NP-Completeness

Almost all algorithms considered so far run in worst-case polynomial time.

That is,
T(n) = O(n*) for some constant k
n = input size
Size n

Complexity 10 20 30 40 50
n .00001 s |.00002 s | .00003 s .00004 s .00005 s
n? 0001 s| .0004s| .0009s 0016 s 0025 s
n? 001s| .008s 027 s 064 s 125 s
n’ 1s| 32s| 243s 1.7 min 5.2 min
2" 001 s 1.0 s | 17.9 min 12.7 days 35.7 years
3" 059 s | 58 min | 6.5 years | 3855 centuries | 2210° centuries | 1.3z

P

The class of algorithms that run in polynomial time is called P.

Algorithms that require more (exponential) time are “intractable”

Some problems seem to inherently require more time

One class of such problems is Nondeterministically Polynomial (NP), also
called polynomial-time verifiable



Obviously, P C NP, but P C NP (or P = NP) is an open question

An NP-Complete problem is in NP and is as hard as any problem in NP.
Such a problem not necessarily in NP is called NP-Hard.

If P = NP, then a large class of NP-Complete problems would have a
polynomial-time solution.
Thus, most researchers advocate P C NP (P # NP)

We would like to know the class to which a problem belongs.

Problems

A Q is a binary relation on a set I of

and a set S of

Example: Shortest-Path Problem

Instance: graph G
vertices u and v

Solution: sequences of vertices (shortest path)

Decision Problems

A is a problem whose solution set S = {no, yes}
or {0, 1}.
Example: Path decision problem



Instance: graph G
vertices u and v
non-negative integer k

Solution: 1, if path u ~» v with length at most k
0, otherwise

Encoding Problems

An of a problem is a mapping from problem instances to

symbol strings over some alphabet ¥, where | ¥ | >= 2.
Typically, > = {0, 1}.

Problems represented as binary strings are called prob-
lems.
An algorithm a concrete problem in time O(T(n)) if, when

provided any problem instance i of length n = [i|, the algorithm can pro-
duce the solution in at most O(T(n)) time.
A concrete problem is if there ex-

ists an algorithm to solve it in time O(n*) for some constant k.

The is the set of concrete decision prob-

lems solvable in polynomial time.

Formal Languages

These provide a convenient framework for analyzing decision problems.

3



An Y. is a finite set of symbols.

A L over X is any set of strings made up of symbols in ..

Denote empty string € and empty language .

The language of all strings over X is 3*.
Eg., if = {0, 1}, ©* = {¢, 0, 1, 00, 01, 10, 11, 000, ..}

Example: PATH decision problem language

PATH = {(G, u, v, k) | G = (V, E) is a directed graph, u,v€ V, k >0
is an integer, and there exists a path from u to v in G whose length is at
most k}

Note that the problem (G, u, v, k) is encoded as a binary string.

Decision Problems and Algorithms

An algorithm A a string x € {0,1}* if, given input x, the
algorithm outputs A(x) = 1

The language by an algorithm A is the set L = {x € {0,1}*
| Alx) = 1}

An algorithm A a string x if A(x) =0

A language L is by an algorithm A if every binary string is

either accepted or rejected by the algorithm.



Example
The language PATH is decided by the following algorithm in polynomial
time:
Use Bellman-Ford to find shortest path from u to vin G
If length(path) < k
then output 1
else output 0

Decision Problems and Algorithms

A is a set of languages, membership in which
is determined by a (e.g., running time)
on an algorithm that determines whether a given string belongs to a
language.

Example

P = {L C {0, 1}* | there exists an algorithm A that decides L in
polynomial time}

Theorem 36.2
P = {L | L is accepted by a polynomial time algorithm }
Proof:
There exists an algorithm A’ that runs algorithm A for a polynomial
amount of time and rejects if A has not yet accepted the string; otherwise
accepts.




Polynomial-Time Verification

Given a problem instance and a solution (certificate), verify that the
solution solves the problem.

Example: PATH problem
Given: (G, u, v, k), path p
Verify: length(p) < k

In some cases, having a certificate does not help much since verification
is no faster than generating a solution from scratch (e.g., PATH).
However, this is not true of all problems...

Hamiltonian Cycles

A Hamiltonian Cycle of an undirected graph G = (V, E) is a simple
cycle that contains each vertex in V.

Hamiltonian Cycle Decision Problem: Does a graph G have a Hamilto-
nian Cycle?
Language: HAM-CYCLE = {(G) | G contains a Hamiltonian Cycle}




Naive Solution: Try all possible cycles.

If encode graph as an adjacency matrix and n = | (G) |, then the
number of vertices m in G is {2(y/n). There are m! permutations of vertices
(possible cycles); thus, running time is Q(m!) = Q(y/n!) = Q(2v"), which
is # O(n) for any constant k.

In fact, HAM-CYCLE is NP-Complete.

Verification Algorithms

Consider a corresponding verification problem for HAM-CYCLE:
Given a cycle and a graph G, verify if cycle is a Hamiltonian cycle in

G.

Running time: O(n?)

e A verification algorithm is a two-argument algorithm A, where
one argument is an ordinary input string x, and the other argument
is a binary string y called a certificate. Algorithm A verifies x if
there exists a y such that A(x,y) = 1.

e The language verified by a verification algorithm A is
L = {x € {0,1}* | there exists y € {0,1}* such that A(x,y) = 1}

NP

The complexity class NP is the class of languages that can be verified
by a polynomial-time algorithm.



L, € NP if algorithm A verifies language L. in polynomial time.

Example: HAM-CYCLE € NP

Reducibility

A problem Q can be reduced to another problem Q’ if any instance of
Q can be “easily rephrased” as an instance of Q’, whose solution provides
a solution to the instance of Q.

Example: Solving az + b = 0 reduces to solving 0z* 4+ az + b = 0.

A language L4 is poly-time reducible to language Lo, written L1 <p
Lo, if there exists a poly-time computable function f : {0,1}x —
{0, 1}* such that for all x € {0,1}*:

x € L iff f(x) € Ly
where f is the reduction function.
This is a one-way function. Q’ will not always reduce to Q.

Examples

The following example illustrates the concept of reducibility. Consider
three problems, A, B, and C:

e A=Prime(n): The problem of determining whether or not n is a prime
number.

e B=Numberfactor(n): The problem of counting the number of distinct
primes that divide n.



e C=Smallestfactor(n): The problem of finding the smallest integer
x > 2 such that z divides n.

In this example A <p C, and B <p C. Why?

Thus the solution of Smallestfactor(n) tells us that n is not a prime.
To see how B <p C we need a simple algorithm that counts the number
of distinct divisors of n using C.

Lemma 36.3

If Ly, Ly C{0,1}* and L; <p Lo, then Ly € P implies L; € P.
For any instance of L
map to Ly (poly time)
solve Ly (poly time)
Thus if we can solve Ly in poly time we can solve L; in poly time.

NP-Completeness

NP-Complete problems are the hardest problems (no problem is harder)
in NP, i.e., every problem in NP reduces to an NP-Complete problem.

e A language L C {0,1}* is NP-Complete if L. € NP, and ' <p L
for every L’ € NP.

e The class of NP-Complete languages is called NPC.
e A language L. C {0,1}*is NP-Hard if I’ <p L for every L.’ € NP.



e A language that is NP-Hard is not necessarily in NP,
E.g., Kth Largest Subset is NP-Hard, but not NPC.
KLS: are there at least K distinct subsets A’ of set A such that
Yoeara < B?

ALL PROBLEMS

If we can solve one NPC problem in polynomial time, we can solve every

problem in NP in polynomial time. For this reason, many assume P =#
NP.

Theorem 36-4

If any NP-Complete problem is poly-time solvable, then P = NP.

If any problem in NP is provably not poly-time solvable, then all NP-
Complete problems are not poly-time solvable.

If we can prove one problem is NP-Complete, then we can prove others
more easily by showing an NP-Complete problem reduces to them.

10



