Binary Search Trees

Useful for dynamic sets
Operations: Search, Min, Max, Predecessor, Successor, Insert, Delete
Performance of Some of These Operations

©(h), where h = height of tree

O(lgn), is , where n is number of nodes in tree, this is true
in the case of a full binary tree

O(n) is , this is true in the case of a linear chain

Binary Search Tree Property

n = node in BST
| = node in left subtree of n
r = node in right subtree of n

For a binary search tree, key/l] key|[n] key[r]. Different

from a heap, in which the left-right ordering of values does not matter.




Example

BST Traversals

Inorder(x): visit left(x), then x, then right(x)
PreOrder(x): visit x, then left(x), then right(x)
PostOrder(x): visit left(x), then right(x), then x

InOrder

InOrder (x) ; prints elements in sorted order
if x <> NIL
then InOrder(left(x))
print (key(x))
InOrder (right(x))

InOrder traversal order: 124 5 8 10




PreOrder

PreQrder (x)
if x <> NIL
then print(key(x))
PreOrder(left(x))
PreOrder(right (x))

PreOrder traversal order: 5214 108

PostOrder

PostOrder (x)
if x <> NIL
then PostOrder (left(x))
PostOrder(right (x))
print (key(x))

PostOrder traversal order: 1428 10 5

Analysis

[ e() n =20
T(n){T(k) + Tn—k—1) + 6(1) n>0

k = (n-1)/2:
=T((n-1)/2) + T(n - (n-1)/2-1) + O(1)
T((n-1)/2) + T(n/2 + 1/2- 1) + 6(1)

T(n)
— T((0-1)/2) + T((-1)/2) + O(1)

3



= 2T((n-1)/2) + (1)
< 2T(n/2) + O(1)
= 6(n)

k= 0:
T(n) = T(0) + T(n-1) + 6(1)
= T(n-1) + 6(1)

= 06(n)
Searching
Search(n, k) ; n is a pointer to a node, not the tr
if n=NIL or k=key(n) ; Initially n points to the root node

then return n
if k < key(n)
then return Search(left(n), k)
else return Search(right(n), k)

Example: Search(Root(T), 14)

Analysis

Could write this code iteratively:

if k < key(n)
then n = left(n)
else n = right(n)
LOOP



e This code is clearly ©(h).
e Not necessarily O(Ign).

e Remember, we are not assured that the tree is balanced

Min(n) ; leftmost leaf of tree rooted at n
while left(n) <> NIL
n = left(n)
return n
Min is
Max(n) ; rightmost leaf of tree rooted at n
while right(n) <> NIL
n = right(n)
return n
Max is
Successor(n)
Case I:
Try n=4

right(n) # NIL
return(Min(right(n)))



Try n=7
Try n=5

Successor(n)

right(n) = NIL
Case II: Find s such that left(s) is n or an ancestor of n

P\
e

\
@ O
©

Try n=5

Case III: No such ancestor exists; thus, no successor
Try n=7




Successor(n)

Successor(n)
if right(n) <> NIL
then return Min(right(n))
p = Parent(n)
while p <> NIL and n = right(p)

n=p
p = Parent(p)
return(p)

Successor is

Predecessor(n)
if left(n) <> NIL
then return Max(left(n))
p = Parent(n)
while p <> NIL and n = left(p)

n=p
p = Parent(p)
return(p)

Predecessor is

Insertion

1. Go search for key until run off the end of the tree

2. Put new key there



Insert(T,x) ; X = pointer to new node

p = NIL
n = root(T) ; Search for key
while n <> NIL

p=n

if key(x) < key(n)
then n = left(n)
else n = right(n)
Parent(x) = p ; Insert new key
if p = NIL
then root(T) = x
else if key(x) < key(p)
then left(p) = x
else right(p) = x

Insert is

Examples

Insert(T, 6)




For a sequence of integers in the range 1... 10, which insertion order will
yield the tallest tree?
Which insertion order will yield the shortest tree?

Delete

Case I: Node is a leaf.

Delete

Case II: Node has only one child.

Delete

Case III: Node has two children. Delete of node and
replace node’s key with successor’s key. Note that successor always satisfies

Pseudocode
Delete(T,x) ; Returns deleted node
if left(x) = NIL or right(x) = NIL
then d = x ; Case I and II
else d = Successor(x) ; Case III
if left(d) <> NIL ; Get child of node to b

then ¢ = left(d)



else ¢ = right(d)

if ¢ <> NIL

then Parent(c) = Parent(d)
if Parent(d) = NIL

then root(T) = ¢

else if d = left(parent(d))

then left(parent(d)) = c
else right(parent(d)) = c

if d <> x
then key(x) = key(d)
return(d)

; Remove node d

; Case III

distinct keys is

Randomly Built BSTs

inserted in random order.

Theorem 13.6: The average height of a randomly built BST on n
By randomly built we mean that keys are

Binary Search Tree operations are
If we can keep the tree balanced, the operations will be

Red-Black Trees

This is the goal of Red-Black trees.

10




parent
key
color
" left right\
e Internal Node / \ NIL children are leaves

color € {Red, Black}

e Leaf Node: NIL
Leaf nodes are sentinels (dummy objects), and the color is always
Black.

By constraining colors of nodes along paths from root to leaf, RB trees
ensure no path is more than twice as long as any other (the tree is bal-
anced).

Properties of RB Trees

1. Every node is either or
2. Every leaf is
3. If a node is Red, then both its children are

4. Every path from some node to a leaf contains the
of Black nodes.

11



/« ﬁﬁ}

Properties of RB Trees

Definition: The of a node n, denoted bh(n), is the
number of black nodes (excluding n) on the path from n to a leaf, including
the leaf.

bh(root) = Black Height of the tree
By property 4, bh(n) is the same regardless of the path.

Lemma 14.1

A RB tree with n internal nodes has height at most

Thus the dynamic set operations on RB trees are all

Proof:

1. First show that subtree rooted at z contains at least 20*(*) — 1 internal
nodes.

12



Proof by induction.

Initial condition: if height(x) = 0, then x is a leaf whose subtree
contains at least 2°#%) — 1 = 20 - 1 = 0 internal nodes.

Inductive Step: Consider internal node x. Each child has black-
height bh(x) (if the child is Red) or bh(x)-1 (if the child is Black).

By the Inductive Hypothesis, the child has at least 2°*(*)~1 —1 internal
nodes.

Therefore the subtree rooted at z has at least (20/(*)=1—1) 4 (20h(=)—1_
1) + 1 internal nodes, or 2*(*) — 1 internal nodes.

2. Next, by property 3, a tree of height h has a black-height of at least
h/2.
bh(T) > h/2
n > (1)
n > 22 _1 nt1 > 202
lg(n+1) > 1g(2"/?)
Ig(n+1) > h/2
h < 2lg(n+1)

Properties of RB Trees

As you can tell, Insert and Delete need some work to maintain the RB
tree properties.

Question: Is a RB tree with a Red root still a RB tree if we change the
root color to Black?

Answer:

13



Rotations

Redistribute nodes in the tree.

Rotations

Left-Rotate(T,x)
y = right(x) ; assume right(x) <> NIL
right(x) = left(y) ; move y’s child over
if left(y) <> NIL
then parent(left(y)) = x
parent(y) = parent(x) ; move y up to x’s positi
if parent(x) = NIL
then root(T) =y
else if x = left(parent(x))
then left(parent(x)) =y
else right(parent(x)) =y
left(y) = x ; move x down
parent(x) =y

Rotations

Right-Rotate(T,y)
x = left(y) ; assume left(y) <> NIL
left(y) = right(x)
if right(x) <> NIL
then parent(right(x))

Il
<

14



parent (x) = parent(y)

if parent(y) = NIL

then root(T) = x

else if y = left(parent(y))
then left(parent(y)) = x
else right(parent(y)) = x

right(x) =y

parent(y) = x

Insertion

1. Insert node into tree using BST Insert(T x) and color node Red
2. Fix violated RBT properties
3. Color root Black

Which properties might be violated?

1. __  new node is Red; previous nodes are already colored
2. new node inserted with NIL (Black) leaves

3. , parent may also be Red

4. replacing Black node with a Red and Black node

15



Pt Yt

NIL

e [ree was balanced before insert

e If colored Black, may violate property 4

RB Trees

If parent node ‘a’ was Black, then no changes are necessary.
If not, then there are three cases to consider for each of the orientations

elovv.Q . Q\ Q\
o o o o

© 00 66 6 OO0 ©

3 casesto consider for each of these

Move up the tree until there are no violations or we are at the root.

In the following discussion we will assume the parent is a left child (if
the parent is a right child perform the same steps swapping “right” and
tCleft”)

16



RB-Insert(T,x)

Case I: x’s uncle 1s Red

if parent(x) = left(parent(parent(x)))
then uncle(x) = right(parent(parent(x)))
else uncle(x) = left(parent(parent(x)))

e Change x’s grandparent to Red
e Change x’s uncle and parent to Black

e Change x to x’s grandparent

Case II: x’s uncle is Black, x is the right child of its parent

e Change x to x’s parent
e Rotate x’s parent (now x) left to make Case III

o Case Il is now Case III

Click mouse to advance to next frame.

Case III: x’s uncle is Black, x is the left child of its parent

e Set x’s parent to Black
e Set x’s grandparent to Red
e Rotate x’s grandparent right

Click mouse to advance to next frame.

17



Pseudocode

RB-Insert(T,x)
Insert(T,x)
color(x) = Red
while x <> root(T) and color(parent(x)) = Red
if parent(x) = left(parent(parent(x)))
then uncle = right(parent (parent(x)))
if color(uncle) = Red
then color(parent(x)) = Black ; Ca
color(uncle) = Black
color (parent (parent(x))) = Red
x = parent(parent(x))
else if x = right(parent(x))

then x = parent(x) ; Ca
Left-Rotate(T,x)
color(parent(x)) = Black ; Ca

color (parent (parent (x)) = Red
Right-Rotate(T, parent(parent(x)))
else
. ; same as then with "right" and "left" swapped
color(root(x)) = Black

The performance of this algorithm is O(Ign), with < 2 rotations

Deletion

1. Delete node from tree using an algorithm similar to BST Delete(T x)

2. Fix violated properties

18



Which properties might be violated?
e If node deleted was Red, _
e If node deleted was Black, then property _ will be violated
e Property _ is also violated but is immediately fixed

To correct the violations, look at the violation from another perspective:

Assume the child of the deleted node is colored “double-Black”, violat-
ing property 1, and we want to give half of the “double-Black” to another
Red node or push half of the Black out the top of the tree.

Sortof BST Delete

1. Use of sentinel nil(T) for NIL leaves
2. Call to RB-Delete-Fixup

RB-Delete(R,z) ; return deleted node
if left(z) = nil(T) or right(z) = nil(T)
then d = z

else d = Successor(z)
if left(d) <> nil(T)
then ¢ = left(d)
else ¢ = right(d)
parent(c) = parent(d) ; no test for NIL with sentine
if parent(d) = nil(T)
then root(T) = c
else if d = left(parent(d))
then left(parent(d))) = c
else right(parent(d))) = c

19



if d <> z

then key(z) = key(d)

if color(d) = Black

then RB-Delete-Fixup(T,c) ; c is now "Double-Black"
return d

RB-Delete-Fixup(T,x)

First, if color(x) = Red, then color x Black; done!

Note that x always has a sibling s. This is because if x is Black and is
the child of a deleted Black node, then there is a sibling s because the tree
was previously balanced.

There are four cases to consider for each orientation of x (whether x is
a left child or a right child). In each case we need to maintain the number
of Black nodes.

For these examples we will assume that x = left(parent(x)) (x is a left
child).

Case I:

x’s sibling is Red, s has two Black children
e Switch colors of s and parent(x) (color(s) = Black, color(parent(x)) =
Red)

e Rotate parent(x) left
e Reset sibling s

20



e Case I is now Case II, Case III, or Case IV

Case 1II:

Sibling is black, sibling’s children are both Black
e Change s to Red

e Add extra Black to parent(x)
e Repeat while loop with parent(x)

e If entered Case II from Case I, will then terminate (parent(x) = Red)

Case III:

x’s sibling is Black, s’s left child is Red, s’s right child is Black
e Switch colors of s (Red) and left(s) (Black)

e Rotate s right
e Reset sibling s

e Case III is now Case IV

Case IV:

x’s sibling is black, s’s right child is Red
e Change color(s) to color of parent(x)

21



e Change color of parent to Black

e Change color of sibling’s right child (Red) to Black
e Rotate parent(x) left

e All done!

Pseudocode

RB-Delete-Fixup(T,x)
while x <> root(T) and color(x) = Black
if x = left(parent(x))

then s = right(parent(x)) ; Get x’s sibl
if color(s) = Red
then color(s) = Black ; Case I

color(parent(x)) = Red
Left-Rotate(T, parent(x))
s = right(parent(x))
if color(left(s)) = Black and color(right(s)) = B
then color(s) = Red ; Case II
x = parent(x)
else if color(right(s)) = Black
then color(left(s)) = Black ; Case III
color(s) = Red
Right-Rotate(T,s)
s = right(parent(x))
color(s) = color(parent(x)) ; Case IV
color(parent(x)) = Black
color(right(s)) = Black

22



Left-Rotate(T, parent(x))

x = root(T)
else
. ; Same as then with right and left swap
color(x) = Black

The performance of this algorithm is O(Ign), with < 3 rotations
Thus we see that RB trees maintain O(lgn) time for dynamic-set operations.

Applications

23



