Dynamic Programming

Similar to divide-and-conquer, but avoids duplicate work when subproblems are identical.

(Typically used for optimization problems like the Traveling Salesman Problem).

Matrix Multiplication

Problem: Find optimal parenthesization of a chain of matrices to be multiplied such that the number of scalar multiplications is minimized.

Recall matrix multiplication algorithm:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} * \begin{bmatrix} 7 & 10 \\ 8 & 11 \\ 9 & 12 \end{bmatrix} = \begin{bmatrix} 1 * 7 + 2 * 8 + 3 * 9 & 1 * 10 + 2 * 11 + 3 * 12 \\ 4 * 7 + 5 * 8 + 6 * 9 & 4 * 10 + 5 * 11 + 6 * 12 \end{bmatrix}$$
$$2x3 * 3x2 = 2x2$$

```
MatrixMultiply(A,B)
  for i = 1 to rows(A)
    for j = 1 to cols(B)
        C[i,j] = 0
        for k = 1 to cols(A)
        C[i,j] = C[i,j] + A[i,k] * B[k,j]
```

$$A_{p*q}B_{q*r} = C_{p*r}$$

Thus the number of multiplications is p^*q^*r .

Matrix Multiplication Parenthesization

For example, $A_1A_2A_3$ can be rewritten as $(A_1A_2)A_3$ or $A_1(A_2A_3)$.

Example

Suppose A_1 is 10x100, A_2 is 100x5, and A_3 is 5x50. Then $A_1(A_2A_3) \longrightarrow 100*5*50 + 10*100*50 = 25,000 + 50,000 =$ scalar multiplications (A_2A_3 is a 100x50 matrix).

 $(A_1A_2)A_3 \longrightarrow 10*100*5 + 10*5*50 = 5,000 + 2,500 =$ _____ scalar multiplications $(A_1A_2 \text{ is a } 10x5 \text{ matrix}).$

Brute Force Solution: Try all possible parenthesizations

How many? _____

$$A_1 A_2 ... A_k \mid A_{k+1} ... A_{n-1} A_n$$

P(k)*P(n-k), k = 1 to (n-1)

$$P(n) = \begin{cases} 1 & n = 1\\ \sum_{k=1}^{n-1} P(k)P(n-k) & n > 1 \end{cases}$$

See Cormen et al., Problem 13-4 for solving this recurrence.

$$P(n) = \frac{1}{n} \binom{2n-2}{n-1}$$
$$= \Omega(\frac{4^{n-1}}{(n-1)^{\frac{3}{2}}}), \text{ which is exponential in n.}$$

Dynamic Programming Solution (4 steps)

- 1. Characterize the structure of an optimal solution.
 - 2. Recursively define the value of an optimal solution.
 - **3.** Compute the value of an optimal solution in a bottom-up fashion.
 - 4. Construct an optimal solution from computed information.

Step 1: Characterize Structure of Optimal Solution

Parenthesization of two subchains $A_1..A_k$ and $A_{k+1}..A_n$ must each be optimal for $A_1..A_n$ to be optimal.

Why? A lower cost solution to a subchain reduces the cost of $A_1...A_n$. The total cost is calculated as $cost(A_1...A_k) + cost(A_{k+1}...A_n) + cost$ of multiplying two resultant matrices together. The last term is constant no matter what the subproblem solutions are.

We can show that if our subproblem solution is not optimal, a better subproblem solution cost yields a better total cost.

Thus, as is the case with ALL Dynamic Programming solutions, an optimal solution to the problem consists of optimal solutions to subproblems.

This is called $_$	

Step 2: Define recursive solution

Let $A_{i...j} = A_i A_{i+1}...A_j$, where A_i has dimensions P[i-1] x P[i]. P is an array of dimensions.

For now, the subproblems will be finding the minimum number of scalar multiplications m[i,j] for computing $A_{i..j}$ ($1 \le i \le j \le n$).

Define m[i,j].

- If i = j, m[i,j] = 0 (single matrix).
- If i < j, assume an optimal split between A_k and A_{k+1} (i \leq k < j). $m[i,j] = \cos t$ of computing $A_{i..k} + \cos t$ of computing $A_{k+1..j} + \cos t$ of computing $A_{i..k}A_{k+1..j}$

$$= m[i,k] + m[k+1,j] + P[i-1]P[k]P[j]$$

However, we do not know the value of k, so we have to try all _____ possibilities.

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ min_{i \le k < j}(m[i,k] + m[k+1,j] + P[i-1]P[k]P[j] & \text{if } i < j \end{cases}$$

Note that a recursive algorithm based on this definition would still require exponential time.

Recursive Solution

Consider a recursive solution:

Let $p = \langle p_0, p_1, ..., p_n \rangle$ be the sequence of dimensions. Recursive-Matrix-Chain(p,i,j) if i = j

```
then return 0 m[i,j] = \infty for k = i to j - 1 q = Recursive-Matrix-Chain(p,i,k) + Recursive-Matrix-Chain(p,k+1,j) + P[i-1]P[k]P[j] if q < m[i,j] then m[i,j] = q return m[i,j]
```

Analysis:

$$T(n) = \begin{cases} \Theta(1) & n = 1\\ \Theta(1) + \sum_{k=1}^{n-1} (T(k) + T(n-k) + \Theta(1)) & n > 1 \end{cases}$$

$$T(n) = \Theta(1) + \sum_{k=1}^{n-1} (T(k) + T(n-k) + \Theta(1))$$

$$= \Theta(1) + \sum_{k=1}^{n-1} \Theta(1) + \sum_{k=1}^{n-1} T(k) + \sum_{k=1}^{n-1} T(n-k)$$

$$= \Theta(1) + \Theta(n-1) + \sum_{k=1}^{n-1} T(k) + \sum_{k=1}^{n-1} T(k)$$

$$= \Theta(n) + 2 \sum_{k=1}^{n-1} T(k)$$

Analysis

$$T(n) = \begin{cases} \Theta(1) & n = 1\\ \Theta(n) + 2\sum_{k=1}^{n-1} T(k) & n > 1 \end{cases}$$

Want to show running time is at least exponential, so show $T(n) = \Omega(2^n)$.

By substitution method:

Show: $T(n) = \Omega(2^n) \ge c2^n$

Assume: $T(k) \ge c2^k$ for k < n

$$T(n) \geq \Theta(n) + 2\sum_{k=1}^{n-1} c2^k$$

$$= \Theta(n) + 2c\sum_{k=0}^{n-2} 2^{k+1}$$

$$= \Theta(n) + 4c\sum_{k=0}^{n-2} 2^k$$

$$= \Theta(n) + 4c(2^{n-1} - 1)$$

$$= \Theta(n) + 2c2^n - 4c$$

$$\geq c2^n$$

If $4c - \Theta(n) \leq 0$, or $c \leq \Theta(n)/4$ (okay for large enough n). Thus, $T(n) = \Omega(2^n)$; still exponential.

Duplicate Subproblems

Unique Subproblems

How many unique subproblems?

Assume that $1 \le i < j \le n$ or $1 \le i = j \le n$.

$$\binom{n}{2} + n$$

All ways of choosing i and j for problem m[i,j] when i < j + All ways of choosing i and j for problem m[i,j] when i = j

$$= \frac{n!}{2!(n-2)!} + n$$

$$= \frac{n(n-1)}{2} + n$$

$$= n^2/2 - n/2 + n$$

$$= 1/2(n^2 + n)$$

$$= \Theta(n^2).$$

Only polynomial number of unique subproblems.

Step 3: Bottom-Up Approach

Compute optimal costs using a Bottom-Up approach.

If we solve smallest subproblems first, then larger problems will be easier to solve.

Define Arrays

- m[1..n, 1..n] for minimum costs
- s[1..n, 1..n] for optimal splits

Dynamic Programming

```
Matrix-Chain-Order(p)
      n = length(p) - 1
1
      for i = 1 to n
2
          m[i,i] = 0
                                     ; Chains of length 1
3
      for ws = 2 to n
4
          for i = 1 to n - (ws - 1)
5
             j = i + (ws - 1)
6
             m[i,j] = \infty
7
             for k = i to j-1
8
                 q = m[i,k] + m[k{+}1,j] + P[i{\text{-}}1]P[k]P[j]
9
                  if q < m[i,j]
10
```

```
then m[i,j] = q

12 s[i,j] = k

13 return m and s
```

This algorithm requires $\Theta(n^3)$ time and $\Theta(n^2)$ memory.

Step 4: Construct Optimal Solution

```
Let A = \langle A_1, A_2, ..., A_n \rangle.

Call Matrix-Chain-Order then Matrix-Chain-Multiply, defined below.

Matrix-Chain-Multiply(A, s, i, j)

if i < j

then x = Matrix-Chain-Multiply(A, s, i, s[i,j])

y = Matrix-Chain-Multiply(A, s, s[i,j]+1, j)

return Matrix-Multiply(x, y)

else return A_i
```

Elements of Dynamic Programming

1.	Optimal solution to problem involves
	optimal solutions to subproblems.
2.	Of the typically exponential num-
	ber of subproblems referred to by a recursive solution, only a polyno-
	mial number of them are distinct.

Memoization

Top-Down recursive solution that remembers intermediate results.

For example, intermediate results found in m[2,4] are useful in determining the value of m[1,3].

Memoized-Matrix-Chain(p)

```
n = length(p) - 1
1
      for i = 1 to n
2
3
          for i = i to n
             m[i,j] = \infty
4
5
      return Lookup-Chain(p, 1, n)
Lookup-Chain(p, i, j)
      \mathrm{if}\ \mathrm{m[i,j]}<\infty
1
2
      then return m[i,j]
3
     if i = j
      then m[i,j] = 0
4
      else for k = i to i-1
5
6
              q = Lookup-Chain(p, i, k) +
                   Lookup-Chain(p, k+1, j) + P[i-1]P[k]P[j]
7
             if q < m[i,j]
             then m[i,j] = q
8
9
      return m[i,j]
```

In this algorithm each of $\Theta(n^2)$ entries is initialized once (line 4) and is filled in by one call to Lookup-Chain.

Each of $\Theta(n^2)$ calls to Lookup-Chain takes n steps ignoring recursion, so the total time required is $\Theta(n^2) * O(n) = O(n^3)$.

The algorithm requires $\Theta(n^2)$ memory.

Longest Common Subsequence (LCS)

Problem: Given two sequences $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$, find the longest subsequence $Z = \langle z_1, ..., z_k \rangle$ that is common to x and y.

A subsequence is a subset of elements from the sequence with strictly increasing order (not necessarily contiguous).

For example, if $X = \langle A,B,C,B,D,A,B \rangle$ and $Y = \langle B,D,C,A,B,A \rangle$, then some common subsequences are:

- \bullet $\langle A \rangle$
- (B)
- \bullet $\langle C \rangle$
- \bullet $\langle D \rangle$
- $\bullet \langle A, A \rangle$
- (B,B)
- (B,C,A)
- $\langle B,C,B,A \rangle$ This is one of the longest common subsequences.
- $\langle B, D, A, B \rangle$ This is one of the longest common subsequences.

Brute Force: Check all 2^m subsequences of X for an occurrence in Y.

Dynamic Programming

1. Optimal Substructure.

Define: Given $X = \langle x_1, ..., x_m \rangle$, the ith prefix of X, i = 0, ..., m, is $X_i = \langle x_1, ..., x_i \rangle$. X_0 is empty.

Theorem 16.1

Let $X = \langle x_1, ..., x_m \rangle$ and $Y = \langle y_1, ..., y_n \rangle$ be sequences, and $Z = \langle z_1, ..., z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} . Thus the LCS problem has optimal substructure.

Dynamic Programming

2. Overlapping Subproblems.

Define:
$$c[i,j] = \text{length of LCS for } X_i \text{ and } Y_j.$$

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ max(c[i,j-1], c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

Distinct Subproblems

Could write an exponential recursive algorithm, but there are only _____ distinct subproblems.

Solution

Let c[i,j] be maximum length array.

Let b[i,j] record the case relating X_i , Y_j , and Z_k .

```
LCSLength(x, y)
   m = length(x)
   n = length(y)
   for i = 1 to m
      c[i,0] = 0
   for j = 0 to n
      c[0,j] = 0
   for i = 1 to m
      for j = 1 to n
         if x[i] = y[j]
         then c[i,j] = c[i-1,j-1] + 1
              b[i,j] = '\'
                                         ; Arrow points up and le
         else if c[i-1,j] >= c[i,j-1]
              then c[i,j] = c[i-1,j]
                 b[i,j] = ,^{,}
                                         ; Up arrow
```

```
else c[i,j] = c[i,j-1] b[i,j] = '<' \qquad ; \ \mbox{Left arrow} \label{eq:beta} return c and b
```

LCSLength is O(mn).

Pseudocode

```
PrintLCS(b, X, i, j)
   if i=0 or j=0
   then return
   if b[i,j] = '\'
   then PrintLCS(b, X, i-1, j-1)
        print x[i]
   else if b[i,j] = '^'
        then PrintLCS(b, X, i-1, j)
        else PrintLCS(b, X, i, j-1)
```

PrintLCS is O(m+n).

```
2 3 4
                       5
     y[j] b r o
                            PrintLCS(b, "cow", 3, 5) <</pre>
     +---+--+
0 x[i] | 0 | 0 | 0 | 0 | 0 | 0 |
                              PrintLCS(b, "cow", 3, 4) \
                               PrintLCS(b, "cow", 2, 3)
     +---+--+
   c | 0 | 0 | 0 | 0 | 0 | 0 |
                                 PrintLCS(b, "cow", 1,
1
     +---+
   o | 0 | 0 | 0 |\1 |<1 |<1 |
2
                           O W
```

3 w | 0 | 0 | 0 | ^1 |\2 |<2 | +---+--+

Optimal Polygon Triangulation

• A polygon is described by $P = \langle v_0, v_1, ..., v_{n-1} \rangle$.

Optimal Polygon Triangulation

- A polygon is **convex** if the line segment between any two points lies on the boundary or the interior.
 - This polygon is not convex.

- If v_i and v_j are not adjacent, segment $\overline{v_i v_j}$ is a _____.
- A _____ is a set of chords T that divides P into disjoint triangles.
 - No chords intersect
 - T is maximal (every chord $\not\in T$ intersects a cord $\in T$).

Optimal Polygon Triangulation

Problem:

- Given:
 - $-P = \langle v_0, v_1, .., v_{n-1} \rangle$
 - A weight function w on triangles formed by P and T.
- Find T that minimizes the sum of weights

- Example: $w(\triangle v_i v_j v_k) = |v_i v_j| + |v_j v_k| + |v_k v_i|$ (Euclidean distance)
- Looks a bit like matrix chaining
- Optimal substructure
 - T contains $\triangle v_0 v_k v_n$. $w(T) = w(\triangle v_0 v_k v_n) + m[0, k] + m[k+1, n].$
 - The two subproblem solutions must be _____ or ____
- This algorithm requires $\Theta(n^3)$ time.
- This algorithm requires $\Theta(n^2)$ memory.

Applications