Circuit Satisfiability

D> D D

AND gate OR gate NOT gate

Boolean Combinational Circuits

X1 DC >_ w1 %1

not satisfiable for any z; € {0,1}

x1v x2

2D

satisfiable for x1x9 = 01, 10, or 11, thus satisfiable

Circuit-Satisfiability Problem

Given a boolean combination circuit composed of AND, OR, and NOT

gates, is it satisfiable?
CIRCUIT-SAT = {(C) | C is a satisfiable boolean combinational circuit}
where (C) is a binary-string encoding of the circuit (e.g., as a graph)

Determining membership in CIRCUIT-SAT would require checking the

2% possible binary assignments to the k inputs of a circuit.
There is strong evidence that CIRCUIT-SAT ¢ P.

1

CIRCUIT-SAT is NP-Complete

Proof:

1. CIRCUIT-SAT € NP
Proof: Can verify an input assignment satisfies a circuit by comput-
ing the output of a finite number of gates, one of which will be the
output of the circuit. This can be done in polynomial time. Thus, by

definition of NP, CIRCUIT-SAT € NP.

2. CIRCUIT-SAT € NP-Hard
Le., L <p CIRCUIT-SAT for every L € NP

Proof: Complex

Show that any problem in NP can be computed using a boolean com-
bination circuit (i.e., a computer).

This circuit has a polynomial number of elements and can be con-
structed in polynomial time. Thus, L. <p CIRCUIT-SAT for all L €
NP.

Thus, CIRCUIT-SAT € NP-Hard.

CIRCUIT-SAT is NP-Complete
Proof by Cook, 1971

NP-Completeness Proofs

Lemma 36.8

If LL is a language such that .’ <p L for some L.’ € NPC, then L is
NP-Hard. If also L. € NP, then L € NPC.
Strategy for proving L € NPC

1. Prove L € NP (poly-time verifiable)
2. Select L’ € NPC

3. Describe poly-time algorithm computing a function f that maps in-
stances of L’ to instances of L

4. Prove that x € L iff f(x) € L for all x € {0,1}*.
Note: Showing " <p spec(L) implies L' <p L.

Example: Boolean Formula Satisfiability

SAT: Given a Boolean formula in Conjunctive Normal Form (C.N.F.),
does there exist a satisfying assignment?

SAT = { B : B is a boolean formula in CNF that is satisfiable by some
truth assignment to its variables}

A CNF formula is a boolean formula composed of variables and con-
nectives AND, OR, NOT, IMPLIES, and EQUIV, possibly separated by

parentheses.

Let B = (u1 \/’LL—Q) AN (U—l\/ ’LLQ).

This is an instance of SAT for which the answer is “yes”. A satisfying
truth assignment is given by t(u1) = t(us) = T

On the other hand, the expression u; A %y is an instance of SAT for
which the answer is “no”.

SAT € NPC

Proof:
1. SAT € NP

Replace each variable with O or 1 as specified by the certificate and
evaluate (poly-time).

. Select I = CIRCUIT-SAT

. Reduction from CIRCUIT-SAT to SAT.

Straight-forward technique of computing the formula of each gate out-
put as a combination of the input formulae may cause exponential
instantiations of a variable as outputs are copied to multiple inputs.
Instead, let each gate output be a variable.

AND the output variable with expressions for each gate describing
the equivalence between the gate’s output and input variables.

Example
Circuit C
x1] x4
X2 >—
i: X6
X3 | > O
x5
Formula

¢ =z N (x4 & (1 ANT9)) N (x5 ¢ —x3) A (26 & (4 V T5))

Constructing this formula takes polynomial time.

SAT € NPC

4. Prove x € I iff f(x) € L, where L’ is CIRCUIT-SAT, L is SAT, and
f is the construction above.
x € CIRCUIT-SAT — f(x) € SAT

If C has a satisfying assignment, then each wire is well-defined and
the output is 1.

Therefore, each conjunct of ¢ is 1, and ¢ will evaluate to 1.
A satisfying assignment to ¢ yields a valid circuit C whose output is 1.

CNF Satisfiability

When the full power of SAT is not required to prove a language is in NPC,
3-CNF provides a more constrained alternative.

k-CNF (Conjunctive Normal Form) is a formula having a conjunction of
clauses, where each clause is a disjunction of exactly k literals (variable
or its negation).

Example 3-CNF: (21 V 29 V z3) A (24 V —x9 V 24)

Theorem 36.10

3-CNF-SAT € NPC

Some NP-Complete Problems

Clique Problem

CLIQUE: Given graph G = (V, E), find largest subset V' C V such
that Yu,v € V', (u,v) € F.
Le., V' forms a complete subgraph of G (usually want largest).

CLIQUE = {(G, k) : AV’ C V of size > k and Vu,v € V', (u,v) € E}

Example

1 G Oiginal Gaph G

A B
F
D E
K=1 A.
A
K=2 \
D
A B
K=3 ; ;
D
K=4 NONE

The running time of the CLIQUE algorithm is Q(k? (| Z |))

Theorem 36.11: CLIQUE € NPC

1. CLIQUE € NP
To show CLIQUE in NP, we use set V' of vertices as a certificate.
Veritying is polynomial time, check whether for every pair u,v in V’,
the edge is in E (| V' |? pairs).

2. ' = 3-CNF-SAT

3. 3-CNF-SAT <p CLIQUE

Start with instance of 3-CNF-SAT (also called 3CNF).

Let f be 3CNF with k clauses, (011 V 012 V 013) N (021 V CQQ V 023) N
(031 V 032 V 033)/\. .. (Ckl V Ckg \% Ckg)

For r = 1,2,.. k, each clause has three distinct literals {7, {5, 5.

Construct a graph G such that f is satisfiable iff G has a clique of size
k.

For each C, in f, put triple of vertices v{, vi, v5 in V.

Add edge (v], v}) if
1. v] and v} are in different triples (r # s), and

2. their corresponding literals are consistent (I is not the negation of

).

Proof (cont.)

This graph is constructed in polynomial time.

Iff=(z1V -2V -z3) A(—z1 VayVas) Az VeV es), then the
graph is

Proof (cont.)

4. Is this a reduction?

Suppose f has a satisfying assignment. Then each clause C). contains at
least one literal [{ that is assigned 1, and each such literal corresponds to
a vertex v; .

Picking one such "true” literal from each clause yields a set V' of k
vertices.

Is V7 a clique? For any two vertices v], v}, T # s, the corresponding
literals are mapped to 1 by the satisfying assignment and thus the literals
cannot be complements. By the construction of G, the edge (vf, v5)
belongs in E.

Proving the other direction, if G has a clique V’ of size k, no edges in
G connect vertices in the same triple, so V' contains exactly one vertex
per triple. Assign a 1 to each literal [I such that v in V’ without fear of
assigning 1 to a literal and its complement. Each clause is satisfied, and f

is satisfied.

Vertex-Cover Problem

A vertex cover of an undirected graph G = (V, E) is a subset V' C V
such that each edge in E is incident on at least one of the vertices in V’.

VC = {(G,k) : G = (V,E) is a graph, and 3V’ C V such that
| V!'|< k and Y(u,v) € E, either u € V' or v € V' (or both) }

A G Oiginal Gaph G

N

D E
K=1 NONE
K=2 NONE
K=3 NONE
K=4 c

D

| VERTEX COVER |

VC = {(G, k) | graph G has vertex cover of size k}

Theorem 36.12: VC € NPC

Proof Sketch:

1.VC e NP
Given V') check |V’| = k, and for each edge (u,v) € E, check that
eitherue V' orve V',

2. 1) = CLIQUE

3. CLIQUE <p VC
If graph G = (V, E) has clique V’, then graph G has vertex cover V
- V.
G = (V,E) is the complement of G = (V,E), where E = {(u, v)|(u,v) ¢

10

E}
Reduction: G — G (poly-time)

4. x € CLIQUE(G) =V’ — {(x) e VC(G) =V -V’ (|[V'| = k)
Every edge (u,v) € E implies (u,v) € E, thus at least one of u and v

¢ V’. Thus, at least one of u,v belongs to V - V’, which means edge
(u,v) is covered by V - V’. Similar argument for other direction.

Set-Covering Problem

Given a finite set X and a family F of subsets of X, X = Uger S, find a
minimum-size subset C C F whose members cover all of X.

SC = {(X, F, k) | there exists a set cover C C F covering X with size
< k)

sl

Theorem: SC € NPC

Proof:

1. Given C, check that all elements of X are members of some set in C
and that | C' | < k.

11

2. 1 =VC

3. Given (G, k) € VC, define F such that each element of F is a subset
for a vertex v in G containing v and all vertices reachable by an edge
from v.

Let X = V. Then (X,F, k) € SC.

4. If C is the vertex cover of (G, k) € VC, then every vertex u in G is
incident from an edge (u,v) where either u € C or v € C. Thus all
vertices will appear in some set in F, and the sets in F' corresponding
to the vertices in C make up the set covering of (X, F, k) € SC.

Subset Sum Problem

SUBSET-SUM = {(S, t) | there exists S’ C S C N such that £,cqr s =t
€ N},
N = set of natural numbers

Theorem 36.13: SUBSET-SUM < NPC
Proof:

1. SUBSET-SUM € NP. Just add up elements of S’ and compare sum
to t.

2. 1 =VC
3. VC <p SUBSET-SUM

4. x € VC + f(x) € SS
Proof is complex.

12

Hamiltonian Cycle Problem

A Hamiltonian Cycle is a simple cycle in a graph going through each vertex
exactly once.

HC = { (G)| G has a Hamiltonian cycle}
HC € NPC

Proof:

1. Done earlier.
2. I = 3-CNF-SAT
3. 3-CNF-SAT <p HC

4. x € 3-CNF-SAT « f(x) € HC
Proof is complex.

Traveling Salesman Problem

Given a complete graph with weights on the edges, find a cycle of least
total weight that visits each vertex exactly once.

Decision Problem:

TSP = {(G, k)| G is a complete graph with weights on edges that
contains a cycle of total weight < k visiting each vertex exactly once}

13

Tour: 1,3,4,2
Cost = 17

TRAVELI NG SALESMAN PROBLEM

Theorem 36.15: TSP € NPC

Variant of proof in textbook.
Proof sketch:

1. TSP € NP
Given a tour, check that each vertex is visited exactly once and the
sum of costs < k

2. I =HC

3. HC <p TSP
Given graph G = (V, F), transformation f outputs complete graph
with vertices V.
Weights of edges = 1ife € E,or (—V—+1)ife ¢ E
Also outputs the number —V—.
f is clearly implementable in polynomial time.

4. Then there exists a tour in this complete graph of size < |V| iff there
exists a Hamiltonian Cycle in original graph.

14

Click mouse to advance to next frame.

Partition Problem

Given a finite set A and a “size” s(a) € Z* for each a € A, find a subset
A" C A such that

X s(a) = ¥ s(a)
acAl ac(A—A)
PARTITION = {(A,s(a)) : A" C A such that the sums of A" and
(A — A') are equal}
For example, if A ={a=1,b=2,¢c=3,d=4,e=5,f=7,9 =8},
then one possible partition is A’ = {a,b,c,d,e} and A — A" = {f, g}.
The sum of both subsets is 15.

Knapsack Problem

KNAPSACK: Given a finite set U, a “size” s(u) € Z* and a “value”
v(u) € Z* for each u € U, a size constraint B € Z*, and a value
goal K € Z™", is there a subset U’ C U such that &, s(u) < B and
Suert V(u) > K7

This can be seen as a knapsack, which has a size limit for the objects,
as in the picture below.

15

KNAPSACK PROBLEM

The goal is to pick a collection of objects that will fit in the knapsack
and whose total value is at least K (K is input)

KNAPSACK = {(U, s,v, B, K) : 9 subset U’ of U such that the sum
of s values is at most B, and the sum of v values is at least K}

KNAPSACK is NP-Complete

Proof: We will show that the KNAPSACK problem is NP-complete
by polynomial-time restricting it in a way that makes it equal to the
PARTITION problem, or PARTITION <p spec(KNAPSACK).

We can restrict KNAPSACK to PARTITION by allowing only instances
in which s(u) = v(u) for all w € U and B = K = 1/2%,¢p s(u).

NP-Complete Problems

16

