Hash Tables

Problem: Storing a large number of elements (e.g. dictionary, symbol table)

Operations: Insert, Search, [Delete]

Solution: Use a linked list

Insert = $\Theta(1)$

Search = $\Theta(n)$

Delete = $\Theta(n)$

Better Solution

Better Solution:

 $\Theta(1)$ operations

 $\Theta(n)$ memory (at least)

Direct-Address Tables

If the number of possible keys is _____ and they are _____, then the table can be a BIG array.

Let the universe of m possible keys be $U = \{0, 1, ..., m-1\}$.

Direct-Address Table T[0,...,m-1] is an array. Each slot (array element) corresponds to a unique key.

Operations

What if the keys are not unique?

Solution 1: Insert implies Replace

Solution 2:

If we assume a uniform distribution over keys, a $\Theta(1)$ search is maintained.

If we can maintain $\Theta(1)$ performance for multiple entries for the same key, perhaps we can do the same while mapping multiple keys into the same array element.

In other words, use **Hash Tables**.

Hash Tables

Problem with Direct Addressing:

For example, consider a compiler symbol table. Symbols here are up to 30 alphabetic characters.

$$|U|=26$$
. 26 . 26 $26=26^{30}=2x10^{42}$ bits. Note that 1 gigabyte is only 10^9 bits.

Let K = set of actual keys occurring.For large |U|, |K| is typically <<|U|. Define Table T of size |K|

(T is a **hash table**, where we have chopped up U).

Analysis

Memory: $\Theta(|K|)$

Performance: $\Theta(1)$ average case, $\Theta(n)$ worst case

Instead of key k being stored in slot T[k], it is now stored in slot

The function h(k) is the hash function. The value of h(k) is the hash value of key k.

Example

Consider an example where |U| = 100, |K| = 10, and $h(k) = k \mod 10$.

$$U = \{0,...,99\}$$

Problem

Collisions: Two keys hash to the same slot.

Reduce collisions by using a _____ hash function.

However, collisions are still possible.

Collision Resolution by Chaining

Data corresponding to keys with same hash values are stored in a linked list (as shown in the figure above).

Insert =
$$\Theta(1)$$

Search = $\Theta(l)$
where l is the length of the chain
Delete = $\Theta(l)$
for a singly-linked list

Analysis of Chaining

Let the **load factor** α be calculated as number of keys stored / number of slots = n/m. For our earlier example, $\alpha = \frac{100}{10} = 10$.

 α represents the _____ of the chain.

The performance of Search is relative to the performance of the hash function computation and the length of the chain, or $\Theta(1 + \alpha)$, both for successful and unsuccessful searches.

Thus, if m is proportional to n, then α is a constant, and all operations are $\Theta(1)$.

Question:

Would it help to keep chains sorted?

In this case,

Insert =
$$\Theta(1 + \alpha)$$

Search = $\Theta(1 + \alpha)$
Delete = $\Theta(1 + \alpha)$

Asymptotically, _____ This reduces constant on search, but increases constant for Insert. Delete is the same as before.

Basically, ____.

Hash Functions

Good Hash Functions:

• If key distribution P is known, then the hash function should satisfy

$$\sum_{k: h(k) = j} P(k) = \frac{1}{m} \text{ for } j = 0, ..., m - 1$$

- Heuristics
 - Design hash function such that similar keys map to different slots (e.g. name1, name2)
 - Hash value should be independent of data patterns

Division Method

$$h(k) = k \mod m$$

k is a natural number m is the number of slots

Choice of m

m should not be a power of _, because h(k) would be the p lowest-order bits of k ($m = 2^p$)

avoid powers of ____ for decimal keys, because not all digits will be used good values include primes not too close to powers of 2

Example

n=100, want
$$\alpha = 3$$

Ideally, m = 33 (not prime, so try m = 31).

However, 31 is close to $32 = 2^5$, so try m = 29 or m = 37 (select m = 37).

$$h(k) = k \mod 37$$

Multiplication Method

$$h(k) = \lfloor m(kA \mod 1) \rfloor$$
, where $0 < A < 1$ (kA mod 1) returns the _____ part of kA.

In this case the choice of m is less critical. Typically choose a power of to simplify arithmetic.

However, the choice of A does matter. A recommendation is to use

$$A = \frac{\sqrt{5} - 1}{2} = 0.6180339887...$$

The worst choice is ______, because in this case every key hashes to $\lfloor \frac{m}{2} \rfloor$ or 0.

Universal Hashing

Any fixed hash function will have $\Theta(n)$ worst case time.

Choose hash function ______, independent of the keys to be stored.

Choice at _____ prevents worst case behavior on multiple runs.

Suppose we want the hash function to uniformly distribute hash values over the hash table of size m.

Given h(x), we want $P(h(x) = h(y)) = \underline{\hspace{1cm}}$.

Universal Hash Functions

We want to select from a set of hash functions H with reasonable certainty that the above property is true.

Thus, the number of functions |f| in H such that h(x) = h(y) for $x,y \in U$ must satisfy

$$\frac{\mid f\mid}{\mid H\mid} = \frac{1}{m} \longrightarrow \mid f\mid = \frac{\mid H\mid}{m}$$

Definition: A _____ collection of hash functions H contains exactly |H|/m hash functions such that h(x) = h(y) for $x,y \in U$.

$$h_a(x) = \sum_{i=0}^r a_i x_i \mod m$$

where key $\mathbf{x} = \langle x_0, x_1, ..., x_r \rangle$ is decomposed into r+1 bytes $\mathbf{a} = \langle a_0, a_1, ..., a_r \rangle$, each chosen randomly from $\{0, 1, ..., \text{m-1}\}$. $H = \bigcup_a \{h_a\}$ is a universal collection of hash functions. Thus, we want to randomly select "a" each time.

Open Addressing

All elements are stored in the hash table (no pointers).

If a hash slot is full, then _____ other slots using the _____

until a slot is found or no slot can be found (overflow).

The hash function now becomes ______, where i ranges over $\{0,1,...,m-1\}$.

h(k,i) returns the ith probe in the probe sequence.

The entire probe sequence must be a permutation of $\{0,1,...,m-1\}$.

Pseudocode

```
j = h(k,i)
if T[j] = NIL
then T[j] = k
    return j
else i = i + 1
until i = m
error "hash table overflow"
```

Pseudocode

```
Search(T,k)
    i = 0
    repeat
        j = h(k,i)
        if T[j] = k
        then return j
        else i = i + 1
    until (T[j] = NIL) or (i = m)
    return NIL
```


Delete(k,i) is more difficult, because replacement by NIL may break a possible probe sequence.

Solution: replace deleted key by special symbol. However, in this case search time no longer depends on α .

Solution: use _____ when deletions are required.

Generating Probe Sequence

Uniform Hashing: Each key is equally likely to generate any of the m! permutations.

This is difficult in practice.

Linear Probing

Given an ordinary hash function h(k): $h(k,i) = \underline{\hspace{1cm}}$.

Sequence:

$$h(k)$$
 $h(k) + 1$
 $h(k) + 2$
...
 $m-1$
0
1
2
...
 $h(k) - 1$

There are only m (<< m!) possible sequences, but these are simple to compute.

Problem with Linear Probing:

Primary Clustering.

Long sequences of filled slots increase search and insert time.

Long sequences are more likely to get even longer.

Quadratic Probing

$$h(k,i) = (h(k) + c_1i + c_2i^2) \mod m$$

- Only certain combination of c_1 , c_2 , and m use the entire hash table.
- $h(k_1,0) = h(k_2,0)$ implies $h(k_1,i) = h(k_2,i)$. This leads to secondary clustering.

• There are only m (<< m!) distinct probe sequences.

Example

$$h(k_1,i) = (h(k) + i + i^2) \mod m, c_1 = c_2 = 1$$

In this example, the probe sequence is

$$h(k)$$
 $h(k) + 2$
 $h(k) + 6$
 $h(k) + 12$

. . .

What if m = 20?

Double Hashing

$$h(k,i) = (h_1(k) + i h_2(k)) \mod m$$

where h_1 and h_2 are auxiliary hash functions.

- If $h_2(k)$ and m have a common divisor, then not all of the table is probed.
- Let $m = 2^p$ and $h_2(k) = \text{odd number}$
- m = prime number, $h_2(k) \in \{0, 1, ..., m-1\}$. For example, $h_1(k) = k \mod m$ $h_2(k) = 1 + (k \mod m')$ where m' = m - 1.
- Since each pair $h_1(k)$, $h_2(k)$ yields different probe sequences, the number of sequences is $\Theta(m^2)$, which is closer to ideal.

Example

Given input (9371, 3723, 9873, 9769, 8679, 1239, 4584), and a hash function $h(x) = x \mod 10$, show the resulting open-addressed hash table using

1. linear probing

```
+---+
          h(9371, 0) = 1
0 |8679|
  +---+
          h(3723, 0) = 3
1 | 9371 |
  +---+
          h(9873, 0) = 3 \text{ COLLISION! } h(9873, 1) = 4
2 | 1239 |
  +---+
          h(9769, 0) = 9
3 | 3723 |
  +---+
          h(8679, 0) = 9 \text{ COLLISION! } h(8679, 1) = 0
4 | 9873 |
  +---+
5 | 4584 |
          h(1239, 0) = 9 \text{ COLLISION! } h(1239, 1) = 0 \text{ COLLISION}
              h(1239, 2) = 1 \text{ COLLISION! } h(1239, 3) = 2
6 | |
          h(4584, 0) = 4
  +---+
7 |
8 I
  +---+
9 | 9769 |
  +---+
```

2. double hashing with hash function $h2(x) = (x \mod 5)$

Note that 10 is a multiple of 5, so this is not an effective choice for a secondary hash function.

```
h(9371, 0) = 1 + 0 = 1
          h(3723, 0) = 3 + 0 = 3
0 | |
          h(9873, 0) = 3 + 0 = 3 \text{ COLLISION!}
1 | 9371 |
              h(9873, 1) = ((3 + 1*(9873 \mod 5)) \mod 10) = 3
2 \mid 1 \mid
          h(9769, 0) = 9 + 0 = 9
  +---+
3 | 3723 |
          h(8679, 0) = 9 + 0 = 9 \text{ COLLISION!}
  +---+
              h(8679, 1) = ((9 + 1*(8679 \mod 5)) \mod 10) = (9
4 | 4584 |
              COLLISION!
  +---+
              h(8679, 2) = ((9 + 2*(8679 \mod 5)) \mod 10) = (9
5 | 1239 |
  +---+
          h(1239, 0) = 9 + 0 = 9 \text{ COLLISION!}
6 | 9873 |
              h(1239, 1) = ((9 + 1*(1239 \mod 5)) \mod 10) = (9
  +---+
7 |8679|
              COLLISION!
              h(1239, 2) = ((9 + 2*4) \mod 10) = (9 + 8) \mod 1
  +---+
              h(1239, 3) = ((9 + 3*4) \mod 10) = (9 + 12) \mod 10
8 | |
              h(1239, 4) = ((9 + 4*4) \mod 10) = (9 + 16) \mod 10
  +---+
9 | 9769 |
  +---+ h(4584, 0) = 4 + 0 = 4
```

Analysis of Open Addressing

Let n be the number of elements in the table, m is the size of the table.

$$n \le m$$

$$\alpha = \underline{\hspace{1cm}} \le 1$$

Assume uniform hashing (each sequence is equally likely).

Theorem 12.5

The expected number of probes in an unsuccessful search is at most $1/(1-\alpha)$.

For example, if the table is half full, $\alpha = 0.5$, the number of probes is

If the table is 90% full, $\alpha = 0.9$, the number of probes is ____. If α is constant, the performance of an unsuccessful search is _____.

Corollary 12.6

On average, the number of probes for Insert is $\leq 1/(1-\alpha)$.

Theorem 12.7

The expected number of probes in a successful search is at most

$$\frac{1}{\alpha}ln\frac{1}{1-\alpha} + \frac{1}{\alpha}.$$

For example, if the table is half full, $\alpha = 0.5$, the expected number of probes is _____.

If the table is 90% full, $\alpha = 0.9$, the expected number of probes is _____. If α is constant, the performance of a successful search is _____.

Applications