Dynamic Programming

Similar to divide-and-conquer, but avoids duplicate work when subprob-
lems are identical.

(Typically used for optimization problems like the Traveling Salesman
Problem).

Matrix Multiplication

Problem: Find optimal parenthesization of a chain of matrices to be
multiplied such that the number of scalar multiplications is minimized.

Recall matrix multiplication algorithm:

123 . ;1(1) 1T +2%x8+3%9 1x10+2% 11+ 3 %12
456 9 19 4% T+5%8+6%9 4%x10+5%11 4612
2x3 * 3x2 = 2x2

MatrixMultiply(A,B)

for i = 1 to rows(A)
for j = 1 to cols(B)
Cli,jl =0
for k = 1 to cols(A)
C[i,jl = C[i,j] + A[i,k] * B[k, j]



fqp*qlgq*r — (jb*r

Thus the number of multiplications is p*q*r.

Matrix Multiplication Parenthesization

For example, A; Ay A3 can be rewritten as

<141142)143 or fql(f42/43).

Example
Suppose A; is 10x100, Ay is 100x5, and Aj is 5x50.
Then A;(AsA3) — 100*5*50 + 10*100*50 = 25,000 + 50,000 =
scalar multiplications (A2 Ajz is a 100x50 matrix).
(A1As) A3 — 10*100*5 + 10*5*50 = 5,000 + 2,500 = scalar
multiplications (A; Az is a 10x5 matrix).

Brute Force Solution: Try all possible parenthesizations

How many?
A1Ag A | Aggr. A1 Ag
P(k)*P(n-k), k = 1 to (n-1)

1 n=1
Pn) = { sl P(K)P(n— k) n> 1



See Cormen et al., Problem 13-4 for solving this recurrence.
2n — 2
P(n) =1
() n ( n—1 )

= Q(%), which is exponential in n.
n—1)2

Dynamic Programming Solution (4 steps)

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom-up fashion.
4. Construct an optimal solution from computed information.

Step 1: Characterize Structure of Optimal Solution

Parenthesization of two subchains A;..A; and Ag,1..A, must each be
optimal for A;..A,, to be optimal.

Why? A lower cost solution to a subchain reduces the cost of A;..A,,.
The total cost is calculated as cost(A;..Ag) + cost(Agi1..An) + cost of
multiplying two resultant matrices together. The last term is constant no
matter what the subproblem solutions are.

We can show that if our subproblem solution is not optimal, a better
subproblem solution cost yields a better total cost.

Thus, as is the case with ALL Dynamic Programming solutions, an op-
timal solution to the problem consists of optimal solutions to subproblems.

This is called




Step 2: Define recursive solution

Let A; ; = AjAi+1..Aj, where A; has dimensions P[i-1] x P[i]. P is an
array of dimensions.

For now, the subproblems will be finding the minimum number of scalar
multiplications m][i,j] for computing 4; ; (1 <i<j<n).

Define mli,j].

o Ifi =j mlij] =0 (single matrix).

e If i < j, assume an optimal split between Ax and Ay (1 < k <j).
mli,j] = cost of computing A;_j + cost of computing Ag+1_; + cost of
computing A; xApy1..j
= m[i,k] + m[k+1,j] + P[i-1]P[k]P[j]

However, we do not know the value of k, so we have to try all ____
possibilities.

0 ifi=9

mini<i<j(m[i, k] + mlk + 1, j] + P[i — 1]P[k|P[j] if i < j

mli ] =

Note that a recursive algorithm based on this definition would still
require exponential time.

Recursive Solution

Consider a recursive solution:

Let p = < po, p1, .., pr, > be the sequence of dimensions.
Recursive-Matrix-Chain(p,i,j)
if i = ]



then return 0
mli,j] = oo
fork=1itoj-1
q = Recursive-Matrix-Chain(p,i k) +
Recursive-Matrix-Chain(p,k+1,j) +

Pli-1]P[k|P[j]
if ¢ < mli,j]
then mli,j] = q

return mli,j]

Analysis:
_ e "
T = 60+ 5EHTH) + Tlo 1)+ 600) 15 1
T(n) = (1) + :g(T(@ +T(n— k) +6(1))
= O(1) + :g o(1) + :: T(k) + :i T(n—k)
— 0(1)+6(n—1)+ k: T(k) + g T'(k)
= O(n)+ 2:2::1 T(k)

Analysis

) e) n=1
T(n) = { On) +2=Z{ T(k) n>1

Want to show running time is at least exponential, so show T(n) =
Q(2™).



By substitution method:
Show: T(n) = Q(2") > 2"
Assume: T(k) > ¢2* for k < n

n—1
T(n) > O(n)+2 Y 2"
k=1
n—2
— O(n) +2¢ Y 2F!
k=0

n—2
= O(n) +4c Y 2
k=0

= O(n) +4c(2" ' —1)

= O(n) + 2c2" — 4c

on

If 4c — O(n) <0, or ¢ < O(n)/4 (okay for large enough n).
Thus, T'(n) = Q(2"); still exponential.

V
o

Duplicate Subproblems

i=1.j=4

3 1.2 3.3

Duplicate
Subproblems



Unique Subproblems

How many unique subproblems?

Assume that 1 <i<j<norl<i=j<n.

(g)+n

All ways of choosing i and j for problem mli,j] when i < j +
All ways of choosing i and j for problem mli,j] when i = ]

= n2/2 —n/2 + n
= 1/2(n* + n)
= O(n?).

Only polynomial number of unique subproblems.

Step 3: Bottom-Up Approach

Compute optimal costs using a Bottom-Up approach.
If we solve smallest subproblems first, then larger problems will be easier
to solve.

Define Arrays



e m[l..n, 1..n] for minimum costs

e s[1..n, 1..n] for optimal splits

Al A2 A3 A4 A5

WS=3
i=1 =3

WS=3
i=2 j=4

Dynamic Programming

Matrix-Chain-Order(p)
n = length(p) - 1
fori=1ton
m[i,i] =0 ; Chains of length 1
forws =2 ton
fori=1ton- (ws-1)
j=i+ (ws-1)
mli,j] = 00
for k =1 to j-1
q = mfi,k] + m[k+1, j] + P[i-1]P[k]Pj]
if q < mli,]

O© 00 ~J O U i W N+~

—_
O



11 then mli,j] = q
12 sli,j] =k
13 return m and s

This algorithm requires ©(n?®) time and ©(n?) memory.

Step 4: Construct Optimal Solution

Let A = <A1, AQ, ey An>
Call Matrix-Chain-Order then Matrix-Chain-Multiply, defined below.
Matrix-Chain-Multiply(A, s, i, j)
if i < j
then x = Matrix-Chain-Multiply(A, s, i, sli,j])
y = Matrix-Chain-Multiply(A, s, s[i,j|+1, j)
return Matrix-Multiply(x, y)
else return A;

Elements of Dynamic Programming

1. Optimal solution to problem involves

optimal solutions to subproblems.

2. Of the typically exponential num-
ber of subproblems referred to by a recursive solution, only a polyno-
mial number of them are distinct.




Memoization

Top-Down recursive solution that remembers intermediate results.
For example, intermediate results found in m[2,4] are useful in deter-
mining the value of m[1,3].
Memoized-Matrix-Chain(p)
n = length(p) - 1
fori=1ton

mli,j] = oo
return Lookup-Chain(p, 1, n)
Lookup-Chain(p, i, j)
if mfi,j] < oo
then return mli,j]

1
2
3 forj=1iton
4
5

ifi—j
then m[i,jj =0
else for k =i to j-1
q = Lookup-Chain(p, i, k) +
Lookup-Chain(p, k+1, j) + P[i-1]P[k]P|j]
if ¢ < mli,j]
then mli,j] = q

Sy O s W DN =

(OO |

9  return mlfi,j]

In this algorithm each of ©(n?) entries is initialized once (line 4) and is
filled in by one call to Lookup-Chain.

Each of ©(n?) calls to Lookup-Chain takes n steps ignoring recursion,
so the total time required is ©(n?) * O(n) = O(n?).

The algorithm requires ©(n*) memory.
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Longest Common Subsequence (LCS)

Problem: Given two sequences X = (21, .., Tp) and Y = (y1, .., yn), find
the longest subsequence Z = (z1, .., z) that is common to x and y.

A subsequence is a subset of elements from the sequence with strictly
increasing order (not necessarily contiguous).

For example, if X = (A)B,C,B,D,AB) and Y = (B,D,C,A,B,A), then

So1me cominon subsequences are:

oY)
S~ S~ T~~~

B)
B,C,A)

]
e (B,C,B,A) This is one of the longest common subsequences.

{
<
{
{
o (AA)
(B
{
<
<

e (B,D,A B) This is one of the longest common subsequences.

) ) )

Brute Force: Check all 2" subsequences of X for an occurrence in Y.
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Dynamic Programming

1. Optimal Substructure.

Define: Given X = (xy,..,x,,), the ith prefix of X, i =0, .., m, is
X; = (x1,..,2;). Xy is empty.
Theorem 16.1

Let X = (z1, .., ) and Y = (41, .., yn) be sequences, and Z = (zy, .., i)
be any LCS of X and Y.

1. If x,, = y,, then 2z, = z,, = y, and Z;_; is an LCS of X,, 1 and
Y,-1.

2. If x,,, # yn, then 2z # x,, implies that Z is an LCS of X,, 1 and Y.

3. If x,, # yn, then 2z #£ y,, implies that Z is an LCS of X and Y,, ;.

Thus the LCS problem has optimal substructure.

Dynamic Programming

2. Overlapping Subproblems.

/LCFM\
LeS(OYn-1])  LCS(XM-1LY)  LCS(X[m=1],Y[n-1]
Lcsmm-lmnﬂ)
LCS(XIm-TIYn-1)  LCS(X{m-2]Y) LCS(X{m-2},Y[n-1)
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Define: c[i,j] = length of LCS for X; and Y.
0 ifi=00rj=0
clij] =4 cfi—1,7-1]+1 if 4,5 > 0 and z; = y;
maz(cli,j — 1],c[t —1,7]) if ¢,7 > 0 and z; # y;

Distinct Subproblems

Could write an exponential recursive algorithm, but there are only
distinct subproblems.

Solution

Let cli,j] be maximum length array.
Let bli,j| record the case relating X;, Y;, and Zj.

for i =1 tom |

LCSLength(x, y) j <——-
m = length(x) tommm
n = length(y) |\
for i =1 tom |\
c[i,0] =0 N\
for j =0 ton | ]
cl0,j]1 =0 |
|
|

for j=1ton
if x[i] = y[j]
then cli,j] = c[i-1,j-1] + 1
bli,jl = *\’ ; Arrow points up and le
else if c[i-1,j] >= cl[i,j-1]
then c[i,j] = cl[i-1,j]
bli,j] ="’ ; Up arrow

13



else c[i,j] = cli,j-1]

bli,j] = ’<’
return ¢ and b

LCSLength is O(mn).

; Left arrow

Pseudocode

PrintLCS(b, X, i, j)
if i=0 or j=O0
then return
if bli,jl ="\’
then PrintLCS(b, X, i-1, j-1)
print x[i]
else if b[i,j] = *~?

then PrintLCS(b, X, i-1, j)
else PrintLCS(b, X, i, j-1)

PrintLCS is O(m+n).

0 1 2 3 4 5
y[31] b r o w n
Fm— e ——— ¢
|l ololol OOl O]
s s ST S S
lololol Ol O] O]
oo bm e —pm—————}
| 01 01 O I\l <1 I<1 |

0 x[i]

2 o)

14

PrintLCS(b, "cow", 3, 5) <
PrintLCS(b, "cow", 3, 4) \
PrintLCS(b, "cow", 2, 3)

PrintLCS(b, "cow", 1,



t———t———t———F———F——————+

3 w 0[O0l O0I[71[\2[<2]
t———t———p——————t——————+

Optimal Polygon Triangulation

e A polygon is described by P = /vg, vy, .., vp_1).

vO vO
vl v6 vl v6

V2 v5 V2 v5

v3 v4 v3 v4

Optimal Polygon Triangulation

e A polygon is convex if the line segment between any two points lies
on the boundary or the interior.

This polygon is not convex.
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e If v; and v; are not adjacent, segment 7;7; is a

o A is a set of chords T that divides P into disjoint
triangles.

— No chords intersect

— T is maximal (every chord & T intersects a cord € T).

Optimal Polygon Triangulation
Problem:
e Given:

— P = <’U(),’01, ..,Un_1>

— A weight function w on triangles formed by P and T.

e Find T that minimizes the sum of weights

16



e Example: w(Avywjvr) = | vv; | + |vjor | + | vkvi | (Euclidean
distance)

e [ooks a bit like matrix chaining

e Optimal substructure

— T contains Avyviv,,.
w(T) = w(Avgvgv,) + m[0, k] + m[k + 1,n].

— The two subproblem solutions must be or

e This algorithm requires ©(n?) time.

e This algorithm requires ©(n?) memory.

Applications
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