Computational Geometry

Compute properties of a set of points, lines or geometric objects (defined
by points and lines)

Properties: extent, intersection, proximity relationships
Applications:

e graphics (e.g., hidden line removal)

e robotics (e.g., path planning, object avoidance)
e design (e.g., component placement, packaging)
e statistics (e.g., nearest neighbor)

e sensor planning (e.g., area of observation calculation)

Line Segments

Questions

Is pop1 clockwise (cw) or counterclockwise (cew) of pops?

Turning direction from pyp71 to pips?
P, (left)
Po P1

p2 (right)

Do p1ps and p3ps intersect?

Py P,

Cross Product

PoP1 X PoD2
Assuming py = (0, 0), compute the signed area within (0,0), p1, p2, p1+p2
= (21 + 22, 11 + Y2).
p1 X Py = T1Y2 — Tay1, the area of the parallelogram

This is the determinant of the matrix

I yl]
T2 Y2

Note if p; = (4,0) and py = (2,4), we are computing the signed area
within (origin, p1, pa, p1 + p2) which is p; x p3 = 16 - 0 = 16.
If we compute p3 X pi the signed area is 0 - 16 = -16.

Example

<

B,35)
1 (4:4)

P5(5.3)

= X

p1 X py > 0, ps ccw from py

p1 X p3 <0, p3 cw from p;
Therefore there is a cw relation by translating pg to the origin and taking
the cross product.

Turn

-
P3 P3
- -_—
Po Pq Po Py
-
Ps Ps
CCW

ppxXp3>0 —

CW
PLX Py <0 —

Intersection

1. Quick rejection by bounding box
|

2. Straddle: One line segment [; straddles another line segment [y if

e One point of /; on one side of Is and

4

e The second point of [; lies on the other side of [y

Example

a x ¢ <0
b x ¢ >0
Different Sign: Straddles

Example

X 0
X 0

SN QY
Ol Oy

<
<
Same Sign: No straddle

Example
A
X
o
ST oD
—
-

Check pips with psps, and p3ps with p1po

Any intersecting segments

Sort segments by left endpoints
Pass a vertical sweep line over the segments

Put segment in RB tree when hit left endpoint, order by y value
Check intersection between new and ABOVE and between new and
BELOW

Remove segment from RB tree when hit right endpoint
Check intersection between ABOVE and BELOW
If two line segments intersect, they will eventually be neighbors

Neighbors when one of the segments is added, and the first check will
catch the intersection

Neighbors when another segment is deleted, and the second check will
catch the intersection

The intersecting lines will eventually intersect the sweep line.

No false positives

Assume no vertical lines, no 3 lines intersect at same point

3//j<\

Sweep line: RB tree contains 1

Sweep line:
Sweep line:
Sweep line:
Sweep line:
Sweep line:
Sweep line:
Sweep line:
Sweep line:

RB tree contains 2, 1, no intersect

RB tree contains 2, 1, 3, no intersect
RB tree contains 2, 3, intersect

RB tree contains 2, 4, 3, no intersect
RB tree contains 2, 4, 3, 5, no intersect
RB tree contains 2, 4, 3, no intersect
RB tree contains 2, 3, intersect

RB tree is empty

For n segments:

sort segments nlgn
n RB-Inserts nlgn
n RB-Deletes nlgn

0(1) comparison

The algorithm takes time.

Convex Hull

Graham’s Scan

e Start with lowest point py (©(n))
e Sort remaining points based on polar angle from py (©(nlgn))

e Build pg, p1, pa, ., pr as long as px—1 px pr+1 makes a left turn (py
is on the top of the stack)

e If not, remove p;’s until it does

P3 right P3 'tﬁfrtn
turn L/
remove p2
p2 - IO2
1 /pl
Po Po

pOplp2p3 pOplp3

10

Example

opl p0O pl
p4
o
i (0]
D 0
p2 ~pl Y p2 Apl
o po3 5 o o 0 pO plp2
Jo) o
PO PO
pSFE Opl
O <
PO plp2p3
(0]
pO
p4
Q
o2 . pO pl p2><o4
P3' o oP
0 </
p4
0 o
. p4 PO
a 3 o7 @
o
p2 1
. o pO p1><p4
p0O

PO plp4pS
pO

11

Analysis

Stack Implementation
Sort: O(n Ig n)

Push /Pop Naive: O(n?)

Push/Pop Aggregate:

Graham’s Scan algorithm takes O(n Ig n) time.

Jarvis’ March

Jarvis-March(P) ;P = (pq, .-, pn—1) points

P = Py, the lowest point

while p not highest point
find point p,, with minimum polar angle from p —
add p,, to convex hull
P =DPm

while p # pg
find point p,,, with minimum polar angle from <— p
add p,, to convex hull

P =DPm

12

Example

PS5 pgng, PO P14 pS5
<Tt/(o @) pl

Analysis
Both while loops total of h times, where h is the number of points on
the convex hull.
Body of while loops takes _ to compute minimums.
Jarvis March algorithm takes time.

Closest Pair Of Points

Brute force solution: n?

Better solution:

e Given points P
e Sort points by x coordinate into X

e Sort points by y coordinate into Y
e Execute Closest-Pair(P,X,Y)

13

Closest-Pair(P, X, Y)
if |P| <3
then compute closest pair and return > O(1)
divide points evenly along x axis at x = 1 into Pr(Xg,Yz) and
Pr(Xpg, XRr)
dy, = distance(Closest-Pair(Pr,X1,Y7))
dr = distance(Closest-Pair(Pr,Xr,Yr))
d= min(dL,dR)
foreach point pin (I1-d) < x < (1 + d)
check 7 points p’ closest to p by y-coordinate
d’ = distance(p,p’)
ifd <d
then retain new closest pair
return closest pair

Why only 7 points?

® o0 ®
® o0 ®
|-d x=l |+d

Only 8 points define the rectangle whose pairwise distance is d.

For each point we need to check the 7 others in sorted order by y
coordinate value.

If a closer d exists then it will be to one of these.

14

Analysis

Initial Sorts: O(n Ig n)
Closest Pair:
e if n <3
T(n) = { 2T (n/2)+0O(n) if n >3

a=2b=2 f(n) =0(n) = O(n'¢?), case 2
T(n) = O(nlgn)
Closest-Pair algorithm takes ©(nlgn) time.

Applications

15

