NP-Completeness

Almost all algorithms considered so far run in worst-case polynomial time. That is,

$$T(n) = O(n^k)$$
 for some constant k
 $n = \text{input size}$

	Size n						
Complexity	10	20	30	40	50		
n	.00001 s	.00002 s	.00003 s	.00004 s	.00005 s		
n^2	.0001 s	.0004 s	$.0009 \mathrm{\ s}$.0016 s	.0025 s		
n^3	.001 s	.008 s	.027 s	.064 s	.125 s		
n^5	.1 s	3.2 s	24.3 s	1.7 min	5.2 min		
2^n	.001 s	1.0 s	17.9 min	12.7 days	35.7 years		
3^n	.059 s	58 min	6.5 years	3855 centuries	$2x10^8$ centuries	1.3 <i>a</i>	

P

The class of algorithms that run in polynomial time is called \mathbf{P} .

Algorithms that require more (exponential) time are "intractable"

Some *problems* seem to inherently require more time

One class of such problems is Nondeterministically Polynomial (NP), also called polynomial-time verifiable

Obviously, $P \subseteq NP$, but $P \subset NP$ (or $P = NP$) is an open question
An NP-Complete problem is in NP and is as hard as any problem in NP. Such a problem not necessarily in NP is called NP-Hard.
If $P=NP$, then a large class of NP-Complete problems would have a polynomial-time solution. Thus, most researchers advocate $P\subset NP$ ($P\neq NP$)
We would like to know the class to which a problem belongs.
Problems
A Q is a binary relation on a set I of and a set S of Example: Shortest-Path Problem
Instance: graph G vertices u and v
Solution: sequences of vertices (shortest path)
Decision Problems
A is a problem whose solution set $S = \{no, yes\}$
or {0, 1}. Example: Path decision problem
Example. I am accision problem

Instance: graph G vertices u and v non-negative integer k

Solution: 1, if path $u \rightsquigarrow v$ with length at most k 0, otherwise

Encod	ling	Pro	blems
			~

An of a problem is a symbol strings over some alphabet Σ Typically, $\Sigma = \{0, 1\}$.	mapping from problem instances to Σ , where $ \Sigma >= 2$.
Problems represented as binary	strings are called prob-
lems.	
An algorithm a concre	te problem in time $O(T(n))$ if, when
provided any problem instance i of	length $n = i $, the algorithm can pro-
duce the solution in at most O(T(n))) time.
A concrete problem is	if there ex-
ists an algorithm to solve it in time	$O(n^k)$ for some constant k.
The	is the set of concrete decision prob-
lems solvable in polynomial time.	

Formal Languages

These provide a convenient framework for analyzing decision problems.

An $____$ Σ is a finite set of symbols.

A _____ L over Σ is any set of strings made up of symbols in Σ .

Denote **empty string** ϵ and **empty language** \emptyset .

The language of all strings over Σ is Σ^* .

E.g., if
$$\Sigma = \{0, 1\}, \Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, ..\}$$

Example: PATH decision problem language

PATH = $\{\langle G, u, v, k \rangle \mid G = (V, E) \text{ is a directed graph, } u, v \in V, k \geq 0 \text{ is an integer, and there exists a path from u to v in G whose length is at most k}$

Note that the problem $\langle G, u, v, k \rangle$ is encoded as a binary string.

Decision Problems and Algorithms

An algorithm A _____ a string $x \in \{0,1\}^*$ if, given input x, the algorithm outputs A(x) = 1

The language _____ by an algorithm A is the set $L = \{x \in \{0,1\}^* \mid A(x) = 1\}$

An algorithm A _____ a string x if A(x) = 0

A language L is _____ by an algorithm A if every binary string is either accepted or rejected by the algorithm.

Example

The language PATH is decided by the following algorithm in polynomial time:

Use Bellman-Ford to find shortest path from u to v in G If length(path) \leq k then output 1 else output 0

Decision Problems and Algorithms

A	i	s a set	of langua	ages, me	embers.	hip in	which	Ĺ
	is determined by a				(e.g., ru	ınning	time))
	on an algorithm that dete	ermines	whether	a given	string	belong	s to a	ι
	language.							

Example

 $P = \{L \subseteq \{0, 1\}^* \mid \text{there exists an algorithm A that decides } L \text{ in polynomial time} \}$

Theorem 36.2

 $P = \{L \mid L \text{ is accepted by a polynomial time algorithm}\}$

Proof:

There exists an algorithm A' that runs algorithm A for a polynomial amount of time and rejects if A has not yet accepted the string; otherwise accepts.

Polynomial-Time Verification

Given a problem instance and a solution (**certificate**), verify that the solution solves the problem.

Example: PATH problem

Given: $\langle G, u, v, k \rangle$, path p

Verify: $length(p) \le k$

In some cases, having a certificate does not help much since verification is no faster than generating a solution from scratch (e.g., PATH).

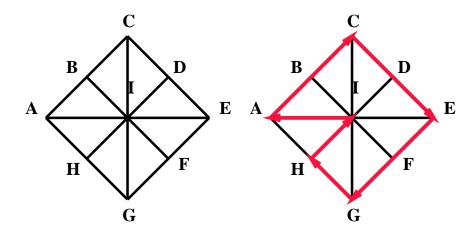
However, this is not true of all problems...

Hamiltonian Cycles

A **Hamiltonian Cycle** of an undirected graph G = (V, E) is a simple cycle that contains each vertex in V.

Hamiltonian Cycle Decision Problem: Does a graph G have a Hamiltonian Cycle?

Language: HAM-CYCLE = { $\langle G \rangle \mid G \text{ contains a Hamiltonian Cycle}}$



Naive Solution: Try all possible cycles.

If encode graph as an adjacency matrix and $n = |\langle G \rangle|$, then the number of vertices m in G is $\Omega(\sqrt{n})$. There are m! permutations of vertices (possible cycles); thus, running time is $\Omega(m!) = \Omega(\sqrt{n}!) = \Omega(2^{\sqrt{n}})$, which is $\neq O(n^k)$ for any constant k.

In fact, HAM-CYCLE is NP-Complete.

Verification Algorithms

Consider a corresponding verification problem for HAM-CYCLE:

Given a cycle and a graph G, verify if cycle is a Hamiltonian cycle in G.

Running time: $O(n^2)$

- A **verification algorithm** is a two-argument algorithm A, where one argument is an ordinary input string x, and the other argument is a binary string y called a **certificate**. Algorithm A **verifies** x if there exists a y such that A(x,y) = 1.
- The **language verified** by a verification algorithm A is $L = \{x \in \{0,1\}^* \mid \text{there exists } y \in \{0,1\}^* \text{ such that } A(x,y) = 1\}$

NP

The **complexity class NP** is the class of languages that can be verified by a polynomial-time algorithm.

 $L \in NP$ if algorithm A verifies language L in polynomial time.

Example: $HAM-CYCLE \in NP$

Reducibility

A problem Q can be **reduced** to another problem Q' if any instance of Q can be "easily rephrased" as an instance of Q', whose solution provides a solution to the instance of Q.

Example: Solving ax + b = 0 reduces to solving $0x^2 + ax + b = 0$.

A language L_1 is **poly-time reducible** to language L_2 , written $L_1 \leq_P L_2$, if there exists a poly-time computable function $f: \{0,1\}* \to \{0,1\}*$ such that for all $x \in \{0,1\}^*$:

$$x \in L_1 \text{ iff } f(x) \in L_2$$

where f is the **reduction function**.

This is a one-way function. Q' will not always reduce to Q.

Examples

The following example illustrates the concept of reducibility. Consider three problems, A, B, and C:

- A=Prime(n): The problem of determining whether or not n is a prime number.
- B=Numberfactor(n): The problem of counting the number of distinct primes that divide n.

• C=Smallestfactor(n): The problem of finding the smallest integer $x \geq 2$ such that x divides n.

In this example $A \leq_P C$, and $B \leq_P C$. Why?

Thus the solution of Smallestfactor(n) tells us that n is not a prime.

To see how $B \leq_P C$ we need a simple algorithm that counts the number of distinct divisors of n using C.

Lemma 36.3

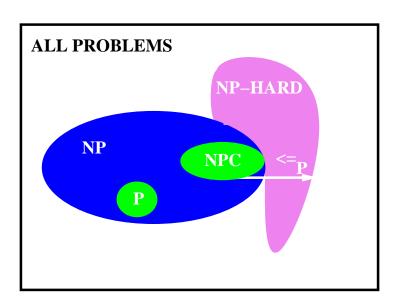
```
If L_1, L_2 \subseteq \{0,1\}^*, and L_1 \leq_P L_2, then L_2 \in P implies L_1 \in P.
For any instance of L_1
map to L_2 (poly time)
solve L_2 (poly time)
Thus if we can solve L_2 in poly time we can solve L_1 in poly time.
```

NP-Completeness

NP-Complete problems are the hardest problems (no problem is harder) in NP, i.e., every problem in NP reduces to an NP-Complete problem.

- A language $L \subseteq \{0,1\}^*$ is **NP-Complete** if $L \in NP$, and $L' \leq_P L$ for every $L' \in NP$.
- The class of NP-Complete languages is called **NPC**.
- A language $L \subseteq \{0,1\}^*$ is **NP-Hard** if $L' \leq_P L$ for every $L' \in NP$.

• A language that is NP-Hard is not necessarily in NP. E.g., Kth Largest Subset is NP-Hard, but not NPC. KLS: are there at least K distinct subsets A' of set A such that $\sum_{a \in A'} a \leq B$?



If we can solve one NPC problem in polynomial time, we can solve every problem in NP in polynomial time. For this reason, many assume P \neq NP.

Theorem 36-4

If any NP-Complete problem is poly-time solvable, then P = NP.

If any problem in NP is provably not poly-time solvable, then all NP-Complete problems are not poly-time solvable.

If we can prove one problem is NP-Complete, then we can prove others more easily by showing an NP-Complete problem reduces to them.