Sorting in Linear Time

Comparison Sorts — O(nlgn), Q2(nlgn) for some input
The best we can do for comparison sorts is Q(nlgn).

Other techniques for sorting exist, such as Linear Sorting which is not
based on comparisons. Linear Sorting techniques include:

Lower Bounds For Worst-Case Comparison Sorts

In general, assuming unique inputs, comparison sorts are expressed in
terms of a; < a; comparisons.

What is the best we can do on the worst case type of input?
What is the best worst-case running time?

Decision Tree Model

(ata2)
<j/// \\\f

(aza3)

<= > <= >
@D @)
<5 > <= >

<132 | <312 <231>| | <320

Analysis Of Decision Tree Model

Worst Case Comparisons is equal to height of decision tree

Lower bound on the worst case running time is the lower bound on the
height of the decision tree.
Note that the number of leaves in the decision tree > n!, where n =
number elements in the input sequence.
A binary tree of height h has < 2" leaves.
n! < 2h
By Stirling Approximation n! = v/2rn(n/e)*(1 + 6(1/n))
Thus n! > (n/e)”, h > lg(n/e)™ = nlgn - nlge = O(nign)

The best possible worst case running time for comparison sorts is thus

Heapsort and Mergesort, both of which are , are asymptoti-
cally optimal.

Counting Sort

Assume algorithm is input n elements ranging from 1 to k.
Find the number of elements j < A[i] and put Ali] in BJj].
If k = O(n), then T(n) for counting sort = O(n).

Example

Let array A be the following array (n=8, k=7).

1...n
50713512143

Compute Clj| as the number of elements in A[] < j. Array C is thus
the following array.

Click mouse to advance to next frame.

Array B contains the final sorted array.

Pseudocode

CountingSort (A,B,k) Time
for i =1 to k k+1
Clil] =0 k
for j = 1 to length(A) n+1
C[A[j1] = C[A[j]1] + 1 n
for 1 = 2 to k k
Cli] = C[i] + C[i-1] k-1
for j = length(A) downto 1 n+1
BLC[A[j1]] = A[j] n
C[A[j1] = C[A[j]1] - 1 n
Analysis
T(n) = 5n + 4k
=0O(n + k)
= O(n)

Q(nlgn) does not apply because CountingSort is not a comparison sort.

Stable Sort

Two elements having the same value appear in the same order in the sorted
sequence as they did in the input sequence.

Counting Sort is a Stable Sort.

Array A:
5(1) 70 3(1)| 5(2)| 2] 1] 4] 3(2)

Array B:
11213(1)13(2)14/5(1)|5(2)|7

If we change line from
for j = length(A) downto 1
to
for j = 1 to length(A)

Would the algorithm still sort?
Would the algorithm still be a stable sort? ___

Radix Sort

This sort was originally used to sort computer punch-card decks.
It is currently used for multi-key sorts (eg., year/month /day)

Consider each digit of the number as a separate key

Idea 1: Sort on most significant digit n, then sort on digit n-1, etc.
Problem: For old sorters, sort into 10 bins, but subsequent recursive
sorts require all 10 bins. Operator must store the other 9 piles.

Idea 2: Sort on least significant digit, then sort on next least significant
digit, etc.

Example

429 521 317 193
521 233 521 233
233 T 193 T 420 T T
193 317 233 429
317 429 193 521
RadixSort (A,d)

for i =1tod
StableSort (A, digit(i))

Would the array always be sorted if we iterate from i=d down to 17 ___

Analysis

e If each digit is in the range 1 to k, use
e Each pass over a digit is O(n + k)

e For d digits O(dn + dk)

e If d is a constant and k = O(n), T(n) =

Radix-n implies each digit can differentiate among n different symbols.
For example, in the previous case we assumed radix-10. This is why the
name Radix Sort is given.

Accuracy

Why do later passes not mess up earlier sorts?
Prove that after pass p, sorted for digit p+1 to last digit
Prove by induction over p

e True for p=1. Apply Stable sort to digit 1, sorted after pass

e Assume true for p=i, prove true for p=i+1

e After pass i, compare two numbers x and y

e If x appears before y then one of following conditions must be true

1. z < y for digit ¢, then x belongs before y in sorted order

2. x = y for digit ¢, then x < y for rest of number, placed in that
order in earlier pass, not swapped because use stable sort

Example

Show how n integers in the range 1 to n* can be sorted in O(n) time.

Use a Radix-n sort.
Each digit requires n symbols, and log,n? digits are needed (d=2, k=n).
T(n) = O(2n + 2k)
= 0(2n + 2n)
= O(n)

Bucket Sort

Bucket Sort assumes that the input values are

distributed

over the range [0,1), 0 < x < 1.

Procedure:

e Divide inputs into n equal-sized subintervals (buckets) over the range

0,1).

e Sort buckets and concatenate the buckets.

e T(n) =
Example
BucketSort (A) COST*TIMES
n = length(A) 1
for i =1 ton n+1
insert(A[i], B[floor(nA[il)] n
for 1 = 0 to n-1 n+1
InsertionSort (B[i]) n*T (InsertionSort)
return(B[0] .B[1]..... B[n-1]1) n

Analysis

Tps =4n + Trgn + 3

Let n; = number of elements in bucket Bli].
The expected time to sort elements in B[i] = F(O(n?)) = O(E(n?)).

]

Note that the expected value of a random variable X as described
in Chapter 6, is

E(X) = Zx:xPr(X:w)

The variable x here represents the value of X, and Pr(X=x) represents
the probability that the value of X is x.

The of a random variable X with mean E[X] is notated
Var[X].

e E[X?] = Var[X] + F*[X]

n
e P(X=k) = (k) p*q"* This is the binomial distribution for n trials.

Analysis

Thus, for all buckets,

S 0(E() = O(E E).

Given:

e n elements, uniformly distributed over all possible values

e n buckets

What is the probability that an element will be inserted into some
bucket i?
Answer:

Given n trials consisting of putting elements into buckets, how many
elements will be inserted into bucket i?
n; = Binomial(n,p)
with mean E(n;) =np =1
and variance Var(n;) = np(1-p) = 1-1/n
En?)=1-1/n+1°
=2-1/n
= O(1)

Therefore, Trs = ©(1)
)

and Tps = 4n + O(1)n + 3 = O(n) for the average case. In the worst

case, the run time is n’.

Medians and Order Statistics

The selection problem (assume distinct elements)

Input: Set A of n numbers and integer i such that 1 <1i < n.

Output: x € A such that x is larger than i-1 elements of A (x is the ith
smallest element).

10

i=1:

1—=n:

i = " (actually ["3*] and [™1]).

Simple Solution:
return(Ali]).
This is

Min and Max

Min(A): O(n) (comparisons)

Max(A): O(n) (___ comparisons)
Both: O(n) (__ comparisons)

Selection in Expected Linear Time

Goal: Select ith smallest element from A[p..r].
Partition into A[p..q] and A[q+1..1]

If ith smallest element is in Alp..q]

then recurse on Alp..q]

else recurse on A[q+1..1]

Select(A, p, r, i)
1 ifp=r

11

2 then return Alp]

3 else q = Partition(A, p, r)

4 k=q-p+1

5} ifi <k

6 then return Select(A, p, q, i)

7 else return Select(A, q+1, r, i-k)
Example

Click mouse to advance to next frame.

Analysis

T(n) T(n-1) + ©(n) in the worst case
=cn+c(n-l) +c(n2)+ ... +c¢
— 02?212' — c@ — @(712)
T(n) = T(n/2) + ©(n) in the best case
a=1, b=2, f(n) = Q(nl*%+¢) e =1

Case 3: T(n) = O(n)
Show: 1*f(n/2) < cf(n), ¢ < 1
f(n/2) < ¢*f(n)

=1/2

Random-Partition

Random-Partition(A, p, r)

12

= Random(p, r)
swap(Alp]l, A[il)
return(Partition(A, p, r))

Random-Select (A, p, r, i)
replace Partition with Random-Partition
replace Select with Random-Select

These are still ©(n?) in the worst case
and O(n) in the average case.

However, we can get O(n) worst case performance with Select2.

Select2

O(n) Divide n elements into |n/5] groups of _ elements and one group of
elements

O(n
T([(n/5)]

Find of each group.

Use Select2 recursively to find median of |%| medians

)
)
)
)

O(n) Partition _ elements around median into __ and elements.
™m/10 +6) Ifi <k
then use Select2 to find element in lower elements
else use Select2 to find element in higher
elements
Example

Click mouse to advance to next frame.

13

Analysis

T(n) <T([%]) + T("Tn/10 + 6) + O(n)
To get T(7n/10 4 6), note that the smallest partition size would be
3([3[511 = 2) >= (55 — 6)

/10 + 6 denotes number of elements in larger partition

Assume T(n) < cn for [n/5] and 7n/10+6
T(n) = O(n)
T(n) < c¢(n/5) + ¢(7n/10 + 6) + O(n)
=cn/5 + ¢7n/10 4+ ¢6 + O(n)
= 1/10(2cn + 7cn + 60c + O(n)) < cn
2cn + 7en + 60c + O(n) < 10cn
60c + O(n) < cn
c¢(n - 60) > O(n)
¢ > O(n) / (n-60)
c is a valid constant for large enough n.
Stopping condition: T(n) = ©(1), if n < 80

14

