String Matching

Find all occurrences of a pattern in a text

String Matching Problem:

Given text array T[1..n] and pattern array P[1..m] of characters from
alphabet ¥, find all s such that T[s+1..s+m| = P[1..m], i.e., P occurs with
shift s in T
Example

rio|w||rjo|w||[r|o|lw ylolu|r| |blojal|t
Pl=|y|o

s =12
> ={a, b ortuw,y}

T yoyoyoyo
P: yoyo

String Matching

e Simple problem with many applications

— text editing

— pattern recognition

e Algorithms

— Naive O((n-m+1)m) worst case

— Rabin and Karp O((n-m+1)m) worst case, but better on average
— Finite Automaton O(n+m| X |)

— Knuth-Morris-Pratt O(n+m)

— Boyer and Moore O((n-m+1)m+| ¥ |) worst case, but better (best
overall) in practice

Naive String Matching

Naive (T, P)
n = length(T)
m = length(P)
for s = 0 to n—m 0(n-m+1)
if P[1..m] = T[s+1l..s+m] 0(m)
then print "Pattern occurs with shift" s

This algorithm takes O((n-m+1)m) time.

However, there is more information in a failed match:

T:lalalalalblalal...
P:lalalalala

S=s+m
No need to consider

Rabin-Karp Algorithm

e Let characters be digits in radix-| ¥ | notation.

e Choose a prime number g such that | X | ¢ fits within a computer
word to speed computations.

e Algorithm:
Compute (P mod q)
Compute (T[s+1, .., s+m] mod q) fors =0 .. n-m
Test against P only those sequences in T having the same (mod q)
value

e (T[s+1, .., s+m] mod q) can be incrementally computed by subtract-
ing the high-order digit, shifting, adding the low-order bit, all in mod-
ulo g arithmetic.

Example
»={0,1, ., 9}
P=12,Pmod 3=0
q=3

Analysis

The Rabin-Karp algorithm takes ©((n — m + 1)m) time in the worst case.
O(n) + O(m(v + n/q)) average case, v = #valid shifts
If ¢ > m and v = 0O(1), then O(n+m).

Finite Automata

A finite automata M = (Q, qo, A, X3, 9), where
o () = set of states (s;)

e ¢y = start state (sg)
e A = set of accepting states
e X = input alphabet

e 0 = transition function Qx> — Q

Example

Here is a finite automaton accepting strings with an even number of “a’s.

¥ ={a, b, c}.

b b

b
(P 2.
©,

5(80, a) = 51
5(80, b) = (5(80, C) S0
d(s1, a) = $9
d(s1, b) = d(s1, ¢) = s1
d(s9, a) = 51
5(82, b) = 5(82, C) = S§9

A = {32}

Consider input string w. If w ends at state s € A, then the FA
accepts w; otherwise, the FA rejects w.

Example: str = bccabaccaba

Accept

String Matching FA

1. Compute FA accepting P (m+1 states)

2. Run FA with input string T, printing shift whenever accepting state
is reached.

Example
P = yoyo, m=4
T = spin your yoyo

E:{i7 n7 07 p7 r? S7 u7 Y}
Let X = ¥ - {y, o}

Analysis

Computing 9: O(m| X |)

FA-Matcher(T, 6, m) ; O(n)
n = length(T)
S = Sp
fori=1ton
s = 0d(s, T[i])
ifs=s,,
then print “Pattern occurs with shift” (i-m)

This algorithm takes O(n + m| X |) time.

Knuth-Morris-Pratt Algorithm

e Utilize a prefix array 7[1..m|, where 7[q] contains information to com-
pute 0(q, a) for (a € X), the pattern shift for a mismatch on P|q].

e 7 requires only O(m) time (as opposed to O(m| X |) for 9).

Prefix Array

Example

s =2
How far can we shift P over and be assured of catching all matches?

Since we have matched up to yoyo and yo is a suffix of yoyo, then we
can shift over by 2 and start testing at P[3].

Prefix Array

7[q] answers the question:

If we have matched P[1..q] in T, but P[q+1] does not match, then what
is the longest prefix of P, P[1..k], that is a suffix of P[1..q]?

We can then start matching again from P[k+1].

7

m[q] = max{k | k < q and P[1.Kk] is a suffix of P[1..q]}

Example
p_ 1 2345
Yy 0oy oS
12345
"T 00120
Pseudocode
Compute-Prefix-Function(P)
m = length(P)
(1] =0 - k must be less than q
k=20
forq =2 tom > O(m) amortized
while k > 0 and P[k+1] # P|q]
k = m[k]
if P[k+1] = P|q]
then k =k + 1 » prefix increased by one
mlql =k
return
Pseudocode

KMP-Matcher(T, P)
n = length(T)

m = length(P)

7 = Compute-Prefix-Function(P) > O(m) amortized
q=20
fori=1ton ; O(n) amortized
while q > 0 and P|q+1] # TJi] ; where do we move to in P?
q = m[q]
if Plq+1] = T|i] ; matches so far
thenq=q + 1
ifq=m
then print “Pattern occurs with shift” (i-m)
q = m[q]
This algorithm takes time

Boyer-Moore Algorithm

e Most efficient (on average) when P is long and ¥ is large
e Matches pattern from right to left

e Utilizes two heuristics

Bad Character Heuristic

Example

bad char acter

Find rightmost occurrence of bad character in P
Shift it over underneath

Good Suffix Heuristic

Example

oly]lo

L ook for good suffix to left in P
Shift it over underneath

‘I\)
~af— \<

10

Information For Bad Character Heuristic

Compute-Last-Occurrence(P, m)
foreach a € X

Ala] =0
forj=1tom

AP[]] =]
return \

Running time: O(| X | +m)
If mismatch at P[j] # Tls+j], then shift (j - A[T[s+j]]).

Note: Shift could be negative, in which case ignore the shift value and
use Good Suffix shift which always has a positive value.

Information for Good Suffix Heuristic

v[j] = m - max{k | 0 <k < m and P[j+1..m] 3 P; or P, O P[j+1..m]}
71 means suffiz (note: x 1 x)

If match j+1..m and P[j] # T[s+j], shift right > ~[j

Examples
g00goo0
31313313
j=10, P3O P[lG]
g00go

11

Pseudocode

Compute-Good-Suffix(P, m)

7 = Prefix(P)

P’ = reverse(P)

n’ = Prefix(P’)

forj =0tom > O(m)

v[j] = m - 7|m]
forl =1tom

j=m-
if y[j] > 1- (1]
then ~[j] =1- 7]
return -y
Example
1m =
P=yoyo,m=___
P’ =oyoy, 7' =___
v =

Boyer-Moore-Matcher

Boyer-Moore-Matcher(T, P, ¥)
n = length(T)
m = length(P)
A = Compute-Last-Occurrence(P, m,) ; O(] X | + m)
~ = Compute-Good-Suffix(P, m) ; O(m)
s=0

12

while s < n-m ; O(n-m—+1)

j=m

while j > 0 and P[j] = T[s+]] ; O(m)
1=j-1

if j =0

then print “Pattern occurs with shift” s
s =s + [0]

else s = s + max(7[j], j - A[T[s+j]])

Close to naive
O((n-m+1)m + | X |)
Boyer-Moore-Matcher is actually best in practice

Example
T = soyoyo
P = yoyo
v =
Y= {o, s, y}
A=__
v =
—— yoyo
Match
Applications

13

