Heapsort

In-place sort.
Running time: O(n lg n)

Heaps

1 2 3 4 5 6 7 8 9 10
206851237 2

Heap: An array A representing a complete binary tree for HeapSize(A)
elements satisfying the heap property:

for every node i except the root node.

Because the array may hold more numbers than are contained in the
heap, HeapSize(A) < length(A) (heap insertion and deletion)

e parent(i) = [i/2]

o left(i) = ; left child

e right(i) = ; right child

Running Times

Running times depend on height of the tree — the height of a node in a
tree is the number of edges in the longest simple path from the node to a
leaf.

e height(node 8) = _
e height(node 3) = _
e height(node 1) = _

The height of the tree is the
Operations on heap proportional to height.

Exercise 7.1-2

Show that an n-element heap has height | lg n |

h=3 h=3

h
2 2 =#nodesin full binary tree A

i=0

h-1 .
1+ 2! = #nodes in complete treavith minimum #nodesin last level
p
i=0

2

h—1 . h . h .
1+ Y2 < n< Y2 < Y2 +1
1=0 1= =

0 i=0
2h 1 2h+1 1
1 < < —F 1
L T R S
Simplifying a geometric series ($7_, 2% = xn;_ll_ D)

2h < n< 2h+1

h<lgn<h+1

Since h is an integer, h = | lg n |.

Maintaining the Heap Property

Heapify (A i)

Notice that if A[left(i)] > Ali] or if Afright(i)] > Ali] or both (take
largest) then swap and recurse until recursion bottoms out at bottom of

heap.

Pseudocode

Heapify(A.i)

1 1= left(i)

2 1= right(i)

3 if | < HeapSize(A) and A[l] > Alj]
4 then largest =1

5 else largest =i

6 if r < HeapSize(A) and A[r] > Allargest]
7 then largest =r

8 if largest # i

9 then swap(Allargest], Ali])

10 Heapify (A, largest)
If the parent is smaller than either of its children, does it matter whether
we swap the parent with the larger or the smaller of the children?

Recursive Analysis

N
O

N = 9, Nsybtree = LQn/gJ =3

Note that this expression has the maximum value when the lowest level
of the heap is exactly half full.

T(n) =T(] 2n/3 |) + ©(1)
Master: a = 1, b = 3/2, f(n) = O(1) = O(n%/2") = O(n?) = 6(1),

Case _
T(n) = O(n'*%2 1gn) = O(Ign).

BuildHeap

BuildHeap(A)

1 HeapSize(A) = length(A)

2 fori=| length(A)/2 | downto 1
3 Heapify(A.i)

A[(| n/2 | + 1) ... n] are leaves and heaps.
Click on mouse to advance to next frame.

Analysis

There are O(n) calls to Heapify, thus BuildHeap is O(nlgn), which is an
upper bound but not a tight bound (o(nlgn)).

5

The tight upper bound is O(nh).
Notice that the height h changes as the heap is being built.

Note: There can be at most [n/2"+1] nodes of height h in an n-element
heap.
Thus Heapify = for nodes of height h.

Analysis

From this result we can analyze the run time of BuildHeap.

lgnJ lUgn] h

0, = O(nx*x1/2 —

[100) = Ofnx1/2 ¥ 1)
Note that ZZOZO:U = ﬂv for | | < 1. The derivative of both sides,

A(spegah) = £(:1), is equal to 552 kat ™! = ﬁg

Multiplying both sides of the equivalence by x we get
v L ko _ z
k=0 KT = g
In our case k = h and x = 1/2.
Thuszﬁ“;o% = %ZQ,le/Q

Thus the run time is

Heapsort

Heapsort(A)
1 BuildHeap(A)

for i = length(A) downto 2
swap(A[1], Ali])
HeapSize(A) = HeapSize(A) - 1
Heapify (A, 1)
Click on mouse to advance to next frame.

Ot = W Do

Summary

BuildHeap:

Heapify:
Heapsort:

Priority Queues

A priority queue is a data structure for maintaining a set S of elements,
each with an associated key value.

Operations:

Max(S): returns element of S with largest key
ExtractMax(S): removes and returns element with largest key from S

Insert(S,x): inserts x into S (S =S U {x})

Application: Job Scheduling

Support insertion of prioritized jobs in queue.
Support extraction of highest priority job from queue.

Using heaps:
Max(S) = All], ©(1)
ExtractMax O(lgn), First 3 lines ©(1), fourth line O(Ign)

ExtractMax(S)

max = A[l]

A[1] = A[HeapSize(A)]
HeapSize(A) = HeapSize(A) - 1
Heapify(A,1)

return max

Ot & W NN =

This corresponds roughly to one iteration of HeapSort.

Insert

While loop iterates through height of heap and is thus O(lgn)
Insert(A, key)

HeapSize(A) = HeapSize(A) + 1

2 1= HeapSize(A)

3 whilei > 1 and A[Parent(i)] < key

4 Ali] = A[Parent(i)]

}_\

S
@
<R
S
&
)
B_

Quicksort

In-place, ©(n?) worst case.
O(n Ig n) average case with small constant factors.

Description

Divide-and-Conquer

Partition A[p..r] into two non-empty subsequences A[p..q] and
Alg+1..r] such that each element of A[p..q] is < each element of A[q+1..1].

Sort Alp..q] and A[q+1..r] by recursive calls to Quicksort.

Trivial, arrays are sorted in place.

Pseudocode

Quicksort(A,p,r)

1 ifp<r

2 then q = Partition(A,p,r)
3 Quicksort(A,p,q)

4 Quicksort(A,q+1,r)

Initial Call: Quicksort(A,1 length(A))

Partitioning the Array

1. Pick as the pivot
2. Move from to looking for an element < pivot
3. Move from to looking for an element > pivot

4. Swap the two elements

5. Repeat until pointers cross

Partition

Click on mouse to advance to next frame.

Partition(A,p,r)
1 x=Alp]

10

i=p-1
j=r+1
while TRUE
repeat
J=1J-1
until Afj] < x
repeat
1=14+1
until Afi] > x
if i < j
then swap(Ali], A[j])

else return j

— = O 00 ~J O U =~ W N
— O

(S —
w Do

Partition

(pivot is the median of the sequence)

leads to ©(nlgn) like Merge Sort.

(maximally bad when array already
sorted) leads to ©(n?) like Insertion Sort.

Worst Case

Partition always yields subarrays of size n-1 and 1.
T(n) = T(n-1) + O(n)

=Tn—-2) + ©(n—1) + O(n), T(1) = O(1)

11

=Tn-3) + 6(n—2) + O(n—1) + O(n)
The ith term is T(n-i) and the boundary case is i=n-1. The summation is
= > O(k)
k=1

We know that ©}_; O(f(k)) = O(=}_; f(k)). Thus summation is then
Note that Insertion Sort is O(n) in this same case (already sorted).

Best Case

Partition yields subarrays of size n/2 each.

T(n) = 2T(n/2) + O(n)
a=2, b=2, f(n) = O(n) = O(n'*”2?) = O(n!), Case 2
T(n) = ©(nign)

Average Case

©(nlgn)

Worst Case Revisited

Assume we do not know what the worst partition is.
T(n) = maxi<gen1(T(a) + T(n-a)) + O(n).

By the substitution method (since we know the answer), try T(n) <

ch.

12

T(n) < max (cg® + c(n—q)*) + O(n)

1<¢<n—1
_ 2 N2
= cx max (¢° + (n—¢)°) + O(n)
(@ + (n—9)*) =2q-2(n-q) = 2q- 20 + 2q = 4q - 2n
io(4g —2n) = 4.
For q=1: 1> + (n—1)> = n®> — 2n + 2.
For g=n-1: (n —1)* + 1> = n®* — 2n + 2.

u —

Original Equation Second Derivative

T(n) < cn? - 2¢(n - 1) + O(n) < cn®. Picking a large enough c,

T(n) = O(n?)

Summary of Comparison Sorts

Sort Worst Case | Average Case | Best Case| Comments
Insertion Sort O(n?) O(n?) ©(n)
Merge Sort O(nlgn) O(nlgn) ©(nlgn) | Requires Memor

Heapsort ©(nlgn) ©(nlgn) ©(nlgn)

Large constant:

Quicksort O(n?) ©(nlgn) ©(nlgn)

Small constant

13

Applications

14

