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Activities

2.1. Definitions

Activity learning is an important concept because it critical for understanding human behavior 
as well as designing human-centric technologies. Because activity learning projects tend to focus 
on a specific subset of activity patterns and use a subset of available sensor types, it can be 
difficult to reach an agreement about the expectations of activity learning and how to compare 
alternative approaches. Our goal is to provide a unifying treatment of activity learning. As a 
beginning, we provide definitions for sensor events and activities that we will use as the basis of 
our discussions throughout the rest of the book. 

Sensor events. As Figure 1.1 illustrates, an activity learner receives data from sensors that are 
used to perceive the state of an individual and/or an environment. We specify input data to an 
activity learner as a sequence of sensor events. Each sensor event, e, takes the form e = <t, s, m> 
where t denotes a timestamp, s denotes a sensor ID, and m denotes the sensor message. We 
define an activity instance or activity occurrence as a sequence of n sensor events <e1 e2 .. en>. 
An activity represents the collection of all of its instances. An activity learner may represent an 
activity as an abstraction of this collection of activity instances.

Types of activities. The terms "action" and "activity" are frequently used interchangeably in 
activity learning research. In actuality, there is a tremendous diversity of concepts that are 
classified as activities in the literature. The activity classes that are investigated differ in terms of 
activity complexity, the type of sensor modality that is typically used to capture the activity, and 
the computational techniques that are most effective for learning the activity. Figure 2.1 
illustrates some of the activities that can be represented and learned using techniques described 
in this book. While Sitting, Standing, Waving, and Walking appear at one end of the spectrum of 
activities, the other end consists of longer, more complicated tasks such as Cooking, Marching in 
Formation, and Playing a Football Game. 

Throughout this book, we refer to action as a simple ambulatory behavior executed by a 
single person and typically lasting short durations of time. Similarly, we refer to interaction as a 
short, single-movement action that involves multiple individuals. In contrast, by activity we refer 
to complex behaviors consisting of a sequence of actions which can be performed by a single 
individual or several individuals interacting with each other. They are typically characterized by 
longer temporal durations. At the other end of the spectrum are individual states such as human 
(or animal) postures and poses, environmental state, and object location. While such states are 
indicative of human behavior, they occur at a single point in time and can be differentiated from 
actions and activities in this way. Note that these definitions are hierarchical. An action may 
consist of a sequence of states, while an activity may be contain any number of actions. 
Activities may also be described in terms of environment states or influences that the 
environment has on the individual performing the activity. Figure 2.2 represents the relationship 
between these subsets of human behavior. 



 

 
 
Figure 2.1. Examples of individual group actions and activities that are found in common 
everyday life settings. 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2. Relationship between state (S), action, and activity. 
 
 
 

2.2. Classes of Activities

While activity sensor-based datasets are currently available for analysis, there is no single 
dictionary of activity classes that is accepted and used by all. We provide one possible taxonomy 
of activity classes in Table 2.1. As can be seen in this list, there exist implicit and explicit 
relationships between activity classes. A model that can be used to represent the activity Cooking 
may also be used to represent the subset Cooking Breakfast. On the other hand, a Cooking 
Breakfast model may not be an effective representative of all cooking tasks. Additionally, some 
activity classes may be considered functionally different and yet bear a striking resemblance in 
terms of the sensor events they generate. For example, an individual may fill a glass with water 
to drink or fill a kettle with water to boil. Such similarities between activities means that 
additional contextual information, including time of day and the previous activity, need to be 
considered when learning the activity class. Depending on the sensor modality, some pairs of 
classes may be virtually indistinguishable. For example, the movements corresponding to lying 
down on a rug and falling down may generate identical sensor sequences if only infrared motion 
sensors are used. In these cases, the activities can only be distinguished by incorporating 
additional sources of information such as different sensor modalities. 
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Table 2.1. Categories of routine activities.

Actions 
Walk, run, cycle, jump, sit down, stand up, 
bend over, throw, dig, kneel, skip 
Lie down, fall down, kneel down, faint 
Ascend stairs, descend stairs 
Open door, open cabinet, pick up item, push 
item, pull item, carry item, throw item 
Point, wave, talk, make fist, clap, gesture 
Chew, speak, swallow, yawn, nod 
Interactions 

o shake hands, hug, kiss, hit, chase, 
wrestle, high five 

o talk to someone, hand item to 
someone, throw item to someone 

 
Activities 

Clean house 
o dust, vacuum, sweep, mop 
o make bed, change sheets 
o scrub floor, toilet, surface, windows, 

ceiling fans 
o clear table, wash dishes, dry dishes 
o garden, weed, water plants 
o gather trash, take out trash 
o organizing items 
o wash clothes, sort clothes, fold 

clothes, iron clothes 
Repair home 

o fix broken appliance 
o fix floor, wall, ceiling 
o paint 
o replace light bulb 
o replace battery 

Meals 
o prepare breakfast, lunch, dinner, 

snack 
o set table 
o eat breakfast, lunch, dinner, snack 
o drink 

Personal hygiene 
o bathe, shower 
o brush teeth, floss 
o comb hair 
o select outfit, dress 
o groom 
o shave, wash face, wash hands 

o toilet 
o trim nails, trim hair 

Health maintenance 
o take medicine, fill medicine 

dispenser, apply medicine 
Sleep 

o nighttime sleep 
o sleep out of bed 

Pet care 
o feed, water, groom 
o walk, play, train 
o clean pet home 

Exercise 
o lift weights 
o use treadmill, elliptical, cycle, rower 
o calisthenics 
o stretch 
o martial arts 
o dive, golf, swim, skate 

Leisure 
o play musical instrument 
o read 
o sew 
o watch television, video, play video 

games 
Travel 

o enter car, enter bus, exit car, exit bus 
o drive car, bus 
o ride in car, bus 
o ride elevator, escalator 

Social 
o make phone call, talk on phone 
o send text, read text, send email, read 

email 
o write letters, cards 
o entertain guests 
o leave home, enter home 

Work 
o work at computer, work at desk, 

work at table 
Group activity 

o Play board game, play card game 
o Play sport against opponent  
o Play sport with team 
o Gather crowd, disperse crowd, move 

crowd 



2.3. Additional Reading

A number of authors have considered ways to categorize classes of activities for modeling, 
detecting, and recognizing. Candamo et al.2 and Chaquet et al.3 distinguish single person 
activities from multiple person activities and interactions. Borges et al.4 offer a characterization 
that breaks activities into gestures, actions, and interactions in a manner similar to the discussion 
found in this chapter. Krishnan et al.5 consider methods of learning activity taxonomies directly 
from sensor data. Chen et al.6 and Bae7 employ a method for activity learning that involves hand-
constructing an activity taxonomy then using occurrences of the activities to refine the 
taxonomy. These learned activity ontologies can form a knowledge-driven approach to learning 
and reasoning about activities8,9. 

In this book, we will refer to examples activities that appear in Figure 2.1 and Table 2.1. 
However, this is by no means a comprehensive list nor is it the only taxonomical organization of 
activity classes. Other taxonomies have been generated for use in specific domains. For example, 
clinicians may evaluate an individual's cognitive and physical health based on their ability to 
independently complete known activities. As a result, in the health literature activities classes of 
activities are often categorized as Activities of Daily Living (ADLs)10 or instrumental Activities 
of Daily Living (iADLs)11. Many resources are available that provide labels, categories, and 
examples of classes of activities. This includes work by Tapia12, the Compendium of Physical 
Activities13, the American time use survey14, the Facial Action Coding System15, the SCARE 
joint task corpus16, and the UCF sports dataset17.  



Activity Recognition
 
The field of activity recognition is concerned with the question of how to label activities from 

a sensor-based perception of the environment. The problem of activity recognition is to map a 
sequence of sensor events, x=<e1 e2 .. en>, onto a value from a set of predefined activity labels, 
a A. Activity recognition can be viewed as a type of supervised machine learning problem. An 
Activity Recognition (AR) algorithm learns a function that maps a feature vector, X, describing a 
particular sensor event sequence onto an activity label, h:X A. In this supervised machine 
learning problem the classes are the activity labels and the sensor events are represented by 
features combined into the input vector X of D dimensions. AR can use the learned function to 
recognize, or label, occurrences of the learned activity. 

Activity recognition faces challenges that make it unique among supervised machine learning 
problems. The sequential nature of the input data, the ambiguous partitioning of data into distinct 
data points, and the common overlapping of activity classes mean that additional data processing 
must be performed in order to accomplish the goal of recognizing activities. As Figure 5.1 
shows, the steps involved in activity recognition include collecting and preprocessing sensor 
data, then dividing it into subsequences that are converted to feature representations. The final 
feature vectors are either labeled by an oracle and provided as training data to learn an activity 
model or are sent to an already-trained classifier to identify the activity label. In Chapter 3 we 
described the data collection and preprocessing steps and discussed how raw sensor data can be 
represented as a set of high-level features. In Chapter 4 we described methods for supervised 
learning that map such a feature vector, X, onto class values. 

In this chapter, we describe the remaining steps involved in the activity recognition process. 
When humans perform activities, they do so fluidly, in such a way that consecutive activities 
blur into each other rather than being clearly delineated with sufficiently-large gaps between 
activities. They can also perform several activities in parallel or interweave them for maximum 
efficiency. As a result, the continuous stream of sensor-based information needs to be separated 
into pieces that can more clearly be distinguished by a trained classifier. Several approaches can 
be taken to address this issue of sensor event segmentation for activity recognition. We introduce 
some of these methods, describe how they fit into the activity recognition process, and discuss 
the related problem of activity spotting. We also overview methods for evaluating the 
performance of the resulting activity recognition algorithms. 

 
 



 
Figure 5.1. The activity recognition process includes the stages of raw sensor data collection, 
sensor preprocessing and segmentation, feature extraction and selection, classifier training and 
data classification. 

 
5.1 Activity Segmentation

An activity recognition algorithm, AR, needs to recognize activities at the time they occur in 
unscripted settings at the time that an individual (or a group) performs the activity. To achieve 
this goal, AR must map the state of the user and the corresponding environment at the current 
point in time to an activity label. The first task then is to select the sensor events that comprise 
the current activity and define the corresponding context. The choice of segmentation or 
subsequence selection technique is critical because no classifier can produce meaningful results 



if the input features do not have discriminatory power. We consider two alternative approaches 
for making this selection: event segmentation and window sliding. 

Event segmentation is a two-step process. In the first step, the sequence of streaming sensor 
events is separated into non-overlapping subsequences, or partitions.  Each subsequence should 
be internally homogeneous and represent a single activity. AR can map each separate sequence 
to a corresponding activity label. The result of segmenting the data is a complete partitioning of 
the sensor events, as formalized in Definition 5.1. 
 
Definition 5.1. Given a sequence of n sensor events neeS ..1 , an event segmentation partitions 

the sequence into a set of x subsequences xSSP ,..,1 , such that each SSi  and the order of 
the elements in Si is preserved. In addition, the set of subsequences is non-empty, non-
overlapping, and 

xi

i i SS
1

. 
 

       
Activity Sequence       A1      A4   A3   A3  
  
Sensor Sequence                            
  
Explicit Segmentation S1 S2 S3 S4 S5 S6

                                
Time Windows T1 T2 T3 T4 T5 T6 T7 T8 T9 

                                
     W1  W10  W19   

Sensor Event Windows  W2  W11   W20  
       W3  W12   W21 

 
Figure 5.2. Illustration of alternative approaches to processing sensor data streams for activity 
recognition. Sensor event types and timings are depicted by the vertical lines, where the line type 
indicates the type, location, and value of the sensor message. The sensor windows are obtained 
using explicit segmentation, sliding window extraction with a fixed window time duration, or 
sliding window extraction with a fixed window length (number of sensor events).  

 
Activity segmentation thus refers to the problem of segmenting a continuous stream of data 

into discrete meaningful units of activity execution. Each of these pieces, or segments, can be 
classified as an activity. For example, in Figure 5.2 the input sequence of sensor events is 
partitioned into the non-overlapping subsequences S1.. S6, each of which can then be mapped to 
an activity label. These subsequences represent activity segments and are defined by their 
corresponding start and end times in the sensor sequence. As we can see in Figure 5.1, the 
segments may not always align perfectly with activity boundaries and this needs to be take into 
consideration when evaluating the entire activity recognition process. 

There are two classes of approaches that are common for event segmentation. The first relies 
on supervised machine learning, in which sample data is provided along with ground truth labels 
from which appropriate segment boundaries can be learned. The second utilizes features of the 



data itself, without supervised guidance, to identify activity boundaries in the event sequence 
data. 

The first approach to sensor data segmentation that we will discuss relies on information 
about the activities that are modeled and are known to occur in the data sequence. Classifier-
based and rule-based approaches can be designed to identify activity boundaries based on the 
known activity information. 

Classifier-based segmentation. When a supervised approach is employed for activity 
segmentation, machine learning algorithms are trained to recognize activity beginnings and 
endings (activity boundaries or breakpoints) or changes between activities (transitions) based on 
labeled examples. The sequence of sensor events between the activity beginning and ending, or 
between detected transitions, is partitioned into a separate sequence and used for activity 
labeling. Here we describe types of data samples that could be used to train a classifier to 
recognize activity boundaries. 

Examples of activity starts and stops. To employ this approach, a sufficient number of 
start and stop instances must be provided for each activity class. Thus for a set of A possible 
activities, 2A models need to be learned. 

Examples of activity transitions. The switches from one activity to another, or activity 
transitions, themselves can be explicitly modeled. The input to this type of learning problem 
consists of sensor events at the end of one activity combined with sensor events at the beginning 
of the next together with any events that occur between the two activities. In order to use this 
learning approach to activity segmentation, a model needs to be learned for every pair of 
activities, resulting in A2 models. In addition, this approach runs into problems when sensor 
events may be observed that do not correspond to a known activity. In such situations, the 
transition may not be recognized because the individual is transitioning to or from an unknown 
activity. In other cases, the transition itself may be a separate activity that recurs and could be 
modeled. For example, transitioning to a Leave Home activity may itself comprise several steps 
such as collecting car keys, gathering supplies for an outing, and turning out lights. This could be 
labeled as Preparing to Leave Home and may be a predictable behavior that is itself 
recognizable. In these situations the transition data could actually contain more sensor data then 
the activities that precede and follow the transition. 

Another alternative is to treat transition recognition as a binary class problem, where the set of 
all possible transitions represents one class and all within-activity sequences represents the 
second class.  While only one model needs to be learned in this case, this is a much more 
complex problem that will be difficult to learn if the number of possible activities is large. 

Examples of activity occurrences. The idea here is that if each activity is modeled and a 
data point does not sufficiently follow any of the learned activity patterns, then it must represent 
a transition between the known activities. A one-class classifier can be trained on each known 
activity and used to “reject” points that do not fit into the known activities, in which case they 
represent transitions. A one-class classifier distinguishes examples of the target class from all 
other possible data points. With this method, A unique models must be learned in total. 
Alternatively, the sequence can be rejected if none of the activity models recognize the sequence 
with sufficient confidence. As with the activity transition method, a situation may occur where 
not all possible activities are modeled. In this situation, the rejected data points may represent 
other unknown activities and not simply transitions between known activities. 



  
 

Figure 5.3. Rule-based activity segmentation algorithm. 
 

Rule-based segmentation. An alternative method to locate activity boundaries is to identify 
points in the sensor event sequence when the data is better supported by two or more activities 
than by a single contiguous activity (which indicates a change of activities at that point in the 
sequence). A common method to detect this change is to construct rules that look for particular 
types of change in the sensor events. This approach is based on the assumption that activities 
tend to be clustered around particular types of sensor events or other easily-detectable sensor 
features such as locations, times, or objects. From the perspective of sensor events, this means 
that the same types of sensor readings will occur each time a particular activity is performed. For 
each sensor type (in the case of discrete event sensors), the set of associated activities can be 
determined and stored. In the case of sampling-based sensors, the sensor values can be 
partitioned into ranges that occur when the activity is performed. The association of activities for 
each sensor event type or value range can be determined from domain knowledge or can be 
determined based on sample data. 

As summarized in Figure 5.3, the sensor-activity mappings, stored in the vector MSA, can be 
used to detect activity boundaries. When neighboring sensor events <ei-1, ei> do not have any 
associated activities in common, this indicates that an activity boundary has been reached and a 
transition is occurring. In this case, event ei-1 is marked as the end of one activity and event ei is 
marked as the beginning of the next activity. In addition to determining the activities associated 
with sensor events, other feature similarities (such as time of day) can be determined as well and 
used to identify activity boundaries. 

Algorithm RuleBasedSegment(S, MSA)

// S is an input sequence of sensor events <e1 e2 .. en>
// MSA contains the set of activities associated with each sensor event type or value range
Boundaries = {}
begin = 1
Boundaries.append(begin) // Indicate the beginning of the sequence is an activity boundary

i = 1
while i<n do

i = i + 1
SAbegin = MSA(ebegin) // Find the activities associated with the boundary sensor event
SAi = MSA(ei) // Find the activities associated with the current sensor event
if SAbegin SAi =

end = i 1
Boundaries.append(end)
begin = i
Boundaries.append(begin)

end if
done

Boundaries.append(i) // Indicate the end of the sequence is an activity boundary

return Boundaries



The rule-based segmentation algorithm provides a fairly conservative approach to activity 
boundary detection for segmentation. Consider the sensor event streams provided in Appendix 
A. Notice that there are some sensor types that are associated with both of the activities. For 
example, the sensor "M017" appears in both the Hand Washing and the Sweeping activities. In 
contrast, "WATER" appears only in the Hand Washing activity and "BURNER" appears only in 
the Sweeping activity. The MSAs for these sensors are thus MSA(M017) = {HandWashing, 
Sweeping}, MSA(WATER) = {HandWashing}, and MSA(BURNER) = {Sweeping}. If the 
following sensor sequence appears in the data stream: 

10:00:00.00000 M017 ON
10:00:00.00000 M017 ON
10:01:00.00000 M017 ON
10:02:00.00000 WATER ON
10:03:00.00000 BURNER ON
10:04:00.00000 M017 ON
10:05:00.00000 M017 ON
10:06:00.00000 M017 ON 

then a boundary will be detected between the WATER and BURNER events because their 
associated activities do not overlap. Note that some false negatives can result from this approach. 
If a M017 event occurred between the WATER and BURNER entries then no boundary would 
be detected because M017 belongs to both activities. This problem can be addressed by 
considering the probabilities of relationships between sensor events and activities as well as 
considering a subsequence of events before or after the candidate activity boundary. 

 
5.2 Sliding Windows

A second approach to handling streaming data is to divide the entire sequence of sensor 
events into a set of time ordered, possibly-overlapping subsequences, or sliding windows. The 
windows follow the formalism given in Definition 5.2.  

 
Definition 5.2. Given a sequence of n sensor events neeS ..1 ,  event windowing identifies a 

set of x windows, xSSP ,..,1 , with window sizes },..,{ 1 nww , such that each Si is an ordered 
subsequence of S. The set of windows is ordered, non-empty,  possibly overlapping, and 

xi

xi i SS . Window Si can thus be represented by the sequence 
iwii ee , . 

 
Using a sliding window algorithm, the last (most recent) sensor event in each window Si is 

mapped to an activity label by an activity recognition algorithm based on the learned mapping 
ASh : . The sequence of sensor events in the window provides a context for making an 

informed mapping. Because the windows are ordered, each window can be mapped to an activity 
label as it occurs, which makes this a valuable approach when labeling activities in real time 
from streaming data. This technique offers a simpler approach to learn the activity models during 
the training phase over the explicit segmentation approach. Furthermore, it reduces the 
computational complexity of activity recognition over the explicit segmentation process. This 
AR technique can also be used to facilitate activity spotting, which is the process of locating 



instances of a particular activity from a continuous data stream in which the activity is mixed 
with background noise and irrelevant actions. 

There still remains a number of decisions to make with a sliding windowing approach. First, 
window sizes need to be determined based on the appropriateness for the context and the type of 
activities that will be recognized. Second, events may need to be weighted within a window 
based on their relevance to the current context. 

 
5.2.1. Time based windowing

One approach to handling sliding windows is to divide the entire sequence of sensor events 
into equal-size time intervals as illustrated in Figure 5.1 by the subsequences denoted as T1, T2, .. 
T9. This is referred to as bursty, or timestamp-based sliding windows. The bursty approach is 
valuable when data arrives asynchronously, as occurs with discrete-event sensors or when 
external events are included in the analysis. In these situations the timestamp of the sensor event 
is an important parameter that is used in describing each sensor event and generating activity 
feature vectors. 

Using this approach, parameter wi refers to a time duration. This is a good approach when 
dealing with data obtained from sensors that sample their state at constant time intervals. In such 
a scenario, every window is guaranteed to contain a fixed amount of data. This is a common 
approach when using accelerometers and gyroscopes, for example, where data is sampled at a 
constant rate from the sensors. However, one has to deal with the problem of selecting the 
optimal length of the time interval. If a very small interval is chosen, there is a possibility that it 
will not contain any relevant activity information for making any useful decision. If the time 
interval is too wide, then information pertaining to multiple activities can be embedded into it 
and the activity that dominates the time interval will have a greater influence in the classification 
decision. This problem manifests itself when dealing with sensors that do not have a constant 
sampling rate. In the current context of motion and door sensor events, it is very likely that some 
time intervals do not have any sensor events in them (e.g., T6 in Figure 5.2). One approach that 
can be taken when the optimal window size is unknown is employ an ensemble of classifiers, as 
described in Chapter 4, each of which is trained for a different window size. 

 
5.2.2. Size based windowing

A second approach to defining window sizes is to divide the sequence into windows 
containing an equal number of sensor events. This is commonly referred to as fixed-size, or 
sequence-based sliding windows. Fixed-sized windows are useful for situations in which the 
arrival rate of the data is not constant. Using this approach, parameter wi refers to a number of 
sensor events. This is illustrated in Figure 5.2 by the subsequences denoted as W1, W2, .., W21.  
Even of the size of the window (defined by number of sensor events in the window) is fixed, 
these windows may actually vary in their time duration. This is appropriate considering that 
during the performance of highly-mobile activities, multiple motion sensors could be triggered, 
while during more sedentary activities or silent periods, there will few, if any, sensor events. The 
sensor events preceding the last event in a window define the context for the last event. 

Like the previous approach, this method also has some inherent drawbacks. For example, 
consider the  sequence W11 in Figure 5.2. The last sensor event of this window corresponds to the 
beginning sensor event of activity A3. It is possible that there exists a significant time lag 
between this event and its preceding sensor event. The relevance of all the sensor events in this 



2009 07 19 10:18:59.406 LivingRoom ON Personal_Hygiene
2009 07 19 10:19:00.406 Bathroom OFF Personal_Hygiene
2009 07 19 10:19:03.015 OtherRoom OFF Relax
2009 07 19 10:19:03.703 LivingRoom OFF Relax
2009 07 19 10:19:07.984 LivingRoom ON Relax
2009 07 19 10:19:11.921 LivingRoom OFF Relax
2009 07 19 10:19:13.203 OtherRoom ON Relax
2009 07 19 10:19:14.609 Kitchen ON Relax
2009 07 19 10:19:17.890 OtherRoom OFF Relax
2009 07 19 10:19:18.890 Kitchen OFF Relax
2009 07 19 10:19:24.781 FrontMotion ON Leave_Home
2009 07 19 10:19:28.796 FrontMotion OFF Leave_Home
2009 07 19 10:19:31.109 FrontDoor CLOSE Leave_Home
2009 07 19 12:05:13.296 FrontDoor OPEN Enter_Home

window to the last event in the window might be minimal if the time lag is large. As a result, 
treating all the sensor events with equal importance may result in loss of recognition 
effectiveness. Note also that if all of the sensors provide constant-time sampling, the time based 
windowing and size based windowing approaches will yield the same results. 

In the presence of multiple residents, sensor firings from two different activities performed by 
the different residents will be grouped into a single window, thereby introducing conflicting 
influences for the classification of the last sensor event. While by itself this approach may not be 
intuitively alluring, we will show that events can be weighted within the window to account for 
the relationship between the sensor events. This type of windowing approach does offer 
computational advantages over the explicit segmentation process and can perform in real time 
because it does not require knowledge of future sensor events to classify past or current sensor 
events. 

The value of the window size parameter, w, may depend on the context in which activity 
recognition is performed. The value can be derived through an empirical process by studying the 
effect of the different values of w on the performance of the recognition system. Among the 
different factors that influence the value for w is the average number of sensor events that span 
the duration of alternative activities. At one end of the spectrum are activities such as Leave 
Home that may be defined by rapid firing of a small set of environment sensors, while at the 
other extreme is the activity Sleep that continues for hours but typically results in an occasional 
firing of one or two sensors due to minimal resident movement during this time. Ideally the size 
of a sensor event window should be large enough to define the context of the last sensor event. 
Heuristics such as the average length of the longest recognizable activity can be used to bound 
the window size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4. Illustration of time dependency in a sliding window of sensor events. 
 

5.2.3. Weighting events within a window

Once the sensor window Si is defined, the next step is to transform this window into a feature 
vector that captures relevant activity information content as described in Chapter 3. However, 
one of the problems associated with fixed-size windowing is that windows could contain sensor 



events that are widely spread apart in time. An illustration of this problem is presented in Figure 
5.4. These are examples of a sequence of discrete-event sensor events collected by environment 
sensors in a smart home. Notice the time stamp of the last two events in the sequence in Figure 
5.4. There is a gap of nearly one and a half hours between these sensor events. All the sensor 
events that define the context of the last event within this window have occurred in the "distant" 
past. In the absence of any weighting scheme, the feature vector may be biased toward the 
inclusion of misleading information. Even though the sensor event corresponding to the end of 
the Personal Hygiene activity occurred in the past, it would have an equal influence on defining 
the context of the event corresponding to Enter Home.  To overcome this problem, a time-based 
weighting scheme can be incorporated to take into account the relative temporal distance 
between the sensors. 

When the sliding window is a constant size, it is possible for two sensor events that are spread 
apart in time to be part of the same window. In order to reduce the influence of such sensor 
events on deciding the activity label for the most recent sensor event, a time-based weighting 
factor can be applied to each event in the window based on its relative time to the last event in 
the window. 

Let },..,{ iwi tt represent the time stamps of the sensor events in window Si. For each sensor 
event ej, the difference between the time stamp of ej and the time stamp of  ei, the last event in 
the window, is computed. The contribution, or weight, of sensor event ej can be computed using 
an exponential function as shown in Equation 5.1. 

)exp(),( )( ji ttjiC      (5.1) 

 

 
Figure 5.5. Effect of X on weights. 

 
Features that are based on a simple count of the sensor events within a window can now be 

replaced by a sum of the time-based contributions of each sensor event within the window. 
Features which sum the values of sensor events can also employ this type of weighting approach 
to adjust the influence of each sensor event on the feature vector. The value of X determines the 
rate of decay of the influence. Figure 5.5 shows the effect of the choice of X on the rate of decay. 



2009 07 23 19:59:58.093 Bathroom ON Personal_Hygiene
2009 07 23 20:00:02.390 Bathroom OFF Personal_Hygiene
2009 07 23 20:00:04.078 Bathroom ON Personal_Hygiene
2009 07 23 20:00:08.000 LivingRoom ON Relax
2009 07 23 20:00:08.640 OtherRoom ON Relax
2009 07 23 20:00:09.343 LivingRoom OFF Relax
2009 07 23 20:00:12.296 Kitchen ON Relax
2009 07 23 20:00:25.140 LivingRoom OFF Relax
2009 07 23 20:00:27.187 FrontMotion ON Leave_Home
2009 07 23 20:00:27.437 Kitchen OFF Leave_Home
2009 07 23 20:00:30.140 FrontMotion OFF Leave_Home
2009 07 23 20:00:32.046 FrontMotion ON Leave_Home
2009 07 23 20:00:36.062 FrontMotion OFF Leave_Home
2009 07 23 20:00:39.343 FrontMotion ON Leave_Home
2009 07 23 20:00:43.671 FrontMotion OFF Leave_Home
2009 07 23 20:00:46.265 FrontDoor CLOSE Leave_Home

If X>1, then only sensor events that are temporally close to the last event contribute to the feature 
vector. When 0 < X < 1, the feature vector is under the influence of a temporally wider range of 
sensor events. When X = 0, the temporal distance has no influence on the feature vector, making 
it a simple count of the different sensor events. 

Similarly, in situations when the sensor event corresponds to the transition between two 
activities (or in other settings when multiple activities are performed by more than one resident 
in parallel), the events occurring in the window might not be related to the sensor event under 
consideration. An example of this situation is illustrated in Figure 5.6. This particular sequence 
of sensor events from a smart home testbed represents the transition from the Personal Hygiene 
activity to the Leave Home activity. Notice that all the initial sensor events in the window come 
from a bathroom in the home, whereas the second set of sensor events are from an unrelated 
functional area of the apartment, namely the area near the front door. While this certainly defines 
the context of the activity, since the sensors from a particular activity dominate the window, the 
chances for a wrong conclusion about the last sensor event of the window are higher. This 
problem can be addressed by defining a weighting scheme based on the mutual information 
between the sensors. 

Figure 5.6. Illustration of sensor dependency in a sliding window of sensor events.

The mutual information measure reduces the influence of sensor events within the window 
that do not typically occur within the same time frame as the last sensor event in the window. In 
the context of environmental sensors, motion sensors that are geographically distant from the 
most recent sensor location will receive less weight than those that are close. Mutual information 
is typically defined as the quantity that measures the mutual dependence of two random 
variables. For sensor-based activity recognition, each individual sensor is considered to be a 
random variable. The mutual information or dependence between two sensors is then defined as 
the chance of these two sensors occurring successively in the entire sensor stream. If Si and Sj are 
two sensors, then the mutual information between them, MI(i,j), is defined as 
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where 

(sk, Si )
0 if sk Si

1 if sk Si

.     (5.3) 

The summed term thus takes a value of 1 when the current sensor is Si and the subsequent 
sensor is Sj. If two sensors are adjacent to each other, such that triggering one sensor most likely 
results in also triggering the other sensor, then the mutual information between these two sensors 
will be high. Similarly, if the sensors are far apart such that they do not often occur together, then 
the mutual information between them will be low. Note that the computation of mutual 
information using this bi-gram model depends on the order in which sensor events occur. 

The mutual information matrix is typically computed offline using sample data, with or 
without activity labels, from the set of sensors that will be employed for activity recognition. As 
an example, consider the event sequence shown in Figure 5.6. There are 16 events, or 15 pairs of 
successive events (N=15). The sequence {Bathroom, LivingRoom} appears 1 time and 
{LivingRoom, Bathroom} does not appear at all, so MI(Bathroom, LivingRoom) = 1/15. In 
contrast, MI(Bathroom, FrontDoor) = 0 and MI(LivingRoom, Kitchen) = 2/15. 

Once computed, the MI matrix can then be used to weight the influence of sensor events in a 
window while constructing the feature vector. Similar to time-based weighting, each event in the 
window is weighted with respect to the last event in the window. Thus instead of computing 
feature values based on the count of different sensor events or an aggregation of the sensor 
values, it is the aggregation of the contribution of every weighted sensor event based on mutual 
information that can is included in the feature vector representing the data in the sliding window. 

While Equations 5.2 and 5.3 are based on the occurrence of events from a particular sensor, a 
similar approach can be used to weight sensor events with values that do not commonly occur in 
the same window with other sensor values. By weighting sensors according to mutual 
information, the impact of sensor events can be reduced when their occurrence is due to noise, to 
interweaving of activities, or to activities of multiple individuals that are being detected by the 
same sensors. 

Figure 5.7 shows intensity-coded mutual information scores between different sensors located 
in a smart home. It is evident from the figure that each of the sensors is functionally very distinct 
from the others. Furthermore, the relatively strong diagonal elements indicate the higher chance 
of sensor generating multiple similar messages in a row rather than transitioning to different 
sensors. Because each of these sensors is triggered by human motion, the MI values for this 
testbed indicate that the resident tends to remain in one location more than moving around. A 
few other observations can be made from Figure 5.7. For example, consider the similarities 
between sensors 5 and 6. These two sensors correspond to the Front door and Kitchen sensors 
that are geographically close to each other. As a result, when the resident enters the testbed the 
kitchen sensor is likely to sense motion as well as the front door motion sensor. However, the 
Kitchen cabinet sensors (#7) do not get triggered. Another subtle observation is the relatively 
high similarity between the Medicine cabinet sensor (#13), the Kitchen sensor, and the Kitchen 
cabinet sensors (#7). The resident of this home stores medicine in the kitchen cabinet. When the 
resident retrieves medicine each day all of the related kitchen sensors have a relatively high 
likelihood of firing. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.7. Intensity-coded mutual information between every pair of motion sensors (right) in a 
smart home (left). 

 

5.2.4. Dynamic window sizes

The previously described approaches employ a fixed window size for computing the feature 
vectors. An important challenge with this approach is identifying the optimal window size. 
Various heuristics such as the mean length of the activities and sampling frequency of the 
sensors can be employed to determine the window size. For fixed-sized windows, lengths 
between 5 and 30 are common. For time-based windows containing events from high-frequency 
sampled sensors, common sizes are between 1 and 6 seconds. An alternative approach, however, 
is to automatically derive the window size from the data itself. 

A probabilistic method can be used to derive an appropriate window size for each sensor 
event that is being classified with an activity label. Assuming that there are M activity labels, a 
set of candidate window sizes are defined, },..,,{ 21 Lwww where w1 corresponds to the minimum 
window size that is observed in the data for any activity, )}(),..,(),(min{ 211 MAwsAwsAwsw , 
wL is the median window size observed for all of the activities in A, 

)}(),..,(),({ 21 ML AwsAwsAwsmedianw , and the remaining candidate window sizes are 
obtained by dividing the [w1, wL] interval into equal-length bins. After generating candidate 
window sizes, the most likely window size for an activity Am can be calculated as 

w* argmaxwl
{P(wl | Am )}.    (5.4) 



Note that we can also estimate the probability of an activity Am being associated with sensor si 
as )|( im sAP . Thus, if the most recent sensor event is generated by sensor si, the most likely 
activity A* associated with the sensor is calculated as 

)}|({maxarg*
imA sAPA

m
     (5.5) 

To consider both of these influences in selecting an optimal size we can combine Equations 
5.4 and 5.5. The optimal window size for events generated by sensor si can be determined by 
combining the two equations according to the factorization in Equation 5.6. 

)]|(*)|([maxarg)|(maxarg*
immlwilw sAPAwPswPw

ll
.   (5.6)  

Each of the probability vectors can be estimated using available sample data. The window 
sizes for the sensor events that are used to train activity recognition classifiers and to label new 
events are computed using the probabilities estimated from the sample data. 

A similar approach can be taken to dynamically compute time-based window sizes. As with 
size-based windows, time windows can be defined for every sensor event. For a sensor event si, a 
time window consists of all sensor events that fall within a fixed time duration starting from the 
timestamp of event si. The sensor events within a particular time window are aggregated to form 
features using the same process that was adopted for length-based windows. The time window 
can be labeled using the activity associated with the last sensor event in the time window. 

As an example, consider a dataset that is formed by combining the events in Figures 5.4 and 
5.6. For this dataset, the window sizes for the activities that occur are 

 
Personal hygiene {2, 3} Relax {5, 8} 
Leave home {3, 8} Enter home {1} 

 
The minimum window size is 1 and the median size is 3. We consider the candidate window 
sizes 1 and 3. Consider that the most recent sensor event is generated by a Front door sensor. We 
see from the data that P(LeaveHome | FrontDoor) = 0.67 and P(EnterHome | FrontDoor) = 0.33, 
so the most likely activity given this sensor event is Leave Home. For the Leave Home activity, 
the only window sizes that are observed are sizes 3 and 8, each with probability 0.5. The 
probability of window size 1 for Leave Home is 0.0, so the most likely window size of 3 would 
be used to determine the context for this activity. 

5.3 Unsupervised Segmentation

Although activity-centered segmentation allows activity breakpoints to be easily detected, it 
relies on knowledge of the predefined activities and sufficient training data to learn models of 
activities and their boundaries. It is more difficult to leverage activity-centered approaches to 
detect breakpoints within activities that are highly variable and do not appear in the vocabulary 
of predefined tasks. This is a limitation, because such free-form tasks are very common in 
routine behavior. Here we describe two alternative approaches, change point detection and 
piecewise representation, that can be used to identify potential activity boundaries without 
explicit guidance from a supervised learning algorithm. 

Change point detection. An alternative method for activity segmentation is to detect activity 
breakpoints or transitions based on characteristics of the data without being given explicitly-



labeled examples of activity breakpoints or transitions. We have already shown a number of 
approaches that exist to segmenting time series data. However, in some cases we want to 1) 
identify likely activity boundaries in real time as the data is observed and 2) perform the 
detection without explicit training a classifier on known activities or known activity transitions. 

To accomplish this we can borrow from time series analysis to perform change point 
detection, which is the problem of detecting abrupt changes in time series data. Such abrupt 
changes may represent transitions that occur as individuals complete one activity and begin 
another activity.  To perform change-point detection, probability distributions of the feature 
descriptions can be estimated based on the data that has been observed since the previous 
candidate change point. In order to ensure that change points are detected in real time, the 
algorithm only tries to identify the most recent change, or activity boundary. Sensor data from 
the current point in time back to the most recent change point is referred to as a run, r. If t sensor 
events or time units have occurred since the most recent detected change point, then there are t 
possible runs of different lengths that could be associated with the recent data. If the algorithm is 
applied after each new sensor event is received, then there are only two possibilities to consider: 
either the new event is a member of the current run and the run length increases by one, or a 
change point occurred, the run ended, and the new sensor event is part of a new run. Let rt refer 
to the length of the most recent run. We can then calculate the probability of rt given the previous 
t sensor events. 

tr ttttttt erPerePeeP )|()&|()|( :1:11:11:1     (5.7) 

We can compute the probability of the run length after event t given the corresponding 
sequence of sensor events using Bayes rule. 
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The numerator can then be recursively computed based on the previous run length and 
corresponding sensor events. 
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The algorithm to compute the probabilities does not require storing all of the intermediate 
probability values but can use the probabilities estimated up through the previous sensor event to 
compute the probabilities for the current sensor event. The process starts at the previous change 
point, so P(r0 0) 1. The term )&|( 1:11 ttt ereP represents the probability that the most recent 
sensor event belongs to each of the possible runs identified through the previous data point. 
Calculating this probability relies on knowing the type of data distribution. We let r

te  represent 
the data point that is associated with run rt and r

t represent the probability of data point r
te  

based on the run through t and the appropriate data distribution. 
The probability of rt given the previous value has two cases depending on whether a change 

point just occurred or whether a change point did not occur and the run length grew by one. To 
compute these two cases, we first compute the hazard function H. The hazard function is used to 



represent a failure rate, which is estimated here as the number of events that end a run (or 
segment) to the total number of events, based on sample data. 

 

P(rt | rt 1)
H (rt 1 1) if rt 0

1 H (rt 1 1) if rt rt 1 1
    (5.10) 

 
The change point detection algorithm is summarized in Figure 5.8. As the pseudocode shows, 

a change point can be detected and the corresponding activity boundary made after looking 
ahead only one sensor event. The parameters of the predictive distribution associated with a 
current run are indicated by .r

t  Simple distributions such as the marginal predictive distribution 
can be used when the exact distribution of the data is unknown. 

For detecting activity transitions, the sequence data is constructed as follows.  The current 
state of the environment (including the sensors and the residents or the individual wearing 
sensors) is viewed as a single data point.  This gives us a multi-dimensional data point where the 
number of dimensions corresponds to the number of features describing the state.  The current 
state is then updated at every time step, or after every sensor event, to yield the sequence data. 
The probability of a run ending before the current time point or sensor event is computed and 
compared with the probability of the run extending to include the current data point. If the 
probability of the run ending is larger, then the activity boundary is noted before the most recent 
event and the process repeats with the new run starting at the most recent sensor event. 

 



 
Figure 5.8. Online change point detection algorithm. 

 
Piecewise representation. The idea of piecewise approximation originates from time series 

analysis, in which the entire series cannot be accurately represented by a single simple function 
yet it can be segmented into pieces which can be individually represented by such functions. For 
an unsupervised approach to segmentation, we can try to model each segment with a simple 
regression or classifier model. Supervised versions of piecewise approximation can use 
recognition accuracy based on pre-trained activity models to determine the value of segment 
choice. 

Algorithm DetectChangePoint()

Boundaries = {}
begin = 1
Boundaries.append(begin) // Indicate the beginning of the sequence is an activity boundary

P(r0 = 0) = 1 // The initial run length is 0

prior
0
1 // Initialize the parameters of the data distribution model based on priors

i = 1
while data do

i = i + 1
// Calculate the probability that the run length grows by 1

P(ri = ri+1 + 1 & e1:i) = P(ri 1 & e1:i 1) x r
i x (1 H(ri 1 + 1))

// Calculate the probability that a change point occurred
P(ri = 0 & e1:i) =

1ir

P(ri 1 & e1:i 1) x r
i x H(ri 1)

// Update the data evidence probability
P(e1:i) =

ir

P(ri & e1:i)

// Determine the run length distribution
P(ri | e1:i) = P(ri & e1:i) / P(e1:i)

// Update the distribution statistics

prior
1
1

r
i

// Predict the next data point
P(ei+1 | e1:i) =

ir

P(ei+1 |
r
ie & ri) x P(ri | e1:i)

if P(ri = 0) > P(ri = ri+1 + 1)
end = i 1
Boundaries.append(end)
begin = i
Boundaries.append(begin)

end if
done

return Boundaries



 
 

Figure 5.9. Hybrid bottom-up / sliding-window segmentation algorithm. 

Algorithm HybridSegment(Buffer, BufferSize)

// BufferSize is specified as 5 times the size of a typical activity segment
Boundaries = {}
begin = 1
Boundaries.append(begin) // Indicate the beginning of the sequence is an activity boundary

while data do
error = ModelError(Buffer)
Segment = BottomUp(Buffer, error)
end = begin + Segment[1].size
Boundaries.append(end)
begin = end + 1
Boundaries.append(begin)
Buffer.remove(Segment[1].size) // Remove the first segment from the buffer
Buffer.append(data, Segment[1].size) // Add the next Segment[1].size events to the buffer

done

return Boundaries

Algorithm BottomUp(Seq, MaxError)
Segment = {} // Segment contains the size of each segment in the input sequence

for i = 1 to Seq.size 1
S.begin = i
S.end = i
S.size = 1
Segment.append(S)

done

for i = 1 to length(Segment) 1
MergeCost[i] = ModelError(Merge(Segment[i], Segment[i+1]))

done

while min(MergeCost) < MaxError
i = min(MergeCost)
S[i] = Merge(Segment[i], Segment[i+1])
Segment.remove(S[i+1])
if i < length(Segment)

MergeCost[i] = ModelError(Merge(Segment[i], Segment[i+1]))
end if

if i > 1
MergeCost[i 1] = ModelError(Merge(Segment[i 1], Segment[i]))

end if
done

return Segment



Given a method of representing each segment and an error function to determine the fit 
between the function and the data, we can employ several different techniques to efficiently 
search through the space of possible segment choices. A top down approach starts by viewing the 
entire sequence as a segment and chooses a point in the sequence (if one exists) where splitting 
the sequence into two smaller segments results in decreased error over representing the segments 
separately. The process repeats until performance is not improved by further splitting.  A bottom 
up method starts by considering each event as a separate segment and merges neighboring 
segments until the performance does not improve with further merging. These techniques are 
similar to hierarchical clustering techniques that have been applied to non-sequential data. A 
third sliding window technique starts at the beginning of the input sequence with a segment of 
size one and grows the segment until the performance does not improve with further extensions 
of the segment. The process then repeats starting with the first data point not included in the most 
recent segment. 

These techniques are effective for a variety of types of data with or without the use of trained 
activity models. However, they are designed to be applied in offline mode to the entire sequence 
of available sensor event data. A hybrid method can be used to combine these approaches in a 
semi-online approach. Using the hybrid algorithm, a subsequence is stored in a buffer that is long 
enough to store approximately five typical segments. The bottom-up technique is used to 
segment the data in the buffer and the left-most segment boundary is recorded. The data 
corresponding to the segment is removed and the next data points in the sequence are added to 
the buffer to maintain a constant-size buffer, then the process is repeated. This hybrid technique 
provides more of a "look ahead" then is used by a pure sliding window and thus the segment 
quality can be improved. Unlike a pure bottom up method, however, this hybrid method allows 
the data to be processed in near real time. Figure 5.9 provides pseudocode for the hybrid 
segmentation algorithm. 

 
5.4 Measuring Performance

Once a sequence of sensor events is partitioned into overlapping windows or non-overlapping 
windows (segments), the activity recognition algorithm uses one of the classifiers described in 
Chapter 4 to map each window's subsequence of sensor events si to an activity label Ai based on 
the learned mapping ASf : . In order to compare alternative activity recognition algorithms 
and to estimate the expected performance of the recognition for future data, we want to be able to 
determine the performance of the algorithm on already available data as well as data we may 
collect in the future. 

To illustrate the performance evaluation process, consider an example scenario in which we 
train a Decision Stump classifier to distinguish our Hand Washing activity from the Sweeping 
activity as described in Chapter 3. As mentioned in Chapter 3, a decision stump classifier is a 
one-level decision tree. An attribute is selected to be queried as the root of the tree and its 
children are leaf nodes, which provide an activity classification. To simplify the recognition 
scenario, we utilize a fixed sliding window of 10 sensor events with only two types of features: 
the time duration of the window and the sensor counts (bag of sensors) for each window.  Due to 
the choice of features we only consider the discrete event sensors. This includes the motion 
sensors, door sensors, item sensors, and utilization of water and the stove burner. Note that with 
a window size of 10 the hand washing activity contains 10 data points while the sweeping 
activity contains 44 data points.  



 A first step at evaluating the performance of an activity recognition algorithm is to generate a 
table that summarizes how the activities were classified, typically referred to as the confusion 
matrix. Each row of the matrix represents data points and their actual activity label, while each 
column of the matrix represents the data points and the activity label they were assigned by the 
classifier. As shown in Table 5.1, each cell [i,j] provides the number of data points from activity 
class i that were categorized as activity j by the classifier. Notice that the cells along the diagonal 
indicate the correct classifications. A classifier that provides correct labels for each data point 
would generate 0 values for every cell except those along the diagonal. Thus the values 
represented by "a" and "d" represent the number of correctly classified data points for this two-
class problem while the values represented by "b" and "c" represent the number of incorrectly 
classified data points. 

Table 5.1. Example confusion matrix. 

 Classified as 1 Classified as 0 
True 1 a (TP) b (FN) 
True 0 c (FP) d (TN) 

 
Table 5.2 summarizes the results from our activity example. Mistakes are made in labeling 

data points from both classes. The sweeping class has fewer errors, which could be due to its 
larger number of training data points. To shed more light on the performance of the recognition 
algorithm we next introduce a range of metrics that could further evaluate the algorithm. 

 

 

Table 5.2. Confusion matrix using decision stump for recognizing hand washing and sweeping 
activities. 

 Classifier label 
Hand washing Sweeping 

Activity label Hand washing 6 4 
Sweeping 3 41 

 

Table 5.3. Confusion matrix using naive Bayes for recognizing hand washing, sweeping, and 
cooking activities. 
 

 Classifier label 
Hand washing Sweeping Cooking 

Activity label 
Hand washing 9 1 0 

Sweeping 0 44 0 
Cooking 0 0 32 

 
 



While Table 5.2 shows the confusion matrix that results from learning two activity classes, 
the techniques can be applied to any number of activity classes. Table 5.3 shows the confusion 
matrix that results from applying a naive Bayes learner to the hand washing and sweeping 
activities as well as a third activity, Cooking. The Cooking class contains 32 examples that 
represent data collected while an individual cooked a bowl of soup. Note that even though the 
number of classes has increased, the naive Bayes classifier actually classifies more data points 
correctly than the decision stump did for two activity classes. 

Many performance metrics have been introduced to evaluate classifier algorithms. These are 
useful for evaluating activity recognition algorithms. However, the activity recognition problem 
has some unique characteristics that are not captured by traditional metrics so additional 
measures need to be considered as well. In this section we provide an overview of both, using 
our hand washing vs. sweeping problem to illustrate the metrics. 

 
5.4.1 Classifier based activity recognition performance metrics

Accuracy. The most common metric for evaluating classifier performance is accuracy. 
Accuracy is calculated as the ratio of correctly-classified data points to total data points. 
Referring to the example confusion matrix in Table 5.1 we see that accuracy can be calculated 
from the matrix by summing the values along the diagonal and dividing by the sum of all of the 
values in the matrix, or (a+d)/(a+b+c+d). 

activitiestotal
activitiesclassifiedcorrectlyAccuracy

#
#     (5.11) 

Accuracy is a measure that can be applied to multi-class problems as well as binary-class 
problems. This will be necessary for most activity recognition algorithms (just the "clean house" 
category in Table 2.1 alone lists 23 separate activities to be recognized). However, accuracy does 
not tell the whole story, because it does not provide insights on the source of the error or the 
distribution of error among the different activity classes. For our activity recognition example in 
Table 5.2 we see that the accuracy is 0.87. However, the accuracy for the individual classes 
varies quite a bit (the accuracy for Hand Washing is 0.60 and the accuracy for Sweeping is 0.93). 
The companion to accuracy is Error Rate, which is computed as 1 - Accuracy. 

Sensitivity, specificity. Accuracy and Error Rate give a high-level idea about the recognizer's 
performance. However, in cases where there is a non-uniform distribution among the activity 
classes, these measures can be deceiving. Accuracy and Error Rate are ineffective for evaluating 
classifier performance in a class-imbalanced dataset because they consider different types of 
classification errors as equally important. For example, if the dataset consists of 5% Eat activities 
and 95% Sleep activities, a random prediction of all of the test instances being Sleep will yield 
an accuracy of 0.95. However, in this case the classifier did not correctly recognize any of the 
Eat activities. In order to provide a comprehensive assessment of activity recognition, we need to 
either consider metrics that can report the performance of activity recognition on two classes 
separately or not let the effect of class imbalance be reflected in the metric. Sensitivity, 
specificity, and g-mean are useful for reporting recognizer performance in such cases of class 
imbalance and for providing insight on recognition performance for individual classes. 
Sensitivity, also referred to as the true positive rate or true activity rate (TP Rate), refers to the 
portion of a class of interest (the positive class) that was recognized correctly. Referring to the 
example confusion matrix in Table 5.1 we see that the true positive rate is a/(a+b). For a problem 



with more than two activity classes the true positive rate would be calculated in a similar 
manner. Using the example in Table 5.3, if Hand Washing is the positive class then the true 
positive rate would be calculated as the number of Hand Washing examples classified as Hand 
Washing divided by the total number of Hand Washing examples, or 9/10 = 0.9. 

FNTP
TPRateTPySensitivit     (5.12) 

Similarly, the false positive rate (FP Rate) can be reported as the ratio of negative examples 
(examples not in the class of interest) classified as positive to the total number of negative 
examples. The false positive rate for the confusion matrix in Table 5.1 is computed as c/(c+d). 

TNFP
FPRateFP     (5.13)

In contrast, specificity refers to the portion of the negative class examples (examples not in 
the class of interest) that were recognized correctly. 

FPTN
TNySpecificit     (5.14) 

G-mean. G-mean utilizes the Sensitivity and Specificity measures the performance of the 
activity recognition algorithm both in terms of the ratio of positive accuracy (Sensitivity) and the 
ratio of negative accuracy (Specificity). G-mean thus provides activity class-sensitive measure of 
the recognition performance. The sensitivity, specificity, and g-mean scores can be calculated 
separately for each class to see how well the recognition algorithm handles each activity. They 
can also be combined by averaging the scores over each class, multiplied by the class size to 
provide a weighted average and thus an overall performance measure for the algorithm. Note that 
the weighted average sensitivity and specificity scores yields the same result as the accuracy 
calculation. 

ySpecificitySensitivit
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Precision, recall, f-measure. Like sensitivity and specificity, precision and recall provide 
class-sensitive measures. Precision is calculated as the ratio of true positive data points to total 
points classified as positive, while recall is calculated as the ratio of true positive data points to 
the total points that are true (should be classified as true). 

Precision =
FPTP

TP     (5.16) 

Recall =
FNTP

TP      (5.17) 

While precision and recall can be used to evaluate activity recognition performance, they are 
traditionally used to evaluate the performance of retrieval approaches, such as document retrieval 
algorithms. In the context of activity learning, these can be useful measures if the goal is not to 
just label a particular data sequence with an activity name but to search through a set of sensor 
event sequences to retrieve all of the sequences in which a particular activity occurs. In this case, 



precision can be used to determine the proportion of identified sequences that are relevant 
(actually contain the activity of interest). This can be used, for example, to determine on which 
days a caregiver visited to provide physical therapy for a smart home resident. Similarly, recall 
can be used in this situation to calculate the fraction of relevant sequences that are actually 
identified and retrieved by the algorithm. In these cases, TP is measured as the number of 
relevant identified sequences. The precision denominator, TP+FP, is the total number of 
identified sequences, and the recall denominator, TP+FN, indicates the number of relevant 
sequences that exist. For activity recognition evaluation, recall can be viewed as synonymous 
with sensitivity or TP rate. 

Finally, f-measure (also referred to as f-score or f1 score) provides a way to combine 
precision and recall as a measure of the overall effectiveness of activity classification. F-measure 
is calculated as a ratio of the weighted importance of recall or precision. The weight coefficient 
in Equation 5.7, , is typically set to 1. Table 5.4 summarizes these performance metrics for our 
example activity recognition problem. 
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Table 5.4. Traditional classifier-based performance evaluation for decision stump algorithm 
applied to hand washing (H) and sweeping (S) activities. 

Performance Metric and Value 
Accuracy 0.87 G-mean (H) 0.56 
Error rate 0.13 G-mean (S) 0.56 
Sensitivity (H) 0.60 Precision (S) 0.67 
Sensitivity (S) 0.93 Precision (H) 0.91 
FP Rate (H) 0.07 F-measure (S) 0.55 
FP Rate (S) 0.40 F-measure (H) 0.55 
AUC-ROC 0.83 AUC-PRC 0.88 

 
 
Kappa statistic. While the performance metrics we have described so far give an indication of 

the recognition algorithm's performance, the values may be difficult to interpret. If two 
competing algorithms are being considered they can be compared using these metrics. If one 
algorithm is being considered, it is useful to compare it to a baseline. The Kappa statistic, or 
Cohen's kappa coefficient, provides a way to compare the algorithm to one that assigns activity 
labels based on chance. The Kappa statistic is traditionally used to assess inter-rater reliability, or 
the degree to which two raters agree on the class value for a data point. When evaluating an 
activity recognition algorithm, the two raters represent the algorithm being evaluated and ground 
truth (the actual activity labels). The Kappa statistic can take on a value between -1 and 1, where 
a value of 1 indicates perfect agreement, a value of 0 indicates the agreement is equal to chance, 
and a value of -1 indicates perfect disagreement. P(A) is the probability of agreement between 



the activity recognition and ground truth (the accuracy of the algorithm) and P(E) is the 
probability that the accuracy is due to chance.  
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P(E) can be estimated using a number of methods. Here we estimate it by computing the 
distribution of class labels assigned by the algorithm as well as the actual class label distribution. 
Thus P(E) = P(H|Alg)  P(H) + P(S|Alg)  P(S) = 8/54  10/54 + 46/54  44/54 = 0.72 for our 
example scenario. The  value can then be computed as (0.87 - 0.72) / (1.00 - 0.72) = 0.54. 

In addition to using the Kappa statistic to evaluate the performance of a classifier, it is also a 
useful statistic for evaluating the reliability of labeled activity data. If multiple individuals 
examine sensor data in order to annotate the data with ground truth labels, the consistency of the 
labels can be determined between the annotators by calculating P(A) = the proportion of data 
points where the annotators agree on the label and P(E) = the proportion of data points where the 
annotators would agree if labels were randomly assigned. 

Receiver Operating Characteristics Curve (ROC). ROC-based assessment facilitates explicit 
analysis of the tradeoff between true positive and false positive rates. This is done by plotting a 
two-dimensional graph with the false positive rate on the x axis and the true positive rate on the y 
axis. An activity recognition algorithm produces a (TP_Rate, FP_Rate) pair that corresponds to a 
single point in the ROC space, as shown in Figure 5.6. One recognition algorithm can generally 
be considered as superior to another if its point is closer to the (0,1) coordinate (the upper left 
corner) than the other. If the algorithm generates a probability or confidence value and uses a 
threshold to decide whether the data sample belongs to the activity class, the threshold value can 
be varied to generate a set of points in the ROC space. This set of points generates an ROC 
curve, as shown by the solid-line curve in Figure 5.10. 

 

 

Figure 5.10. Example ROC curve (left) and PR curve (right). 
 



To assess the overall performance of an activity recognition algorithm, we can look at the 
Area Under the ROC curve, or AUC. In general, we want the false positive rate to be low and the 
true positive rate to be high. This means that the closer to 1 the AUC value is, the stronger is the 
recognition algorithm. In Figure 5.10, the algorithm that generated curve A would be considered 
stronger than the algorithm that generated curve B. Another useful measure that can be derived 
from the ROC curve is the Equal Error Rate (EER), which is the point where the false positive 
rate and the false negative rate are equal. This point, which is illustrated in the ROC curve in 
Figure 5.6, is kept small by a strong recognition algorithm. 

Precision-Recall Curve (PR Curve). A PRC can also be generated and used to compare 
alternative activity recognition algorithms. The PR curve plots precision rate as a function of 
recall rate. While optimal algorithm performance for an ROC curve is indicated by points in the 
upper left of the space, optimal performance in the PR space is near the upper right. As with the 
ROC, the area under a PRC can be computed to compare two algorithms and attempt to optimize 
activity recognition performance. Note that the PR curves in Figure 5.10 (right) correspond to the 
same algorithms that generated the ROC curves in Figure 5.10 (left). In both cases, Algorithm A 
yields a larger area under the curve and could be interpreted as outperforming Algorithm B. It 
should be noted that an algorithm that performs best using the ROC metric may not perform best 
using the PRC and vice versa. However, the metrics can be considered separately to better 
understand the nature of algorithm performance. The PR curve in particular provides insightful 
analysis when the class distribution is highly skewed, which often happens when modeling and 
recognizing activities. 

 
5.4.2 Event based activity recognition performance metrics

Activity recognition can be viewed as a classification task. However, there are aspects of 
activity recognition that are not like many other classification problems. First, the sequential 
nature of the sensor events means that the data points are not independent.  In fact, they are 
related in time, in space, and in function. Second, the distinction between the class labels is not 
always clear. Some activities are very similar in function and purpose and thus the sensor events 
are also similar. Finally, if activities are not pre-segmented, then any given window of sensor 
events could represent a transition between activities rather than just one activity. As a result, 
additional performance metrics are needed to better understand possible mis-matches between 
the labels that are generated by an activity recognition (AR) algorithm and the ground truth 
activity labels for a given data point. 

Using event-based evaluation relies on considering entire sensor event segments at a time. In 
contrast with pre-segmented data, a segment here is a subsequence within the input data where 
the AR label and the ground truth label remain constant. Figure 5.11 shows an artificial sequence 
of sensor events that are labeled with the hand washing and sweeping activities. Segment 
boundaries are indicated with vertical lines. With this approach to performance evaluation, each 
segment is analyzed to determine if it is correctly classified (the AR label matches the ground 
truth) or not. By considering one activity at a time, this can be viewed as a binary classification 
problem. For example, in Figure 5.9 the activity being considered, or positive class, is hand 
washing. A TP occurs when both rows show hand washing, a TN occurs when both rows show 
sweeping, and the other situations indicate a FP or FN. The false positive and false negative 
errors are further divided into the subcategories described here to better understand the type of 
error that is occurring. 
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Figure 5.11. Event-based evaluation of hand washing activity recognition. The vertical solid 
lines indicate the performance segment boundaries. The top row shows the ground truth labeling 
of hand washing or sweeping and the bottom row shows the labels generated by an activity 
recognition algorithm. Each segment mismatch is labeled with the type of error that is 
represented, either an overfill (O), underfill (U), insertion (I), deletion (D), merge (M), or 
fragmenting (F). 

 

Overfill. A false positive that occurs at the start or end of a segment that is partially matched 
is considered an overfill.  This could occur at a segment boundary, for example, when the 
recognition algorithm is viewing a transition and has not received enough information to 
successfully detect the new activity. This is a possible explanation for the first overfill in Figure 
5.11. The second overfill is found at the end of an activity and may occur when the activity 
recognition anticipates a new activity (perhaps based on the time of day) before it actually 
occurs. 

Insertion. A false positive that represents an inserted positive label between two negative 
segments is considered an insertion. As seen in the example, the false positive segment due to 
insertion is not an extension of a true positive that is simply too long (as with overfill), but is an 
actual incorrectly-inserted positive label. 

Merge. A merge is a false positive portion of a segment. The surrounding sensor events are 
correctly labeled with the positive class but the change in the middle of the segment to a different 
activity was not sensed by the AR algorithm. 

Underfill. Each of the previous three error classes has a corresponding type that can be used 
for analyzing false negatives. In the same way that an overfill error corresponds to a positive 
segment that extends too far, an underfill error occurs when a positive segment is too short 
because the beginning or ending of the segment is incorrectly labeled as the negative class. In 
our example the fourth occurrence of a hand washing-labeled segment is too short, which results 
in an underfill error on either side of the segment. 

Fragmenting. A fragmenting false negative occurs between two true positives in a single 
consecutive positive segment. 



Deletion. The deletion error occurs when a false negative occurs between two true negatives. 
In our example, the AR algorithm combines sensor events into a single negative example 
because it failed to detect a switch to the positive class in the middle of the subsequence. 

Once the correctly-labeled and incorrectly-labeled segments are identified and characterized, 
they can be used to generate rates or percentages for correct labels (C) and for each type of error 
for the sensor event sequence. Our example in Figure 5.9 has 22 sensor events total, so the O, U, 
F, and D rates are 2/22 = 0.090 while the I and M rates are 1/22 = 0.045. The error rates are 
fairly constant for each type of error in this artificial example. In realistic cases they can provide 
insights on whether the errors are due to slow transitions to new activities, failure to detect short, 
quick activities, or other types of problems with activity recognition. 

Timeliness. A related sequence-based performance measure is the timeliness of activity 
recognition. Timeliness applies to a particular occurrence of an activity and is measured as the 
relative point in time for the activity at which the activity recognition algorithm correctly 
provides the correct label and does not switch to an inaccurate label for the remainder of the 
activity. In Figure 5.11, there are 11 distinct activities that are observed and the point in time at 
which a correct label is generated and not changed is indicated by a star (*). As can be seen in 
this figure, the first activity is not correctly predicted and held stable unless the fifth event of the 
sequence, so the timeliness is 0.2. In contrast, the last activity is correctly labeled from its onset, 
so the timeliness is 1.0. An activity recognition algorithm may need sufficient context to 
recognition the current activity, and the corresponding delay in outputting a correct label is 
captured by this performance metric. 

 
5.4.3 Experimental frameworks for evaluating activity recognition

The next question is how to choose data on which the supervised learning algorithm will be 
tested. Because we want the learned model to generalize beyond the data it has already seen and 
correctly classify new data points that it has not previously seen, the model is usually trained on 
one set of data and tested on a separate, "holdout" set of data. In the context of activity 
recognition, the question is how to select subsets of available data for training and testing. Here 
we describe two techniques that are commonly applied to this process. 

The first method is k-fold cross validation. This method is effective when the amount of 
labeled data is limited because it allows all of the data points to play a role both in training and 
testing the learned model. With this approach, the set of data points is split into k non-
overlapping subsets. The model is trained and tested k times and the performance is averaged 
over the k iterations. On each iteration, one of the k partitions is held out for testing and the other 
k-1 partitions are used to train the model. The choice of k varies, common choices are 3-fold (this 
is particularly common when there are few data points available because each partition should 
ideally have at least 30 data points) and 10-fold cross validation. The results reported in the 
confusion matrices of Table 5.2 and 5.3 and the performance evaluation of Table 5.4 are based 
on a 3-fold cross validation of the decision stump algorithm for the hand washing and sweeping 
activities. 

While cross validation is a popular validation technique for machine learning algorithms, its 
use is trickier when applied to sequential data. This is because the long contiguous sequence 
must be separated into individual data points and subsets of data points. As a result, some of the 
context is lost that may be captured by some algorithms when training the model. When 
activities are pre-segmented, the segments can represent individual data points. When a sliding 



window approach is used, individual windows represent the data points. Some alternative 
selections are to separate the datasets by time boundaries such as hours, days, or weeks in order 
to retain much of the sequential relationships. This method also allows the activity recognition 
algorithm to be tested for its ability to generalize to new days, weeks, or months. When the 
recognition algorithm is trained to generalize over multiple users or physical settings, the 
individual users or environments can be treated as separate data points for testing. Finally, leave-
one-out testing can be used to train the data on contiguous sequential data and test it on held-out 
data from the end of the sequence. The length of the training sequence can iteratively increase so 
that eventually all of the available data is used for both training and testing. 

While most methods choose a holdout set for testing either through random selection or at the 
end of a sequence, holdout selection can also be performed strategically to demonstrate the 
generalizability of the activity recognition algorithm over selected dimensions. For example, an 
algorithm can be trained over multiple individual people or homes, selecting one person or home 
as the holdout set. Similarly, an entire activity can be held out to determine how the algorithm 
performs on a previously-unseen activity class. 

Additionally, a need may arise to compare the performance of two alternative activity 
recognition algorithms. If minimizing error rate (or conversely, maximizing accuracy) of activity 
classification is considered as the performance metric of interest, then two alternative approaches 

1f  and 2f  can be compared by, for example, looking at the mean error found through cross 
validation. However, because cross validation testing is performed only on a subset of the 
possible data points in the space, this comparison may not be a strong indicator of how the two 
approaches will compare in general. 

Statistical tests such as the Student's t-test can be used to determine whether a set of 
performance differences between 1f  and 2f , such as generated through k-fold cross validation, 
is significant. To perform this computation from cross-validation results let 11
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kddd ,..,, 21  represent the differences between the results (i.e., 22
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to determine if the mean 1f  is significantly different from the mean 2f . This calculation 
assumes that the values for 1f , 2f , and d follows a Student's distribution, which approximates a 
normal distribution as k becomes large. We first reduce the difference to a zero-mean, unit-
variable variable t as a function of the difference mean, number of folds, and difference variance 

2
d  as shown in Equation 5.20. 
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     (5.20) 

If zt  or zt , where z represents a confidence limit, then the difference in performance 
between the two approaches can be termed significant at the corresponding confidence level. The 
values of z are determined by the Student's distribution and the number of folds k (or, 
corresponding, the degrees of freedom k-1). For example, if k=10 and we want to reject the 
hypothesis that there is no difference in performance between the approaches with probability 
p<.05 (a common threshold used to report statistical significance), then z=2.262.



5.5 Additional Reading

Ali and Aggarwal71 learn activity breakpoints from video data using a supervised learning 
technique that is provided with activity begin and end frames for each activity class. Ho and 
Intille72 and Feuz et al.73 use supervised learning to recognize transitions between specific 
activity pairs. Iqbal and Bailey74 use a multilayer perceptron to recognize and categorize 
breakpoints between any type of computer-related task. Niu and Abdel-Mottaleb75 describe a 
method of activity segmentation that relies on rejecting sequences not clearly belonging to any 
one activity. Somewhat related is the idea of co-segmentation of event sequences introduced by 
Duchenne et al.76 Co-segmentation is applied to two sequences that are known to contain the 
same activity of interest. The fact that they share the activity facilitates the process of identifying 
the activity boundaries within both sequences. The idea of employing an ensemble of classifiers 
to recognize activities from different window sizes is introduced by Zheng et al.77. Varying the 
size of a sliding window based on activity likelihood and relevant sensors has been explored by 
Krishnan and Cook78 and by Okeyo et al79. A thorough treatment of one-class classifiers and 
their uses for outlier and anomaly detection is provided by Khan and Madden80. 

Hong and Nugent81 introduce an activity segmentation method that learns the relationship 
between activities, sensors, and locations, and then uses changes in these parameters to identify 
activity boundaries. In addition, Gu et al.82,83 propose the idea of identifying activity boundaries 
based on the difference between accumulated sensor relevance. In their case, the sensors were 
object sensors and weights were calculated based on the discriminatory relevance of each object 
to each activity. Yamasaki84 takes a similar approach to identifying activity boundaries based on 
differences in activity signatures from video data. This approach pinpoints activity boundaries 
based on maximizing the difference between feature vectors describing successive frames in the 
video. Keogh et al.85 propose the idea of combining sliding windows with bottom-up 
segmentation in their SWAB algorithm to provide real-time segmentation with improved 
performance over a pure sliding window approach. 

The Bayesian online change point detection is based on work by Adams and MacKay86. An 
alternative approach to online change point detection is to directly estimate the ratio of the 
probability density functions before and after candidate change points. Direct density ratio 
estimation is useful when the individual probability distributions are unknown87. Techniques to 
perform this include kernel mean matching, logistic regression, Kullback-Leibler importance 
estimation, unconstrained least-squares importance fitting, and relative unconstrained least-
squares importance fitting (RuLSIF).88 Other changepoint detection variations were introduced 
by Guenterberg et al.89, who identify an activity boundary when the differences in spectral 
energy (defined in Chapter 3) before and after the boundary point are greater than a threshold 
value. Feuz et al.73 use change point detection to identify activity boundaries as a time to provide 
prompt-based interventions. Xie and al.90 introduce a new variation on change point detection 
that scales well to high-dimensional data. 

A number of survey articles exist which provide an excellent overview of activity recognition 
algorithms for different classes of sensors and activities. Many of the articles detail the 
algorithms and summarize achieved recognition performance on simulated and real-world 
datasets30,91–99. Activity recognition using NBCs has been explored by Cook100 using smart home 
sensor data and by Bao et al.35 and Ravi et al.101 for accelerometer data. Popular methods for 
activity recognition also include hidden Markov models102–105 and conditional random 
fields41,100,106. Other have found SVMs107 and decision trees35 to be effective. Many methods 



have been explored which combine these underlying learning algorithms, including boosting and 
other ensemble methods101,108,109. 

While activity recognition focuses on labeling activities, other work focuses on evaluating the 
quality of the activity that was performed110–112. Ogris et al.113 and Amft114 describe the problem 
of activity spotting and propose alternative approaches using data from wearable sensors. 

Ward et al.115 and Bulling et al.93 introduce a number of performance metrics that fall into the 
categories of time-based and event-based evaluation of activity recognition algorithms.  Reiss et 
al.94 discuss the effectiveness of hold-one-activity-out evaluation of activity recognition 
algorithms for generalizability assessment. The notion of the timeliness of activity recognition 
was introduced by Ross and Kelleher116. 

Di Eugenio and Class117 provide a good introduction to the kappa statistic and alternative 
ways to calculate P(E) in calculating the kappa statistic. Davis and Goadrich118 provide a useful 
discussion of the relationship between ROC and PRC curves and how to compute the area under 
the curves. Additional methods for evaluating and comparing the performance of supervised 
learning algorithms are presented by Cohen119 and by Dietterich120. Nuzzo121 offers an 
interesting discussion of the limits of p values for determining statistical significance and the 
need to also consider effect sizes (in the discussion of this chapter, the effect size would be the 
amount of difference in performance between alternative activity recognition algorithms). 


