next up previous
Next: Up: Previous:

Subset Sum Problem

SUBSET-SUM = {$\langle$S, t$\rangle$$\mid$ there exists S' $\subseteq$ S $\subset$ N such that \(\sum_{s \in S'} s\) = t $\in$ N},
N = set of natural numbers

Theorem 36.13: SUBSET-SUM $\in$ NPC

Proof:

1.
SUBSET-SUM $\in$ NP. Just add up elements of S' and compare sum to t.
2.
L' = VC
3.
VC \(\leq_P\) SUBSET-SUM
4.
x $\in$ VC $\leftrightarrow$ f(x) $\in$ SS
Proof is complex.


next up previous
Next: Up: Previous: