Hash Tables

Problem: Storing a large number of elements (e.g. dictionary, symbol
table)

Operations: Insert, Search, [Delete]

Solution: Use a linked list
Insert = ©(1)

Search = O(n)

Delete = O(n)

Better Solution

Better Solution:
©(1) operations
©(n) memory (at least)

Direct-Address Tables

If the number of possible keys is and they are , then the
table can be a BIG array.

Let the universe of m possible keys be U = {0, 1, .., m-1}.

1

Direct-Address Table T[0,..,m-1] is an array. Each slot (array element)

corresponds to a unique key.
T:

Key =21
/ ‘ 20
21 — data for key=21

22

Operations

Insert(T,x)
Tlkey(x)] = x

Search(T,x)
return(T[key(x)])

Delete(T,x)
T[key(x)] = NIL

What if the keys are not unique?

Solution 1: Insert implies Replace

Solution 2:

If we assume a uniform distribution over keys, a ©(1) search is main-
tained.

T

Key =21
J ‘ 20
21 data data data

22

If we can maintain ©(1) performance for multiple entries for the same
key, perhaps we can do the same while mapping multiple keys into the
same array element.

In other words, use Hash Tables.

Hash Tables

Problem with Direct Addressing:
For example, consider a compiler symbol table. Symbols here are up to
30 alphabetic characters.

U =26.26.26. ...26=26% = 2x10% bits.
Note that 1 gigabyte is only 10° bits.

Let K = set of actual keys occurring.
For large |U|, |K| is typically <<|U].

3

Define Table T of size |K]
(T is a hash table, where we have chopped up U).

Analysis

Memory: O(|K|)
Performance: O(1) average case, ©(n) worst case

Instead of key k being stored in slot T[k]|, it is now stored in slot

The function h(k) is the hash function.
The value of h(k) is the hash value of key k.

Example

Consider an example where |U| = 100, |K| = 10, and h(k) = k mod 10.

U = {0,..,99}

Problem

Collisions: Two keys hash to the same slot.
Reduce collisions by using a hash function.
However, collisions are still possible.

Collision Resolution by Chaining

Data corresponding to keys with same hash values are stored in a linked
list (as shown in the figure above).
Insert = ©(1)
Search = O(1)
where [is the length of the chain
Delete = O(1)
for a singly-linked list

Analysis of Chaining

Let the load factor « be calculated as number of keys stored / number

of slots = n/m. For our earlier example, @ = % = 10.
« represents the of the chain.

The performance of Search is relative to the performance of the hash
function computation and the length of the chain, or ©(1 4+ «), both for
successful and unsuccessful searches.

Thus, if m is proportional to n, then « is a constant, and all operations

are ©(1).

Question:

Would it help to keep chains sorted?

5

In this case,

Insert = O(1 + «)
Search = O(1 +)
Delete = O(1 + «)
Asymptotically, This reduces constant on search, but in-

creases constant for Insert. Delete is the same as before.
Basically, ___

Hash Functions

Good Hash Functions:
e If key distribution P is known, then the hash function should satisfy

1
> Pk)=— forj=0,..,m—1
ke h(k) = j m

e Heuristics

— Design hash function such that similar keys map to different slots
(e.g. namel, name2)

— Hash value should be independent of data patterns

Division Method

h(k) = k mod m

k is a natural number
m is the number of slots

Choice of m

m should not be a power of | because h(k) would be the p lowest-order
bits of k (m = 27)

avoid powers of ___ for decimal keys, because not all digits will be used

good values include primes not too close to powers of 2

Example

n=100, want o = 3

Ideally, m = 33 (not prime, so try m = 31).

However, 31 is close to 32 = 2°, so try m = 29 or m = 37 (select m =
37).

h(k) = k mod 37

Multiplication Method

h(k) = |m(kA mod 1), where 0<A<1
(kA mod 1) returns the part of kA.

In this case the choice of m is less critical. Typically choose a power of
__to simplify arithmetic.

However, the choice of A does matter. A recommendation is to use

V-l
N 2

A = 0.6180339887...

The worst choice is , because in this case every key hashes
to [%5] or 0.

Universal Hashing

Any fixed hash function will have ©(n) worst case time.

Choose hash function , independent of the keys to be stored.

Choice at prevents worst case behavior on multiple runs.

Suppose we want the hash function to uniformly distribute hash values
over the hash table of size m.

Given h(x), we want P(h(x) = h(y)) =

Universal Hash Functions

We want to select from a set of hash functions H with reasonable certainty
that the above property is true.
Thus, the number of functions |f| in H such that h(x) = h(y) for x,y €

U must satisfy
f 1 H
[FARE T]
| H | m m

Definition: A collection of hash functions H contains
exactly |H|/m hash functions such that h(x) = h(y) for x,y € U.

.
ho(z) = Y a;x; mod m
i=0
where key x = < g, 1, .., , > is decomposed into r+1 bytes
a = < ag, ay, .., a, >, each chosen randomly from {0, 1, .., m-1}.
H = Uu{h.} is a universal collection of hash functions.
Thus, we want to randomly select “a” each time.

Open Addressing

All elements are stored in the hash table (no pointers).

If a hash slot is full, then other slots using the

until a slot is found or no slot can be found (overflow).

The hash function now becomes , where i ranges over {0,1,..,m-

1},

h(k,i) returns the ith probe in the probe sequence.
The entire probe sequence must be a permutation of {0,1,..,m-1}.

10

Pseudocode

Insert(T,k)
i=0
repeat

j = h(k,i)
if T[j] = NIL
then T[j] =k
return j
else i =1+ 1
until 1 = m
error "hash table overflow"

Pseudocode

Search(T, k)

1=20

repeat
j = hk,i)
if T[j] = k

then return j

else i =1+ 1
until (T[j] = NIL) or (i = m)
return NIL

10

51 k1
:
h(k1,0)=6

h(k2, 1) =11 9

k2

Delete(k,i) is more difficult, because replacement by NIL may break a
possible probe sequence.

Solution: replace deleted key by special symbol. However, in this case
search time no longer depends on a.

Solution: use when deletions are required.

Generating Probe Sequence

Uniform Hashing: Each key is equally likely to generate any of the m!
permutations.

This is difficult in practice.

Linear Probing

Given an ordinary hash function h(k): h(k,i) =

11

Sequence:

There are only m (<< m!) possible sequences, but these are simple to
compute.

Problem with Linear Probing:

Primary Clustering.
Long sequences of filled slots increase search and insert time.
Long sequences are more likely to get even longer.

Quadratic Probing

h(k,i) = (h(k) + c1i + c2%) mod m
e Only certain combination of ¢, ¢o, and m use the entire hash table.

e h(k1,0) = h(ks,0) implies h(ky,i) = h(ks,i). This leads to secondary
clustering.

12

e There are only m (<< m!) distinct probe sequences.

Example
h(ky,i) = (h(k) + i+ 4*) mod m, ¢; = ¢y =1
In this example, the probe sequence is
h(k)
h(k) + 2
h(k) 4+ 6
h(k) + 12

What if m = 207

Double Hashing

h(k,i) = (h1(k) + i ho(k)) mod m

where hy and hs are auxiliary hash functions.

e If ho(k) and m have a common divisor, then not all of the table is

probed.
e Let m = 2P and hy(k) = odd number

e m = prime number, ho(k) € {0, 1, ..., m-1}.
For example, hi(k) = k mod m
ho(k) =1 4+ (k mod m’) where m’ = m - 1.

e Since each pair hi(k), ho(k) yields different probe sequences, the num-

ber of sequences is ©(m?), which is closer to ideal.

13

Example

Given input (9371, 3723, 9873, 9769, 8679, 1239, 4584), and a hash func-
tion h(x) = x mod 10, show the resulting open-addressed hash table using

1. linear probing

+————+
0 18679 h(9371, 0) =1
+————+
1 19371 h(3723, 0) =3
+————+
2 [1239] h(9873, 0) = 3 COLLISION! h(9873, 1) = 4
+————+
3 13723] hn(9769, 0) =9
+————+
4 19873| h(8679, 0) = 9 COLLISION! h(8679, 1) =0
+————+
5 [4584] h(1239, 0) = 9 COLLISION! h(1239, 1) = 0 COLLISIC
+-————+ h(1239, 2) = 1 COLLISION! h(1239, 3) =2
6 | |
+---—+ h(4584, 0) = 4
7 | |
+————+
8 | |
+————+
9 |9769]|
+-————+

2. double hashing with hash function h2(x) = (x mod 5)

Note that 10 is a multiple of 5, so this is not an effective choice for a
secondary hash function.

14

h(9371, 0) =1 +0 =1

ot
0 | | h(3723, 0) =3 +0 =23
FRE
1 19371 h(9873, 0) = 3 + 0 = 3 COLLISION!
NS h(9873, 1) = ((3 + 1*(9873 mod 5)) mod 10) = 3
2 | |
+-———+ h(9769, 0) = 9 + 0 = 9
3 3723
#-———+ h(8679, 0) = 9 + 0 = 9 COLLISION!
4 14584 h(8679, 1) = ((9 + 1%(8679 mod 5)) mod 10) = (&
+————+ COLLISION!
5 [1239] h(8679, 2) = ((9 + 2*x(8679 mod 5)) mod 10) = (¢
FRE
6 19873| h(1239, 0) =9 + 0 = 9 COLLISION!
4 h(1239, 1) = ((9 + 1%(1239 mod 5)) mod 10) = (&
7 |8679] COLLISION!
+m———t h(1239, 2) = ((9 + 2%4) mod 10) = (9 + 8) mod 1
8 | | h(1239, 3) = ((9 + 3%4) mod 10) = (9 + 12) mod
-t h(1239, 4) = ((9 + 4%*4) mod 10) = (9 + 16) mod
9 [9769]

+---—+ h(4584, 0) = 4 + 0 = 4

Analysis of Open Addressing

Let n be the number of elements in the table,
m is the size of the table.
n <m

15

Assume uniform hashing (each sequence is equally likely).

Theorem 12.5

The expected number of probes in an unsuccessful search is at most 1/(1-
Q).
For example, if the table is half full, = 0.5, the number of probes is

If the table is 90% full, & = 0.9, the number of probesis __ .
If « is constant, the performance of an unsuccessful search is

Corollary 12.6

On average, the number of probes for Insert is < 1/(1-a).

Theorem 12.7

The expected number of probes in a successful search is at most

1 1 1
—In + —.
a 1 —« Q

For example, if the table is half full, @ = 0.5, the expected number of
probesis .
If the table is 90% full, o = 0.9, the expected number of probesis .
If «v is constant, the performance of a successful search is

16

Applications

17

