text{then print "Pattern occurs with shift" (i-m)} \end{aligned}
```

This algorithm takes  $O(n + m|\Sigma|)$  time.

## **Knuth-Morris-Pratt Algorithm**

- Utilize a prefix array  $\pi[1..m]$ , where  $\pi[q]$  contains information to compute  $\delta(q, a)$  for  $(a \in \Sigma)$ , the pattern shift for a mismatch on P[q].
- $\pi$  requires only O(m) time (as opposed to O(m|  $\Sigma$  |) for  $\delta$ ).

### Prefix Array

# Example



How far can we shift P over and be assured of catching all matches?

Since we have matched up to yoyo and yo is a suffix of yoyo, then we can shift over by 2 and start testing at P[3].

#### **Prefix Array**

 $\pi[q]$  answers the question:

If we have matched P[1..q] in T, but P[q+1] does not match, then what is the longest prefix of P, P[1..k], that is a suffix of P[1..q]?

We can then start matching again from P[k+1].

$$\pi[q] = \max\{k \mid k < q \text{ and } P[1..k] \text{ is a suffix of } P[1..q]\}$$

## Example

#### Pseudocode

```
Compute-Prefix-Function(P)  \begin{aligned} m &= length(P) \\ \pi[1] &= 0 \\ k &= 0 \end{aligned} ; k \text{ must be less than } q \\ k &= 0 \end{aligned}  for q = 2 to m ; O(m) amortized  \begin{aligned} while &\ k > 0 \text{ and } P[k+1] \neq P[q] \\ k &= \pi[k] \\ if &\ P[k+1] &= P[q] \\ then &\ k &= k+1 \end{aligned} ; prefix increased by one <math display="block"> \pi[q] = k  return  \pi
```

## Pseudocode

$$KMP-Matcher(T, P)$$
  
 $n = length(T)$ 

```
\begin{array}{l} m = length(P) \\ \pi = Compute-Prefix-Function(P) & ; O(m) \ amortized \\ q = 0 \\ \text{for } i = 1 \ \text{to } n & ; O(n) \ amortized \\ \text{while } q > 0 \ \text{and } P[q+1] \neq T[i] \ ; \text{ where do we move to in } P? \\ q = \pi[q] \\ \text{if } P[q+1] = T[i] & ; \text{ matches so far } \\ \text{then } q = q+1 \\ \text{if } q = m \\ \text{then print "Pattern occurs with shift" (i-m)} \\ q = \pi[q] \end{array}
```

This algorithm takes \_\_\_\_\_ time

## **Boyer-Moore Algorithm**

- Most efficient (on average) when P is long and  $\Sigma$  is large
- Matches pattern from right to left
- Utilizes two heuristics

## **Bad Character Heuristic**



## Good Suffix Heuristic



#### Information For Bad Character Heuristic

Compute-Last-Occurrence(P, m 
$$\Sigma$$
)
for each  $a \in \Sigma$ 

$$\lambda[a] = 0$$
for  $j = 1$  to m
$$\lambda[P[j]] = j$$
return  $\lambda$ 

Running time:  $O(|\Sigma| + m)$ 

If mismatch at  $P[j] \neq T[s+j]$ , then shift  $(j - \lambda[T[s+j]])$ .

**Note:** Shift could be negative, in which case ignore the shift value and use Good Suffix shift which always has a positive value.

#### Information for Good Suffix Heuristic

$$\gamma[\mathbf{j}] = \mathbf{m} - \max\{\mathbf{k} \mid 0 \le \mathbf{k} < \mathbf{m} \text{ and } \mathbf{P}[\mathbf{j}+1..\mathbf{m}] \sqsupset P_k \text{ or } P_k \sqsupset \mathbf{P}[\mathbf{j}+1..\mathbf{m}]\}$$
 
$$\sqsupset \text{ means } \textit{suffix} \text{ (note: } x \sqsupset x)$$

If match j+1..m and  $P[j] \neq T[s+j]$ , shift right  $\geq \gamma[j]$ 

# Examples

googoo

$$\begin{array}{c|c}
3 & 3 & 3 & 3 & 1 & 1 \\
j = 0, P_3 & P[1..6]
\end{array}$$

googo

## Pseudocode

```
Compute-Good-Suffix(P, m)
\pi = \operatorname{Prefix}(P)
P' = \operatorname{reverse}(P)
\pi' = \operatorname{Prefix}(P')
\text{for } j = 0 \text{ to m} \qquad ; O(m)
\gamma[j] = m - \pi[m]
\text{for } l = 1 \text{ to m}
j = m - \pi'[l]
\text{if } \gamma[j] > l - \pi'[l]
\text{then } \gamma[j] = l - \pi'[l]
\text{return } \gamma
```

## Example

$$m = 4$$
 $P = yoyo, \pi =$ \_\_\_\_\_
 $P' = oyoy, \pi' =$ \_\_\_\_\_
 $\gamma =$ \_\_\_\_\_
 $\gamma =$ \_\_\_\_\_

#### Boyer-Moore-Matcher

```
\begin{aligned} & \text{Boyer-Moore-Matcher}(T,\,P,\,\Sigma) \\ & n = \text{length}(T) \\ & m = \text{length}(P) \\ & \lambda = \text{Compute-Last-Occurrence}(P,\,m,\,\Sigma) \qquad ;\, O(\mid \Sigma \mid + \, m) \\ & \gamma = \text{Compute-Good-Suffix}(P,\,m) \qquad ;\, O(m) \\ & s = 0 \end{aligned}
```

while 
$$s \leq n\text{-m}$$
 ;  $O(n\text{-m}+1)$   $j=m$  while  $j>0$  and  $P[j]=T[s+j]$  ;  $O(m)$   $j=j-1$  if  $j=0$  then print "Pattern occurs with shift"  $s$   $s=s+\gamma[0]$  else  $s=s+\max(\gamma[j],\,j-\lambda[T[s+j]])$  Close to naive  $O((n\text{-m}+1)m+\mid\Sigma\mid)$  Boyer-Moore-Matcher is actually best in practice

## Example

$$T = soyoyo$$

$$P = yoyo$$

$$\gamma = \underline{\hspace{1cm}}$$

$$\Sigma = \{o, s, y\}$$

$$\lambda = \underline{\hspace{1cm}}$$

$$\gamma = \underline{\hspace{1cm}}$$

$$\gamma = \underline{\hspace{1cm}}$$

$$\gamma = \underline{\hspace{1cm}}$$

$$\Delta = \underline{\hspace{1cm}}$$

$$\gamma = \underline{\hspace{1cm}}$$

$$\Delta = \underline{\hspace{1cm}}$$

# **Applications**