Phase Transitions

e P or NP classification based entirely on worst-case analysis

e Problem banished from P if one instance requires exponential solution
time

e Overconstrained and underconstrained are easy

e Really hard problems occur on boundary between these regions

e Probability of a Hamiltonian Circuit as average connectivity varies
e Almost fully connected almost always has HC

e With connectivity of just over 2, almost never has HC

Graph Coloring

4 colors, connectivity increases
3 colors, connectivity increases

Traveling Salesman

Approximation Algorithms
e NP-Complete problems require exponential running times to find op-
timal solutions
e If the problem instance is small, then you can wait

e If not, a near-optimal solution in polynomial-time may be acceptable

Ratio Bound

How does the approximate solution compare to the optimal solution?
An approximation algorithm has a p(n) if for any

input of size n, the cost C of the approximate solution is within a factor
p(n) of the cost C* of the optimal solution:

1 <pn)< max(g g)
- - Cx’ C
where C/C* is used for minimization problems, and C*/C for maxi-
mization problems.

Alternatively, an approximation algorithm has a

| C — Cx |
<
Cx < en)

where €(n) < p(n) - 1.

Approximation Scheme

An approximation is an approximation algorithm that takes as
input an instance of the problem and a value € > 0, such that the algorithm
has a relative error bound e.

The approximation scheme is if it runs in time polyno-

mial in the size n of the input.

The approximation scheme is if it runs in time

polynomial in 1/€ and n.
T(n) = f(1/e, n)

Vertex-Cover Problem

Approximation algorithm:
Keep grabbing edges whose vertices are not already in the cover

Approx-Vertex-Cover(G) .G =(V, E)
C={}
E'=E
while E” # {}
(u,v) = arbitrary edge from E’
C=CU{uv}
remove from E’ every edge incident on u or v
return C
This algorithm takes time.
Example
a d
b g h e

Optimal = {g, h}
Approximate = {a, g, d, h}
The size of the approximate vertex cover is never more than twice the size
of the optimal vertex cover.

Theorem 37.1

Approx-Vertex-Cover has a ratio bound of 2.

Proof:

The approximate solution C is a vertex cover.

Let A be the set of edges chosen by the algorithm. Since each such
edge’s endpoints were not in C at the time, |C| = 2|A|. An optimal cover
must have at least |A| vertices, |C*| > |A|. Thus |C*| > 1/2|C| and %
<2=np.

Traveling Salesman Problem

Triangle Inequality

c(u,w) < c¢(u,v) + c(v,w)

(generally satisfied)

An approximation algorithm with ratio bound p = 2 exists for TSPs
exhibiting triangle inequality.
Approx-TSP-Tour(G, c) ;G = (V, E), c = edge costs

select root vertex rin V

T = MST-Prim(G, ¢, r)

L = list of vertices in preorder traversal of T

return cycle with vertices ordered as in L

Theorem 37.2

For TSP with triangle inequality, Approx-TSP-Tour is an approximation
algorithm with a ratio bound of 2.
If H is approximate tour, ¢(H) < 2¢(H*)

Proof:
If H* is the optimal tour and T is a MST(G), then ¢(T) < c¢(H*).
Consider a full walk W of a MST with cost c¢(W).
Example

b/a\c
d/ \e

W=abdbebaca
c¢(W) = 2¢(T) — ¢(W) < 2¢(H¥)
W is not a tour, but by triangle inequality, we can change w — x — w
— y to w — x — y, without increasing cost to yield approximate tour H.

c(H) < ¢(W) < 2¢(H*)

Theorem 37.3

If P #£ NP, there is no poly-time approximation algorithm with ratio bound
p > 1 for the general TSP (i.e., no triangle inequality).

Proof:

If such an algorithm A exists, then we can use A to solve the Hamilto-
nian Cycle problem, which is NP-Complete, in polynomial time.

From graph G for Hamiltonian Cycle problem construct complete graph
G’ = (V,E’), where edges appearing in G have cost 1, and remaining edges
have cost p|V| + 1.

If HC in G, then there is a tour of cost |V| in G’, and A must return it
to satisfy its ratio bound of p. If no HC in G, the TSP tour costs at least

(PIVI+1)+ (V] =1) > p|V].

Thus, can determine if HC in G based on whether TSP tour cost is |V|.
But, unless P = NP, such an algorithm cannot exist, because it solves an
NP-complete problem in polynomial time.

Set-Covering Problem

Algorithm:
e Greedy approach

e Grab the set covering the largest number of uncovered members

Greedy-Set-Cover (X, F)
U =X ;uncovered
C=1{}
while U # {}
select S € F maximizing | S N U |
U=U-8S
C=CuU{S}

return C

Corollary 37.5

Greedy-Set-Cover has a ratio bound of (In|x| 4 1).
Proof in book.

Subset-Sum Problem

Algorithm:
e Variation

e Return largest sum < t of elements in S

Exact-Subset-Sum(S, t) S ={z1, .., zp}
n =[S
Ly = (0)

fori=1ton
Li = MGYgG—LiStS(Li_l, Li—l + LUZ)
remove from L; elements > t
return largest element in L,

Example
S ={1, 2, 3}
Ly = (0)
L1 =0, 1)
Ly =0, 1,2, 3)
L;=1(0,1,2,3,4,5,6)
Analysis

e [, could double in size after each iteration

7

e Final merge could take 2" steps

e Fxponential running time

Fully Poly-Time Approximation Scheme

e Returned value is largest < t to within some percentage error
e Let € = error bound, 0 < € < 1

e Trim L of all values whose relative error is no more then ¢ away from
a value in L

Trim(L, §) L=<, ..,Yym > sorted in non-decreasing order
1 m=|L|

2 L= (y)

3 last =

4 fori=2tom

5 if last < (1 - &)y;

6 then append y; on end of L’

7 last = y;

8 return L)’

Approx-Subset-Sum(S, t, €)
1 n=|S

2 Lo=(0)

3 fori=1ton

4 L; = Merge-Lists(L;—1, Li—1 + x;)
5 L; = Trim(L;, £)

6 remove from L, elements > t
7 return largest value in L,

Error passed to Trim is - to prevent too much inaccuracy after repeated
trimmings.

Theorem 37.6

Approx-Subset-Sum is a fully poly-time approximation scheme for the
subset-sum problem.

Approximation Algorithms

