
Activity Learning

from Sensor Data

Diane J. Cook

Activities

2.1. Definitions

Activity learning is an important concept because it critical for understanding human behavior
as well as designing human-centric technologies. Because activity learning projects tend to focus
on a specific subset of activity patterns and use a subset of available sensor types, it can be
difficult to reach an agreement about the expectations of activity learning and how to compare
alternative approaches. Our goal is to provide a unifying treatment of activity learning. As a
beginning, we provide definitions for sensor events and activities that we will use as the basis of
our discussions throughout the rest of the book.

Sensor events. As Figure 1.1 illustrates, an activity learner receives data from sensors that are
used to perceive the state of an individual and/or an environment. We specify input data to an
activity learner as a sequence of sensor events. Each sensor event, e, takes the form e = <t, s, m>
where t denotes a timestamp, s denotes a sensor ID, and m denotes the sensor message. We
define an activity instance or activity occurrence as a sequence of n sensor events <e1 e2 .. en>.
An activity represents the collection of all of its instances. An activity learner may represent an
activity as an abstraction of this collection of activity instances.

Types of activities. The terms "action" and "activity" are frequently used interchangeably in
activity learning research. In actuality, there is a tremendous diversity of concepts that are
classified as activities in the literature. The activity classes that are investigated differ in terms of
activity complexity, the type of sensor modality that is typically used to capture the activity, and
the computational techniques that are most effective for learning the activity. Figure 2.1
illustrates some of the activities that can be represented and learned using techniques described
in this book. While Sitting, Standing, Waving, and Walking appear at one end of the spectrum of
activities, the other end consists of longer, more complicated tasks such as Cooking, Marching in
Formation, and Playing a Football Game.

Throughout this book, we refer to action as a simple ambulatory behavior executed by a
single person and typically lasting short durations of time. Similarly, we refer to interaction as a
short, single-movement action that involves multiple individuals. In contrast, by activity we refer
to complex behaviors consisting of a sequence of actions which can be performed by a single
individual or several individuals interacting with each other. They are typically characterized by
longer temporal durations. At the other end of the spectrum are individual states such as human
(or animal) postures and poses, environmental state, and object location. While such states are
indicative of human behavior, they occur at a single point in time and can be differentiated from
actions and activities in this way. Note that these definitions are hierarchical. An action may
consist of a sequence of states, while an activity may be contain any number of actions.
Activities may also be described in terms of environment states or influences that the
environment has on the individual performing the activity. Figure 2.2 represents the relationship
between these subsets of human behavior.

Figure 2.1. Examples of individual group actions and activities that are found in common
everyday life settings.

Figure 2.2. Relationship between state (S), action, and activity.

2.2. Classes of Activities

While activity sensor-based datasets are currently available for analysis, there is no single
dictionary of activity classes that is accepted and used by all. We provide one possible taxonomy
of activity classes in Table 2.1. As can be seen in this list, there exist implicit and explicit
relationships between activity classes. A model that can be used to represent the activity Cooking
may also be used to represent the subset Cooking Breakfast. On the other hand, a Cooking
Breakfast model may not be an effective representative of all cooking tasks. Additionally, some
activity classes may be considered functionally different and yet bear a striking resemblance in
terms of the sensor events they generate. For example, an individual may fill a glass with water
to drink or fill a kettle with water to boil. Such similarities between activities means that
additional contextual information, including time of day and the previous activity, need to be
considered when learning the activity class. Depending on the sensor modality, some pairs of
classes may be virtually indistinguishable. For example, the movements corresponding to lying
down on a rug and falling down may generate identical sensor sequences if only infrared motion
sensors are used. In these cases, the activities can only be distinguished by incorporating
additional sources of information such as different sensor modalities.

Interaction

Subject 1

Subject 2

Environ
ment

Action

Action

S S

S

S S
SS

Activity

Table 2.1. Categories of routine activities.

Actions
Walk, run, cycle, jump, sit down, stand up,
bend over, throw, dig, kneel, skip
Lie down, fall down, kneel down, faint
Ascend stairs, descend stairs
Open door, open cabinet, pick up item, push
item, pull item, carry item, throw item
Point, wave, talk, make fist, clap, gesture
Chew, speak, swallow, yawn, nod
Interactions

o shake hands, hug, kiss, hit, chase,
wrestle, high five

o talk to someone, hand item to
someone, throw item to someone

Activities

Clean house
o dust, vacuum, sweep, mop
o make bed, change sheets
o scrub floor, toilet, surface, windows,

ceiling fans
o clear table, wash dishes, dry dishes
o garden, weed, water plants
o gather trash, take out trash
o organizing items
o wash clothes, sort clothes, fold

clothes, iron clothes
Repair home

o fix broken appliance
o fix floor, wall, ceiling
o paint
o replace light bulb
o replace battery

Meals
o prepare breakfast, lunch, dinner,

snack
o set table
o eat breakfast, lunch, dinner, snack
o drink

Personal hygiene
o bathe, shower
o brush teeth, floss
o comb hair
o select outfit, dress
o groom
o shave, wash face, wash hands

o toilet
o trim nails, trim hair

Health maintenance
o take medicine, fill medicine

dispenser, apply medicine
Sleep

o nighttime sleep
o sleep out of bed

Pet care
o feed, water, groom
o walk, play, train
o clean pet home

Exercise
o lift weights
o use treadmill, elliptical, cycle, rower
o calisthenics
o stretch
o martial arts
o dive, golf, swim, skate

Leisure
o play musical instrument
o read
o sew
o watch television, video, play video

games
Travel

o enter car, enter bus, exit car, exit bus
o drive car, bus
o ride in car, bus
o ride elevator, escalator

Social
o make phone call, talk on phone
o send text, read text, send email, read

email
o write letters, cards
o entertain guests
o leave home, enter home

Work
o work at computer, work at desk,

work at table
Group activity

o Play board game, play card game
o Play sport against opponent
o Play sport with team
o Gather crowd, disperse crowd, move

crowd

2.3. Additional Reading

A number of authors have considered ways to categorize classes of activities for modeling,
detecting, and recognizing. Candamo et al.2 and Chaquet et al.3 distinguish single person
activities from multiple person activities and interactions. Borges et al.4 offer a characterization
that breaks activities into gestures, actions, and interactions in a manner similar to the discussion
found in this chapter. Krishnan et al.5 consider methods of learning activity taxonomies directly
from sensor data. Chen et al.6 and Bae7 employ a method for activity learning that involves hand-
constructing an activity taxonomy then using occurrences of the activities to refine the
taxonomy. These learned activity ontologies can form a knowledge-driven approach to learning
and reasoning about activities8,9.

In this book, we will refer to examples activities that appear in Figure 2.1 and Table 2.1.
However, this is by no means a comprehensive list nor is it the only taxonomical organization of
activity classes. Other taxonomies have been generated for use in specific domains. For example,
clinicians may evaluate an individual's cognitive and physical health based on their ability to
independently complete known activities. As a result, in the health literature activities classes of
activities are often categorized as Activities of Daily Living (ADLs)10 or instrumental Activities
of Daily Living (iADLs)11. Many resources are available that provide labels, categories, and
examples of classes of activities. This includes work by Tapia12, the Compendium of Physical
Activities13, the American time use survey14, the Facial Action Coding System15, the SCARE
joint task corpus16, and the UCF sports dataset17.

Activity Recognition

The field of activity recognition is concerned with the question of how to label activities from

a sensor-based perception of the environment. The problem of activity recognition is to map a
sequence of sensor events, x=<e1 e2 .. en>, onto a value from a set of predefined activity labels,
a A. Activity recognition can be viewed as a type of supervised machine learning problem. An
Activity Recognition (AR) algorithm learns a function that maps a feature vector, X, describing a
particular sensor event sequence onto an activity label, h:X A. In this supervised machine
learning problem the classes are the activity labels and the sensor events are represented by
features combined into the input vector X of D dimensions. AR can use the learned function to
recognize, or label, occurrences of the learned activity.

Activity recognition faces challenges that make it unique among supervised machine learning
problems. The sequential nature of the input data, the ambiguous partitioning of data into distinct
data points, and the common overlapping of activity classes mean that additional data processing
must be performed in order to accomplish the goal of recognizing activities. As Figure 5.1
shows, the steps involved in activity recognition include collecting and preprocessing sensor
data, then dividing it into subsequences that are converted to feature representations. The final
feature vectors are either labeled by an oracle and provided as training data to learn an activity
model or are sent to an already-trained classifier to identify the activity label. In Chapter 3 we
described the data collection and preprocessing steps and discussed how raw sensor data can be
represented as a set of high-level features. In Chapter 4 we described methods for supervised
learning that map such a feature vector, X, onto class values.

In this chapter, we describe the remaining steps involved in the activity recognition process.
When humans perform activities, they do so fluidly, in such a way that consecutive activities
blur into each other rather than being clearly delineated with sufficiently-large gaps between
activities. They can also perform several activities in parallel or interweave them for maximum
efficiency. As a result, the continuous stream of sensor-based information needs to be separated
into pieces that can more clearly be distinguished by a trained classifier. Several approaches can
be taken to address this issue of sensor event segmentation for activity recognition. We introduce
some of these methods, describe how they fit into the activity recognition process, and discuss
the related problem of activity spotting. We also overview methods for evaluating the
performance of the resulting activity recognition algorithms.

Figure 5.1. The activity recognition process includes the stages of raw sensor data collection,
sensor preprocessing and segmentation, feature extraction and selection, classifier training and
data classification.

5.1 Activity Segmentation

An activity recognition algorithm, AR, needs to recognize activities at the time they occur in
unscripted settings at the time that an individual (or a group) performs the activity. To achieve
this goal, AR must map the state of the user and the corresponding environment at the current
point in time to an activity label. The first task then is to select the sensor events that comprise
the current activity and define the corresponding context. The choice of segmentation or
subsequence selection technique is critical because no classifier can produce meaningful results

if the input features do not have discriminatory power. We consider two alternative approaches
for making this selection: event segmentation and window sliding.

Event segmentation is a two-step process. In the first step, the sequence of streaming sensor
events is separated into non-overlapping subsequences, or partitions. Each subsequence should
be internally homogeneous and represent a single activity. AR can map each separate sequence
to a corresponding activity label. The result of segmenting the data is a complete partitioning of
the sensor events, as formalized in Definition 5.1.

Definition 5.1. Given a sequence of n sensor events neeS ..1 , an event segmentation partitions

the sequence into a set of x subsequences xSSP ,..,1 , such that each SSi and the order of
the elements in Si is preserved. In addition, the set of subsequences is non-empty, non-
overlapping, and

xi

i i SS
1

.

Activity Sequence A1 A4 A3 A3

Sensor Sequence

Explicit Segmentation S1 S2 S3 S4 S5 S6

Time Windows T1 T2 T3 T4 T5 T6 T7 T8 T9

 W1 W10 W19

Sensor Event Windows W2 W11 W20
 W3 W12 W21

Figure 5.2. Illustration of alternative approaches to processing sensor data streams for activity
recognition. Sensor event types and timings are depicted by the vertical lines, where the line type
indicates the type, location, and value of the sensor message. The sensor windows are obtained
using explicit segmentation, sliding window extraction with a fixed window time duration, or
sliding window extraction with a fixed window length (number of sensor events).

Activity segmentation thus refers to the problem of segmenting a continuous stream of data

into discrete meaningful units of activity execution. Each of these pieces, or segments, can be
classified as an activity. For example, in Figure 5.2 the input sequence of sensor events is
partitioned into the non-overlapping subsequences S1.. S6, each of which can then be mapped to
an activity label. These subsequences represent activity segments and are defined by their
corresponding start and end times in the sensor sequence. As we can see in Figure 5.1, the
segments may not always align perfectly with activity boundaries and this needs to be take into
consideration when evaluating the entire activity recognition process.

There are two classes of approaches that are common for event segmentation. The first relies
on supervised machine learning, in which sample data is provided along with ground truth labels
from which appropriate segment boundaries can be learned. The second utilizes features of the

data itself, without supervised guidance, to identify activity boundaries in the event sequence
data.

The first approach to sensor data segmentation that we will discuss relies on information
about the activities that are modeled and are known to occur in the data sequence. Classifier-
based and rule-based approaches can be designed to identify activity boundaries based on the
known activity information.

Classifier-based segmentation. When a supervised approach is employed for activity
segmentation, machine learning algorithms are trained to recognize activity beginnings and
endings (activity boundaries or breakpoints) or changes between activities (transitions) based on
labeled examples. The sequence of sensor events between the activity beginning and ending, or
between detected transitions, is partitioned into a separate sequence and used for activity
labeling. Here we describe types of data samples that could be used to train a classifier to
recognize activity boundaries.

Examples of activity starts and stops. To employ this approach, a sufficient number of
start and stop instances must be provided for each activity class. Thus for a set of A possible
activities, 2A models need to be learned.

Examples of activity transitions. The switches from one activity to another, or activity
transitions, themselves can be explicitly modeled. The input to this type of learning problem
consists of sensor events at the end of one activity combined with sensor events at the beginning
of the next together with any events that occur between the two activities. In order to use this
learning approach to activity segmentation, a model needs to be learned for every pair of
activities, resulting in A2 models. In addition, this approach runs into problems when sensor
events may be observed that do not correspond to a known activity. In such situations, the
transition may not be recognized because the individual is transitioning to or from an unknown
activity. In other cases, the transition itself may be a separate activity that recurs and could be
modeled. For example, transitioning to a Leave Home activity may itself comprise several steps
such as collecting car keys, gathering supplies for an outing, and turning out lights. This could be
labeled as Preparing to Leave Home and may be a predictable behavior that is itself
recognizable. In these situations the transition data could actually contain more sensor data then
the activities that precede and follow the transition.

Another alternative is to treat transition recognition as a binary class problem, where the set of
all possible transitions represents one class and all within-activity sequences represents the
second class. While only one model needs to be learned in this case, this is a much more
complex problem that will be difficult to learn if the number of possible activities is large.

Examples of activity occurrences. The idea here is that if each activity is modeled and a
data point does not sufficiently follow any of the learned activity patterns, then it must represent
a transition between the known activities. A one-class classifier can be trained on each known
activity and used to “reject” points that do not fit into the known activities, in which case they
represent transitions. A one-class classifier distinguishes examples of the target class from all
other possible data points. With this method, A unique models must be learned in total.
Alternatively, the sequence can be rejected if none of the activity models recognize the sequence
with sufficient confidence. As with the activity transition method, a situation may occur where
not all possible activities are modeled. In this situation, the rejected data points may represent
other unknown activities and not simply transitions between known activities.

Figure 5.3. Rule-based activity segmentation algorithm.

Rule-based segmentation. An alternative method to locate activity boundaries is to identify
points in the sensor event sequence when the data is better supported by two or more activities
than by a single contiguous activity (which indicates a change of activities at that point in the
sequence). A common method to detect this change is to construct rules that look for particular
types of change in the sensor events. This approach is based on the assumption that activities
tend to be clustered around particular types of sensor events or other easily-detectable sensor
features such as locations, times, or objects. From the perspective of sensor events, this means
that the same types of sensor readings will occur each time a particular activity is performed. For
each sensor type (in the case of discrete event sensors), the set of associated activities can be
determined and stored. In the case of sampling-based sensors, the sensor values can be
partitioned into ranges that occur when the activity is performed. The association of activities for
each sensor event type or value range can be determined from domain knowledge or can be
determined based on sample data.

As summarized in Figure 5.3, the sensor-activity mappings, stored in the vector MSA, can be
used to detect activity boundaries. When neighboring sensor events <ei-1, ei> do not have any
associated activities in common, this indicates that an activity boundary has been reached and a
transition is occurring. In this case, event ei-1 is marked as the end of one activity and event ei is
marked as the beginning of the next activity. In addition to determining the activities associated
with sensor events, other feature similarities (such as time of day) can be determined as well and
used to identify activity boundaries.

Algorithm RuleBasedSegment(S, MSA)

// S is an input sequence of sensor events <e1 e2 .. en>
// MSA contains the set of activities associated with each sensor event type or value range
Boundaries = {}
begin = 1
Boundaries.append(begin) // Indicate the beginning of the sequence is an activity boundary

i = 1
while i<n do

i = i + 1
SAbegin = MSA(ebegin) // Find the activities associated with the boundary sensor event
SAi = MSA(ei) // Find the activities associated with the current sensor event
if SAbegin SAi =

end = i 1
Boundaries.append(end)
begin = i
Boundaries.append(begin)

end if
done

Boundaries.append(i) // Indicate the end of the sequence is an activity boundary

return Boundaries

The rule-based segmentation algorithm provides a fairly conservative approach to activity
boundary detection for segmentation. Consider the sensor event streams provided in Appendix
A. Notice that there are some sensor types that are associated with both of the activities. For
example, the sensor "M017" appears in both the Hand Washing and the Sweeping activities. In
contrast, "WATER" appears only in the Hand Washing activity and "BURNER" appears only in
the Sweeping activity. The MSAs for these sensors are thus MSA(M017) = {HandWashing,
Sweeping}, MSA(WATER) = {HandWashing}, and MSA(BURNER) = {Sweeping}. If the
following sensor sequence appears in the data stream:

10:00:00.00000 M017 ON
10:00:00.00000 M017 ON
10:01:00.00000 M017 ON
10:02:00.00000 WATER ON
10:03:00.00000 BURNER ON
10:04:00.00000 M017 ON
10:05:00.00000 M017 ON
10:06:00.00000 M017 ON

then a boundary will be detected between the WATER and BURNER events because their
associated activities do not overlap. Note that some false negatives can result from this approach.
If a M017 event occurred between the WATER and BURNER entries then no boundary would
be detected because M017 belongs to both activities. This problem can be addressed by
considering the probabilities of relationships between sensor events and activities as well as
considering a subsequence of events before or after the candidate activity boundary.

5.2 Sliding Windows

A second approach to handling streaming data is to divide the entire sequence of sensor
events into a set of time ordered, possibly-overlapping subsequences, or sliding windows. The
windows follow the formalism given in Definition 5.2.

Definition 5.2. Given a sequence of n sensor events neeS ..1 , event windowing identifies a

set of x windows, xSSP ,..,1 , with window sizes },..,{ 1 nww , such that each Si is an ordered
subsequence of S. The set of windows is ordered, non-empty, possibly overlapping, and

xi

xi i SS . Window Si can thus be represented by the sequence
iwii ee , .

Using a sliding window algorithm, the last (most recent) sensor event in each window Si is

mapped to an activity label by an activity recognition algorithm based on the learned mapping
ASh : . The sequence of sensor events in the window provides a context for making an

informed mapping. Because the windows are ordered, each window can be mapped to an activity
label as it occurs, which makes this a valuable approach when labeling activities in real time
from streaming data. This technique offers a simpler approach to learn the activity models during
the training phase over the explicit segmentation approach. Furthermore, it reduces the
computational complexity of activity recognition over the explicit segmentation process. This
AR technique can also be used to facilitate activity spotting, which is the process of locating

instances of a particular activity from a continuous data stream in which the activity is mixed
with background noise and irrelevant actions.

There still remains a number of decisions to make with a sliding windowing approach. First,
window sizes need to be determined based on the appropriateness for the context and the type of
activities that will be recognized. Second, events may need to be weighted within a window
based on their relevance to the current context.

5.2.1. Time based windowing

One approach to handling sliding windows is to divide the entire sequence of sensor events
into equal-size time intervals as illustrated in Figure 5.1 by the subsequences denoted as T1, T2, ..
T9. This is referred to as bursty, or timestamp-based sliding windows. The bursty approach is
valuable when data arrives asynchronously, as occurs with discrete-event sensors or when
external events are included in the analysis. In these situations the timestamp of the sensor event
is an important parameter that is used in describing each sensor event and generating activity
feature vectors.

Using this approach, parameter wi refers to a time duration. This is a good approach when
dealing with data obtained from sensors that sample their state at constant time intervals. In such
a scenario, every window is guaranteed to contain a fixed amount of data. This is a common
approach when using accelerometers and gyroscopes, for example, where data is sampled at a
constant rate from the sensors. However, one has to deal with the problem of selecting the
optimal length of the time interval. If a very small interval is chosen, there is a possibility that it
will not contain any relevant activity information for making any useful decision. If the time
interval is too wide, then information pertaining to multiple activities can be embedded into it
and the activity that dominates the time interval will have a greater influence in the classification
decision. This problem manifests itself when dealing with sensors that do not have a constant
sampling rate. In the current context of motion and door sensor events, it is very likely that some
time intervals do not have any sensor events in them (e.g., T6 in Figure 5.2). One approach that
can be taken when the optimal window size is unknown is employ an ensemble of classifiers, as
described in Chapter 4, each of which is trained for a different window size.

5.2.2. Size based windowing

A second approach to defining window sizes is to divide the sequence into windows
containing an equal number of sensor events. This is commonly referred to as fixed-size, or
sequence-based sliding windows. Fixed-sized windows are useful for situations in which the
arrival rate of the data is not constant. Using this approach, parameter wi refers to a number of
sensor events. This is illustrated in Figure 5.2 by the subsequences denoted as W1, W2, .., W21.
Even of the size of the window (defined by number of sensor events in the window) is fixed,
these windows may actually vary in their time duration. This is appropriate considering that
during the performance of highly-mobile activities, multiple motion sensors could be triggered,
while during more sedentary activities or silent periods, there will few, if any, sensor events. The
sensor events preceding the last event in a window define the context for the last event.

Like the previous approach, this method also has some inherent drawbacks. For example,
consider the sequence W11 in Figure 5.2. The last sensor event of this window corresponds to the
beginning sensor event of activity A3. It is possible that there exists a significant time lag
between this event and its preceding sensor event. The relevance of all the sensor events in this

2009 07 19 10:18:59.406 LivingRoom ON Personal_Hygiene
2009 07 19 10:19:00.406 Bathroom OFF Personal_Hygiene
2009 07 19 10:19:03.015 OtherRoom OFF Relax
2009 07 19 10:19:03.703 LivingRoom OFF Relax
2009 07 19 10:19:07.984 LivingRoom ON Relax
2009 07 19 10:19:11.921 LivingRoom OFF Relax
2009 07 19 10:19:13.203 OtherRoom ON Relax
2009 07 19 10:19:14.609 Kitchen ON Relax
2009 07 19 10:19:17.890 OtherRoom OFF Relax
2009 07 19 10:19:18.890 Kitchen OFF Relax
2009 07 19 10:19:24.781 FrontMotion ON Leave_Home
2009 07 19 10:19:28.796 FrontMotion OFF Leave_Home
2009 07 19 10:19:31.109 FrontDoor CLOSE Leave_Home
2009 07 19 12:05:13.296 FrontDoor OPEN Enter_Home

window to the last event in the window might be minimal if the time lag is large. As a result,
treating all the sensor events with equal importance may result in loss of recognition
effectiveness. Note also that if all of the sensors provide constant-time sampling, the time based
windowing and size based windowing approaches will yield the same results.

In the presence of multiple residents, sensor firings from two different activities performed by
the different residents will be grouped into a single window, thereby introducing conflicting
influences for the classification of the last sensor event. While by itself this approach may not be
intuitively alluring, we will show that events can be weighted within the window to account for
the relationship between the sensor events. This type of windowing approach does offer
computational advantages over the explicit segmentation process and can perform in real time
because it does not require knowledge of future sensor events to classify past or current sensor
events.

The value of the window size parameter, w, may depend on the context in which activity
recognition is performed. The value can be derived through an empirical process by studying the
effect of the different values of w on the performance of the recognition system. Among the
different factors that influence the value for w is the average number of sensor events that span
the duration of alternative activities. At one end of the spectrum are activities such as Leave
Home that may be defined by rapid firing of a small set of environment sensors, while at the
other extreme is the activity Sleep that continues for hours but typically results in an occasional
firing of one or two sensors due to minimal resident movement during this time. Ideally the size
of a sensor event window should be large enough to define the context of the last sensor event.
Heuristics such as the average length of the longest recognizable activity can be used to bound
the window size.

Figure 5.4. Illustration of time dependency in a sliding window of sensor events.

5.2.3. Weighting events within a window

Once the sensor window Si is defined, the next step is to transform this window into a feature
vector that captures relevant activity information content as described in Chapter 3. However,
one of the problems associated with fixed-size windowing is that windows could contain sensor

events that are widely spread apart in time. An illustration of this problem is presented in Figure
5.4. These are examples of a sequence of discrete-event sensor events collected by environment
sensors in a smart home. Notice the time stamp of the last two events in the sequence in Figure
5.4. There is a gap of nearly one and a half hours between these sensor events. All the sensor
events that define the context of the last event within this window have occurred in the "distant"
past. In the absence of any weighting scheme, the feature vector may be biased toward the
inclusion of misleading information. Even though the sensor event corresponding to the end of
the Personal Hygiene activity occurred in the past, it would have an equal influence on defining
the context of the event corresponding to Enter Home. To overcome this problem, a time-based
weighting scheme can be incorporated to take into account the relative temporal distance
between the sensors.

When the sliding window is a constant size, it is possible for two sensor events that are spread
apart in time to be part of the same window. In order to reduce the influence of such sensor
events on deciding the activity label for the most recent sensor event, a time-based weighting
factor can be applied to each event in the window based on its relative time to the last event in
the window.

Let },..,{ iwi tt represent the time stamps of the sensor events in window Si. For each sensor
event ej, the difference between the time stamp of ej and the time stamp of ei, the last event in
the window, is computed. The contribution, or weight, of sensor event ej can be computed using
an exponential function as shown in Equation 5.1.

)exp(),()(ji ttjiC (5.1)

Figure 5.5. Effect of X on weights.

Features that are based on a simple count of the sensor events within a window can now be

replaced by a sum of the time-based contributions of each sensor event within the window.
Features which sum the values of sensor events can also employ this type of weighting approach
to adjust the influence of each sensor event on the feature vector. The value of X determines the
rate of decay of the influence. Figure 5.5 shows the effect of the choice of X on the rate of decay.

2009 07 23 19:59:58.093 Bathroom ON Personal_Hygiene
2009 07 23 20:00:02.390 Bathroom OFF Personal_Hygiene
2009 07 23 20:00:04.078 Bathroom ON Personal_Hygiene
2009 07 23 20:00:08.000 LivingRoom ON Relax
2009 07 23 20:00:08.640 OtherRoom ON Relax
2009 07 23 20:00:09.343 LivingRoom OFF Relax
2009 07 23 20:00:12.296 Kitchen ON Relax
2009 07 23 20:00:25.140 LivingRoom OFF Relax
2009 07 23 20:00:27.187 FrontMotion ON Leave_Home
2009 07 23 20:00:27.437 Kitchen OFF Leave_Home
2009 07 23 20:00:30.140 FrontMotion OFF Leave_Home
2009 07 23 20:00:32.046 FrontMotion ON Leave_Home
2009 07 23 20:00:36.062 FrontMotion OFF Leave_Home
2009 07 23 20:00:39.343 FrontMotion ON Leave_Home
2009 07 23 20:00:43.671 FrontMotion OFF Leave_Home
2009 07 23 20:00:46.265 FrontDoor CLOSE Leave_Home

If X>1, then only sensor events that are temporally close to the last event contribute to the feature
vector. When 0 < X < 1, the feature vector is under the influence of a temporally wider range of
sensor events. When X = 0, the temporal distance has no influence on the feature vector, making
it a simple count of the different sensor events.

Similarly, in situations when the sensor event corresponds to the transition between two
activities (or in other settings when multiple activities are performed by more than one resident
in parallel), the events occurring in the window might not be related to the sensor event under
consideration. An example of this situation is illustrated in Figure 5.6. This particular sequence
of sensor events from a smart home testbed represents the transition from the Personal Hygiene
activity to the Leave Home activity. Notice that all the initial sensor events in the window come
from a bathroom in the home, whereas the second set of sensor events are from an unrelated
functional area of the apartment, namely the area near the front door. While this certainly defines
the context of the activity, since the sensors from a particular activity dominate the window, the
chances for a wrong conclusion about the last sensor event of the window are higher. This
problem can be addressed by defining a weighting scheme based on the mutual information
between the sensors.

Figure 5.6. Illustration of sensor dependency in a sliding window of sensor events.

The mutual information measure reduces the influence of sensor events within the window
that do not typically occur within the same time frame as the last sensor event in the window. In
the context of environmental sensors, motion sensors that are geographically distant from the
most recent sensor location will receive less weight than those that are close. Mutual information
is typically defined as the quantity that measures the mutual dependence of two random
variables. For sensor-based activity recognition, each individual sensor is considered to be a
random variable. The mutual information or dependence between two sensors is then defined as
the chance of these two sensors occurring successively in the entire sensor stream. If Si and Sj are
two sensors, then the mutual information between them, MI(i,j), is defined as

1

1 1),(),(1),(N

k jkik SsSs
N

jiMI (5.2)

where

(sk, Si)
0 if sk Si

1 if sk Si

. (5.3)

The summed term thus takes a value of 1 when the current sensor is Si and the subsequent
sensor is Sj. If two sensors are adjacent to each other, such that triggering one sensor most likely
results in also triggering the other sensor, then the mutual information between these two sensors
will be high. Similarly, if the sensors are far apart such that they do not often occur together, then
the mutual information between them will be low. Note that the computation of mutual
information using this bi-gram model depends on the order in which sensor events occur.

The mutual information matrix is typically computed offline using sample data, with or
without activity labels, from the set of sensors that will be employed for activity recognition. As
an example, consider the event sequence shown in Figure 5.6. There are 16 events, or 15 pairs of
successive events (N=15). The sequence {Bathroom, LivingRoom} appears 1 time and
{LivingRoom, Bathroom} does not appear at all, so MI(Bathroom, LivingRoom) = 1/15. In
contrast, MI(Bathroom, FrontDoor) = 0 and MI(LivingRoom, Kitchen) = 2/15.

Once computed, the MI matrix can then be used to weight the influence of sensor events in a
window while constructing the feature vector. Similar to time-based weighting, each event in the
window is weighted with respect to the last event in the window. Thus instead of computing
feature values based on the count of different sensor events or an aggregation of the sensor
values, it is the aggregation of the contribution of every weighted sensor event based on mutual
information that can is included in the feature vector representing the data in the sliding window.

While Equations 5.2 and 5.3 are based on the occurrence of events from a particular sensor, a
similar approach can be used to weight sensor events with values that do not commonly occur in
the same window with other sensor values. By weighting sensors according to mutual
information, the impact of sensor events can be reduced when their occurrence is due to noise, to
interweaving of activities, or to activities of multiple individuals that are being detected by the
same sensors.

Figure 5.7 shows intensity-coded mutual information scores between different sensors located
in a smart home. It is evident from the figure that each of the sensors is functionally very distinct
from the others. Furthermore, the relatively strong diagonal elements indicate the higher chance
of sensor generating multiple similar messages in a row rather than transitioning to different
sensors. Because each of these sensors is triggered by human motion, the MI values for this
testbed indicate that the resident tends to remain in one location more than moving around. A
few other observations can be made from Figure 5.7. For example, consider the similarities
between sensors 5 and 6. These two sensors correspond to the Front door and Kitchen sensors
that are geographically close to each other. As a result, when the resident enters the testbed the
kitchen sensor is likely to sense motion as well as the front door motion sensor. However, the
Kitchen cabinet sensors (#7) do not get triggered. Another subtle observation is the relatively
high similarity between the Medicine cabinet sensor (#13), the Kitchen sensor, and the Kitchen
cabinet sensors (#7). The resident of this home stores medicine in the kitchen cabinet. When the
resident retrieves medicine each day all of the related kitchen sensors have a relatively high
likelihood of firing.

Figure 5.7. Intensity-coded mutual information between every pair of motion sensors (right) in a
smart home (left).

5.2.4. Dynamic window sizes

The previously described approaches employ a fixed window size for computing the feature
vectors. An important challenge with this approach is identifying the optimal window size.
Various heuristics such as the mean length of the activities and sampling frequency of the
sensors can be employed to determine the window size. For fixed-sized windows, lengths
between 5 and 30 are common. For time-based windows containing events from high-frequency
sampled sensors, common sizes are between 1 and 6 seconds. An alternative approach, however,
is to automatically derive the window size from the data itself.

A probabilistic method can be used to derive an appropriate window size for each sensor
event that is being classified with an activity label. Assuming that there are M activity labels, a
set of candidate window sizes are defined, },..,,{ 21 Lwww where w1 corresponds to the minimum
window size that is observed in the data for any activity,)}(),..,(),(min{ 211 MAwsAwsAwsw ,
wL is the median window size observed for all of the activities in A,

)}(),..,(),({ 21 ML AwsAwsAwsmedianw , and the remaining candidate window sizes are
obtained by dividing the [w1, wL] interval into equal-length bins. After generating candidate
window sizes, the most likely window size for an activity Am can be calculated as

w* argmaxwl
{P(wl | Am)}. (5.4)

Note that we can also estimate the probability of an activity Am being associated with sensor si
as)|(im sAP . Thus, if the most recent sensor event is generated by sensor si, the most likely
activity A* associated with the sensor is calculated as

)}|({maxarg*
imA sAPA

m
 (5.5)

To consider both of these influences in selecting an optimal size we can combine Equations
5.4 and 5.5. The optimal window size for events generated by sensor si can be determined by
combining the two equations according to the factorization in Equation 5.6.

)]|(*)|([maxarg)|(maxarg*
immlwilw sAPAwPswPw

ll
. (5.6)

Each of the probability vectors can be estimated using available sample data. The window
sizes for the sensor events that are used to train activity recognition classifiers and to label new
events are computed using the probabilities estimated from the sample data.

A similar approach can be taken to dynamically compute time-based window sizes. As with
size-based windows, time windows can be defined for every sensor event. For a sensor event si, a
time window consists of all sensor events that fall within a fixed time duration starting from the
timestamp of event si. The sensor events within a particular time window are aggregated to form
features using the same process that was adopted for length-based windows. The time window
can be labeled using the activity associated with the last sensor event in the time window.

As an example, consider a dataset that is formed by combining the events in Figures 5.4 and
5.6. For this dataset, the window sizes for the activities that occur are

Personal hygiene {2, 3} Relax {5, 8}
Leave home {3, 8} Enter home {1}

The minimum window size is 1 and the median size is 3. We consider the candidate window
sizes 1 and 3. Consider that the most recent sensor event is generated by a Front door sensor. We
see from the data that P(LeaveHome | FrontDoor) = 0.67 and P(EnterHome | FrontDoor) = 0.33,
so the most likely activity given this sensor event is Leave Home. For the Leave Home activity,
the only window sizes that are observed are sizes 3 and 8, each with probability 0.5. The
probability of window size 1 for Leave Home is 0.0, so the most likely window size of 3 would
be used to determine the context for this activity.

5.3 Unsupervised Segmentation

Although activity-centered segmentation allows activity breakpoints to be easily detected, it
relies on knowledge of the predefined activities and sufficient training data to learn models of
activities and their boundaries. It is more difficult to leverage activity-centered approaches to
detect breakpoints within activities that are highly variable and do not appear in the vocabulary
of predefined tasks. This is a limitation, because such free-form tasks are very common in
routine behavior. Here we describe two alternative approaches, change point detection and
piecewise representation, that can be used to identify potential activity boundaries without
explicit guidance from a supervised learning algorithm.

Change point detection. An alternative method for activity segmentation is to detect activity
breakpoints or transitions based on characteristics of the data without being given explicitly-

labeled examples of activity breakpoints or transitions. We have already shown a number of
approaches that exist to segmenting time series data. However, in some cases we want to 1)
identify likely activity boundaries in real time as the data is observed and 2) perform the
detection without explicit training a classifier on known activities or known activity transitions.

To accomplish this we can borrow from time series analysis to perform change point
detection, which is the problem of detecting abrupt changes in time series data. Such abrupt
changes may represent transitions that occur as individuals complete one activity and begin
another activity. To perform change-point detection, probability distributions of the feature
descriptions can be estimated based on the data that has been observed since the previous
candidate change point. In order to ensure that change points are detected in real time, the
algorithm only tries to identify the most recent change, or activity boundary. Sensor data from
the current point in time back to the most recent change point is referred to as a run, r. If t sensor
events or time units have occurred since the most recent detected change point, then there are t
possible runs of different lengths that could be associated with the recent data. If the algorithm is
applied after each new sensor event is received, then there are only two possibilities to consider:
either the new event is a member of the current run and the run length increases by one, or a
change point occurred, the run ended, and the new sensor event is part of a new run. Let rt refer
to the length of the most recent run. We can then calculate the probability of rt given the previous
t sensor events.

tr ttttttt erPerePeeP)|()&|()|(:1:11:11:1 (5.7)

We can compute the probability of the run length after event t given the corresponding
sequence of sensor events using Bayes rule.

)(
)&()|(

:1

:1
:1

t

tt
tt eP

erPerP (5.8)

The numerator can then be recursively computed based on the previous run length and
corresponding sensor events.

1

1

1

)&()&|()|(
)&()&|&(

)&&(
)&(

1:111:111

1:111:11

1

:1

t

t

t

r ttttttt

r tttttt

r ttt

tt

erPerePrrP
erPererP

errP
erP (5.9)

The algorithm to compute the probabilities does not require storing all of the intermediate
probability values but can use the probabilities estimated up through the previous sensor event to
compute the probabilities for the current sensor event. The process starts at the previous change
point, so P(r0 0) 1. The term)&|(1:11 ttt ereP represents the probability that the most recent
sensor event belongs to each of the possible runs identified through the previous data point.
Calculating this probability relies on knowing the type of data distribution. We let r

te represent
the data point that is associated with run rt and r

t represent the probability of data point r
te

based on the run through t and the appropriate data distribution.
The probability of rt given the previous value has two cases depending on whether a change

point just occurred or whether a change point did not occur and the run length grew by one. To
compute these two cases, we first compute the hazard function H. The hazard function is used to

represent a failure rate, which is estimated here as the number of events that end a run (or
segment) to the total number of events, based on sample data.

P(rt | rt 1)
H (rt 1 1) if rt 0

1 H (rt 1 1) if rt rt 1 1
 (5.10)

The change point detection algorithm is summarized in Figure 5.8. As the pseudocode shows,

a change point can be detected and the corresponding activity boundary made after looking
ahead only one sensor event. The parameters of the predictive distribution associated with a
current run are indicated by .r

t Simple distributions such as the marginal predictive distribution
can be used when the exact distribution of the data is unknown.

For detecting activity transitions, the sequence data is constructed as follows. The current
state of the environment (including the sensors and the residents or the individual wearing
sensors) is viewed as a single data point. This gives us a multi-dimensional data point where the
number of dimensions corresponds to the number of features describing the state. The current
state is then updated at every time step, or after every sensor event, to yield the sequence data.
The probability of a run ending before the current time point or sensor event is computed and
compared with the probability of the run extending to include the current data point. If the
probability of the run ending is larger, then the activity boundary is noted before the most recent
event and the process repeats with the new run starting at the most recent sensor event.

Figure 5.8. Online change point detection algorithm.

Piecewise representation. The idea of piecewise approximation originates from time series

analysis, in which the entire series cannot be accurately represented by a single simple function
yet it can be segmented into pieces which can be individually represented by such functions. For
an unsupervised approach to segmentation, we can try to model each segment with a simple
regression or classifier model. Supervised versions of piecewise approximation can use
recognition accuracy based on pre-trained activity models to determine the value of segment
choice.

Algorithm DetectChangePoint()

Boundaries = {}
begin = 1
Boundaries.append(begin) // Indicate the beginning of the sequence is an activity boundary

P(r0 = 0) = 1 // The initial run length is 0

prior
0
1 // Initialize the parameters of the data distribution model based on priors

i = 1
while data do

i = i + 1
// Calculate the probability that the run length grows by 1

P(ri = ri+1 + 1 & e1:i) = P(ri 1 & e1:i 1) x r
i x (1 H(ri 1 + 1))

// Calculate the probability that a change point occurred
P(ri = 0 & e1:i) =

1ir

P(ri 1 & e1:i 1) x r
i x H(ri 1)

// Update the data evidence probability
P(e1:i) =

ir

P(ri & e1:i)

// Determine the run length distribution
P(ri | e1:i) = P(ri & e1:i) / P(e1:i)

// Update the distribution statistics

prior
1
1

r
i

// Predict the next data point
P(ei+1 | e1:i) =

ir

P(ei+1 |
r
ie & ri) x P(ri | e1:i)

if P(ri = 0) > P(ri = ri+1 + 1)
end = i 1
Boundaries.append(end)
begin = i
Boundaries.append(begin)

end if
done

return Boundaries

Figure 5.9. Hybrid bottom-up / sliding-window segmentation algorithm.

Algorithm HybridSegment(Buffer, BufferSize)

// BufferSize is specified as 5 times the size of a typical activity segment
Boundaries = {}
begin = 1
Boundaries.append(begin) // Indicate the beginning of the sequence is an activity boundary

while data do
error = ModelError(Buffer)
Segment = BottomUp(Buffer, error)
end = begin + Segment[1].size
Boundaries.append(end)
begin = end + 1
Boundaries.append(begin)
Buffer.remove(Segment[1].size) // Remove the first segment from the buffer
Buffer.append(data, Segment[1].size) // Add the next Segment[1].size events to the buffer

done

return Boundaries

Algorithm BottomUp(Seq, MaxError)
Segment = {} // Segment contains the size of each segment in the input sequence

for i = 1 to Seq.size 1
S.begin = i
S.end = i
S.size = 1
Segment.append(S)

done

for i = 1 to length(Segment) 1
MergeCost[i] = ModelError(Merge(Segment[i], Segment[i+1]))

done

while min(MergeCost) < MaxError
i = min(MergeCost)
S[i] = Merge(Segment[i], Segment[i+1])
Segment.remove(S[i+1])
if i < length(Segment)

MergeCost[i] = ModelError(Merge(Segment[i], Segment[i+1]))
end if

if i > 1
MergeCost[i 1] = ModelError(Merge(Segment[i 1], Segment[i]))

end if
done

return Segment

Given a method of representing each segment and an error function to determine the fit
between the function and the data, we can employ several different techniques to efficiently
search through the space of possible segment choices. A top down approach starts by viewing the
entire sequence as a segment and chooses a point in the sequence (if one exists) where splitting
the sequence into two smaller segments results in decreased error over representing the segments
separately. The process repeats until performance is not improved by further splitting. A bottom
up method starts by considering each event as a separate segment and merges neighboring
segments until the performance does not improve with further merging. These techniques are
similar to hierarchical clustering techniques that have been applied to non-sequential data. A
third sliding window technique starts at the beginning of the input sequence with a segment of
size one and grows the segment until the performance does not improve with further extensions
of the segment. The process then repeats starting with the first data point not included in the most
recent segment.

These techniques are effective for a variety of types of data with or without the use of trained
activity models. However, they are designed to be applied in offline mode to the entire sequence
of available sensor event data. A hybrid method can be used to combine these approaches in a
semi-online approach. Using the hybrid algorithm, a subsequence is stored in a buffer that is long
enough to store approximately five typical segments. The bottom-up technique is used to
segment the data in the buffer and the left-most segment boundary is recorded. The data
corresponding to the segment is removed and the next data points in the sequence are added to
the buffer to maintain a constant-size buffer, then the process is repeated. This hybrid technique
provides more of a "look ahead" then is used by a pure sliding window and thus the segment
quality can be improved. Unlike a pure bottom up method, however, this hybrid method allows
the data to be processed in near real time. Figure 5.9 provides pseudocode for the hybrid
segmentation algorithm.

5.4 Measuring Performance

Once a sequence of sensor events is partitioned into overlapping windows or non-overlapping
windows (segments), the activity recognition algorithm uses one of the classifiers described in
Chapter 4 to map each window's subsequence of sensor events si to an activity label Ai based on
the learned mapping ASf : . In order to compare alternative activity recognition algorithms
and to estimate the expected performance of the recognition for future data, we want to be able to
determine the performance of the algorithm on already available data as well as data we may
collect in the future.

To illustrate the performance evaluation process, consider an example scenario in which we
train a Decision Stump classifier to distinguish our Hand Washing activity from the Sweeping
activity as described in Chapter 3. As mentioned in Chapter 3, a decision stump classifier is a
one-level decision tree. An attribute is selected to be queried as the root of the tree and its
children are leaf nodes, which provide an activity classification. To simplify the recognition
scenario, we utilize a fixed sliding window of 10 sensor events with only two types of features:
the time duration of the window and the sensor counts (bag of sensors) for each window. Due to
the choice of features we only consider the discrete event sensors. This includes the motion
sensors, door sensors, item sensors, and utilization of water and the stove burner. Note that with
a window size of 10 the hand washing activity contains 10 data points while the sweeping
activity contains 44 data points.

 A first step at evaluating the performance of an activity recognition algorithm is to generate a
table that summarizes how the activities were classified, typically referred to as the confusion
matrix. Each row of the matrix represents data points and their actual activity label, while each
column of the matrix represents the data points and the activity label they were assigned by the
classifier. As shown in Table 5.1, each cell [i,j] provides the number of data points from activity
class i that were categorized as activity j by the classifier. Notice that the cells along the diagonal
indicate the correct classifications. A classifier that provides correct labels for each data point
would generate 0 values for every cell except those along the diagonal. Thus the values
represented by "a" and "d" represent the number of correctly classified data points for this two-
class problem while the values represented by "b" and "c" represent the number of incorrectly
classified data points.

Table 5.1. Example confusion matrix.

 Classified as 1 Classified as 0
True 1 a (TP) b (FN)
True 0 c (FP) d (TN)

Table 5.2 summarizes the results from our activity example. Mistakes are made in labeling

data points from both classes. The sweeping class has fewer errors, which could be due to its
larger number of training data points. To shed more light on the performance of the recognition
algorithm we next introduce a range of metrics that could further evaluate the algorithm.

Table 5.2. Confusion matrix using decision stump for recognizing hand washing and sweeping
activities.

 Classifier label
Hand washing Sweeping

Activity label Hand washing 6 4
Sweeping 3 41

Table 5.3. Confusion matrix using naive Bayes for recognizing hand washing, sweeping, and
cooking activities.

 Classifier label
Hand washing Sweeping Cooking

Activity label
Hand washing 9 1 0

Sweeping 0 44 0
Cooking 0 0 32

While Table 5.2 shows the confusion matrix that results from learning two activity classes,
the techniques can be applied to any number of activity classes. Table 5.3 shows the confusion
matrix that results from applying a naive Bayes learner to the hand washing and sweeping
activities as well as a third activity, Cooking. The Cooking class contains 32 examples that
represent data collected while an individual cooked a bowl of soup. Note that even though the
number of classes has increased, the naive Bayes classifier actually classifies more data points
correctly than the decision stump did for two activity classes.

Many performance metrics have been introduced to evaluate classifier algorithms. These are
useful for evaluating activity recognition algorithms. However, the activity recognition problem
has some unique characteristics that are not captured by traditional metrics so additional
measures need to be considered as well. In this section we provide an overview of both, using
our hand washing vs. sweeping problem to illustrate the metrics.

5.4.1 Classifier based activity recognition performance metrics

Accuracy. The most common metric for evaluating classifier performance is accuracy.
Accuracy is calculated as the ratio of correctly-classified data points to total data points.
Referring to the example confusion matrix in Table 5.1 we see that accuracy can be calculated
from the matrix by summing the values along the diagonal and dividing by the sum of all of the
values in the matrix, or (a+d)/(a+b+c+d).

activitiestotal
activitiesclassifiedcorrectlyAccuracy

#
(5.11)

Accuracy is a measure that can be applied to multi-class problems as well as binary-class
problems. This will be necessary for most activity recognition algorithms (just the "clean house"
category in Table 2.1 alone lists 23 separate activities to be recognized). However, accuracy does
not tell the whole story, because it does not provide insights on the source of the error or the
distribution of error among the different activity classes. For our activity recognition example in
Table 5.2 we see that the accuracy is 0.87. However, the accuracy for the individual classes
varies quite a bit (the accuracy for Hand Washing is 0.60 and the accuracy for Sweeping is 0.93).
The companion to accuracy is Error Rate, which is computed as 1 - Accuracy.

Sensitivity, specificity. Accuracy and Error Rate give a high-level idea about the recognizer's
performance. However, in cases where there is a non-uniform distribution among the activity
classes, these measures can be deceiving. Accuracy and Error Rate are ineffective for evaluating
classifier performance in a class-imbalanced dataset because they consider different types of
classification errors as equally important. For example, if the dataset consists of 5% Eat activities
and 95% Sleep activities, a random prediction of all of the test instances being Sleep will yield
an accuracy of 0.95. However, in this case the classifier did not correctly recognize any of the
Eat activities. In order to provide a comprehensive assessment of activity recognition, we need to
either consider metrics that can report the performance of activity recognition on two classes
separately or not let the effect of class imbalance be reflected in the metric. Sensitivity,
specificity, and g-mean are useful for reporting recognizer performance in such cases of class
imbalance and for providing insight on recognition performance for individual classes.
Sensitivity, also referred to as the true positive rate or true activity rate (TP Rate), refers to the
portion of a class of interest (the positive class) that was recognized correctly. Referring to the
example confusion matrix in Table 5.1 we see that the true positive rate is a/(a+b). For a problem

with more than two activity classes the true positive rate would be calculated in a similar
manner. Using the example in Table 5.3, if Hand Washing is the positive class then the true
positive rate would be calculated as the number of Hand Washing examples classified as Hand
Washing divided by the total number of Hand Washing examples, or 9/10 = 0.9.

FNTP
TPRateTPySensitivit (5.12)

Similarly, the false positive rate (FP Rate) can be reported as the ratio of negative examples
(examples not in the class of interest) classified as positive to the total number of negative
examples. The false positive rate for the confusion matrix in Table 5.1 is computed as c/(c+d).

TNFP
FPRateFP (5.13)

In contrast, specificity refers to the portion of the negative class examples (examples not in
the class of interest) that were recognized correctly.

FPTN
TNySpecificit (5.14)

G-mean. G-mean utilizes the Sensitivity and Specificity measures the performance of the
activity recognition algorithm both in terms of the ratio of positive accuracy (Sensitivity) and the
ratio of negative accuracy (Specificity). G-mean thus provides activity class-sensitive measure of
the recognition performance. The sensitivity, specificity, and g-mean scores can be calculated
separately for each class to see how well the recognition algorithm handles each activity. They
can also be combined by averaging the scores over each class, multiplied by the class size to
provide a weighted average and thus an overall performance measure for the algorithm. Note that
the weighted average sensitivity and specificity scores yields the same result as the accuracy
calculation.

ySpecificitySensitivit
FPTN

TN
FNTP

TPmeanG (5.15)

Precision, recall, f-measure. Like sensitivity and specificity, precision and recall provide
class-sensitive measures. Precision is calculated as the ratio of true positive data points to total
points classified as positive, while recall is calculated as the ratio of true positive data points to
the total points that are true (should be classified as true).

Precision =
FPTP

TP (5.16)

Recall =
FNTP

TP (5.17)

While precision and recall can be used to evaluate activity recognition performance, they are
traditionally used to evaluate the performance of retrieval approaches, such as document retrieval
algorithms. In the context of activity learning, these can be useful measures if the goal is not to
just label a particular data sequence with an activity name but to search through a set of sensor
event sequences to retrieve all of the sequences in which a particular activity occurs. In this case,

precision can be used to determine the proportion of identified sequences that are relevant
(actually contain the activity of interest). This can be used, for example, to determine on which
days a caregiver visited to provide physical therapy for a smart home resident. Similarly, recall
can be used in this situation to calculate the fraction of relevant sequences that are actually
identified and retrieved by the algorithm. In these cases, TP is measured as the number of
relevant identified sequences. The precision denominator, TP+FP, is the total number of
identified sequences, and the recall denominator, TP+FN, indicates the number of relevant
sequences that exist. For activity recognition evaluation, recall can be viewed as synonymous
with sensitivity or TP rate.

Finally, f-measure (also referred to as f-score or f1 score) provides a way to combine
precision and recall as a measure of the overall effectiveness of activity classification. F-measure
is calculated as a ratio of the weighted importance of recall or precision. The weight coefficient
in Equation 5.7, , is typically set to 1. Table 5.4 summarizes these performance metrics for our
example activity recognition problem.

ecisionrPcalleR
ecisionrPcalleR

FNTP
TP

FNTP
TP

FNTP
TP

FNTP
TP

measureF 2

2

2

2

)1()1(
 (5.18)

Table 5.4. Traditional classifier-based performance evaluation for decision stump algorithm
applied to hand washing (H) and sweeping (S) activities.

Performance Metric and Value
Accuracy 0.87 G-mean (H) 0.56
Error rate 0.13 G-mean (S) 0.56
Sensitivity (H) 0.60 Precision (S) 0.67
Sensitivity (S) 0.93 Precision (H) 0.91
FP Rate (H) 0.07 F-measure (S) 0.55
FP Rate (S) 0.40 F-measure (H) 0.55
AUC-ROC 0.83 AUC-PRC 0.88

Kappa statistic. While the performance metrics we have described so far give an indication of

the recognition algorithm's performance, the values may be difficult to interpret. If two
competing algorithms are being considered they can be compared using these metrics. If one
algorithm is being considered, it is useful to compare it to a baseline. The Kappa statistic, or
Cohen's kappa coefficient, provides a way to compare the algorithm to one that assigns activity
labels based on chance. The Kappa statistic is traditionally used to assess inter-rater reliability, or
the degree to which two raters agree on the class value for a data point. When evaluating an
activity recognition algorithm, the two raters represent the algorithm being evaluated and ground
truth (the actual activity labels). The Kappa statistic can take on a value between -1 and 1, where
a value of 1 indicates perfect agreement, a value of 0 indicates the agreement is equal to chance,
and a value of -1 indicates perfect disagreement. P(A) is the probability of agreement between

the activity recognition and ground truth (the accuracy of the algorithm) and P(E) is the
probability that the accuracy is due to chance.

)(
)()(

EP
EPAP (5.19)

P(E) can be estimated using a number of methods. Here we estimate it by computing the
distribution of class labels assigned by the algorithm as well as the actual class label distribution.
Thus P(E) = P(H|Alg) P(H) + P(S|Alg) P(S) = 8/54 10/54 + 46/54 44/54 = 0.72 for our
example scenario. The value can then be computed as (0.87 - 0.72) / (1.00 - 0.72) = 0.54.

In addition to using the Kappa statistic to evaluate the performance of a classifier, it is also a
useful statistic for evaluating the reliability of labeled activity data. If multiple individuals
examine sensor data in order to annotate the data with ground truth labels, the consistency of the
labels can be determined between the annotators by calculating P(A) = the proportion of data
points where the annotators agree on the label and P(E) = the proportion of data points where the
annotators would agree if labels were randomly assigned.

Receiver Operating Characteristics Curve (ROC). ROC-based assessment facilitates explicit
analysis of the tradeoff between true positive and false positive rates. This is done by plotting a
two-dimensional graph with the false positive rate on the x axis and the true positive rate on the y
axis. An activity recognition algorithm produces a (TP_Rate, FP_Rate) pair that corresponds to a
single point in the ROC space, as shown in Figure 5.6. One recognition algorithm can generally
be considered as superior to another if its point is closer to the (0,1) coordinate (the upper left
corner) than the other. If the algorithm generates a probability or confidence value and uses a
threshold to decide whether the data sample belongs to the activity class, the threshold value can
be varied to generate a set of points in the ROC space. This set of points generates an ROC
curve, as shown by the solid-line curve in Figure 5.10.

Figure 5.10. Example ROC curve (left) and PR curve (right).

To assess the overall performance of an activity recognition algorithm, we can look at the
Area Under the ROC curve, or AUC. In general, we want the false positive rate to be low and the
true positive rate to be high. This means that the closer to 1 the AUC value is, the stronger is the
recognition algorithm. In Figure 5.10, the algorithm that generated curve A would be considered
stronger than the algorithm that generated curve B. Another useful measure that can be derived
from the ROC curve is the Equal Error Rate (EER), which is the point where the false positive
rate and the false negative rate are equal. This point, which is illustrated in the ROC curve in
Figure 5.6, is kept small by a strong recognition algorithm.

Precision-Recall Curve (PR Curve). A PRC can also be generated and used to compare
alternative activity recognition algorithms. The PR curve plots precision rate as a function of
recall rate. While optimal algorithm performance for an ROC curve is indicated by points in the
upper left of the space, optimal performance in the PR space is near the upper right. As with the
ROC, the area under a PRC can be computed to compare two algorithms and attempt to optimize
activity recognition performance. Note that the PR curves in Figure 5.10 (right) correspond to the
same algorithms that generated the ROC curves in Figure 5.10 (left). In both cases, Algorithm A
yields a larger area under the curve and could be interpreted as outperforming Algorithm B. It
should be noted that an algorithm that performs best using the ROC metric may not perform best
using the PRC and vice versa. However, the metrics can be considered separately to better
understand the nature of algorithm performance. The PR curve in particular provides insightful
analysis when the class distribution is highly skewed, which often happens when modeling and
recognizing activities.

5.4.2 Event based activity recognition performance metrics

Activity recognition can be viewed as a classification task. However, there are aspects of
activity recognition that are not like many other classification problems. First, the sequential
nature of the sensor events means that the data points are not independent. In fact, they are
related in time, in space, and in function. Second, the distinction between the class labels is not
always clear. Some activities are very similar in function and purpose and thus the sensor events
are also similar. Finally, if activities are not pre-segmented, then any given window of sensor
events could represent a transition between activities rather than just one activity. As a result,
additional performance metrics are needed to better understand possible mis-matches between
the labels that are generated by an activity recognition (AR) algorithm and the ground truth
activity labels for a given data point.

Using event-based evaluation relies on considering entire sensor event segments at a time. In
contrast with pre-segmented data, a segment here is a subsequence within the input data where
the AR label and the ground truth label remain constant. Figure 5.11 shows an artificial sequence
of sensor events that are labeled with the hand washing and sweeping activities. Segment
boundaries are indicated with vertical lines. With this approach to performance evaluation, each
segment is analyzed to determine if it is correctly classified (the AR label matches the ground
truth) or not. By considering one activity at a time, this can be viewed as a binary classification
problem. For example, in Figure 5.9 the activity being considered, or positive class, is hand
washing. A TP occurs when both rows show hand washing, a TN occurs when both rows show
sweeping, and the other situations indicate a FP or FN. The false positive and false negative
errors are further divided into the subcategories described here to better understand the type of
error that is occurring.

Ground

Truth
 * * * * * * * * *

AR
Labels F F O U U I O D M

= hand washing (positive class) = sweeping (negative class)

Figure 5.11. Event-based evaluation of hand washing activity recognition. The vertical solid
lines indicate the performance segment boundaries. The top row shows the ground truth labeling
of hand washing or sweeping and the bottom row shows the labels generated by an activity
recognition algorithm. Each segment mismatch is labeled with the type of error that is
represented, either an overfill (O), underfill (U), insertion (I), deletion (D), merge (M), or
fragmenting (F).

Overfill. A false positive that occurs at the start or end of a segment that is partially matched
is considered an overfill. This could occur at a segment boundary, for example, when the
recognition algorithm is viewing a transition and has not received enough information to
successfully detect the new activity. This is a possible explanation for the first overfill in Figure
5.11. The second overfill is found at the end of an activity and may occur when the activity
recognition anticipates a new activity (perhaps based on the time of day) before it actually
occurs.

Insertion. A false positive that represents an inserted positive label between two negative
segments is considered an insertion. As seen in the example, the false positive segment due to
insertion is not an extension of a true positive that is simply too long (as with overfill), but is an
actual incorrectly-inserted positive label.

Merge. A merge is a false positive portion of a segment. The surrounding sensor events are
correctly labeled with the positive class but the change in the middle of the segment to a different
activity was not sensed by the AR algorithm.

Underfill. Each of the previous three error classes has a corresponding type that can be used
for analyzing false negatives. In the same way that an overfill error corresponds to a positive
segment that extends too far, an underfill error occurs when a positive segment is too short
because the beginning or ending of the segment is incorrectly labeled as the negative class. In
our example the fourth occurrence of a hand washing-labeled segment is too short, which results
in an underfill error on either side of the segment.

Fragmenting. A fragmenting false negative occurs between two true positives in a single
consecutive positive segment.

Deletion. The deletion error occurs when a false negative occurs between two true negatives.
In our example, the AR algorithm combines sensor events into a single negative example
because it failed to detect a switch to the positive class in the middle of the subsequence.

Once the correctly-labeled and incorrectly-labeled segments are identified and characterized,
they can be used to generate rates or percentages for correct labels (C) and for each type of error
for the sensor event sequence. Our example in Figure 5.9 has 22 sensor events total, so the O, U,
F, and D rates are 2/22 = 0.090 while the I and M rates are 1/22 = 0.045. The error rates are
fairly constant for each type of error in this artificial example. In realistic cases they can provide
insights on whether the errors are due to slow transitions to new activities, failure to detect short,
quick activities, or other types of problems with activity recognition.

Timeliness. A related sequence-based performance measure is the timeliness of activity
recognition. Timeliness applies to a particular occurrence of an activity and is measured as the
relative point in time for the activity at which the activity recognition algorithm correctly
provides the correct label and does not switch to an inaccurate label for the remainder of the
activity. In Figure 5.11, there are 11 distinct activities that are observed and the point in time at
which a correct label is generated and not changed is indicated by a star (*). As can be seen in
this figure, the first activity is not correctly predicted and held stable unless the fifth event of the
sequence, so the timeliness is 0.2. In contrast, the last activity is correctly labeled from its onset,
so the timeliness is 1.0. An activity recognition algorithm may need sufficient context to
recognition the current activity, and the corresponding delay in outputting a correct label is
captured by this performance metric.

5.4.3 Experimental frameworks for evaluating activity recognition

The next question is how to choose data on which the supervised learning algorithm will be
tested. Because we want the learned model to generalize beyond the data it has already seen and
correctly classify new data points that it has not previously seen, the model is usually trained on
one set of data and tested on a separate, "holdout" set of data. In the context of activity
recognition, the question is how to select subsets of available data for training and testing. Here
we describe two techniques that are commonly applied to this process.

The first method is k-fold cross validation. This method is effective when the amount of
labeled data is limited because it allows all of the data points to play a role both in training and
testing the learned model. With this approach, the set of data points is split into k non-
overlapping subsets. The model is trained and tested k times and the performance is averaged
over the k iterations. On each iteration, one of the k partitions is held out for testing and the other
k-1 partitions are used to train the model. The choice of k varies, common choices are 3-fold (this
is particularly common when there are few data points available because each partition should
ideally have at least 30 data points) and 10-fold cross validation. The results reported in the
confusion matrices of Table 5.2 and 5.3 and the performance evaluation of Table 5.4 are based
on a 3-fold cross validation of the decision stump algorithm for the hand washing and sweeping
activities.

While cross validation is a popular validation technique for machine learning algorithms, its
use is trickier when applied to sequential data. This is because the long contiguous sequence
must be separated into individual data points and subsets of data points. As a result, some of the
context is lost that may be captured by some algorithms when training the model. When
activities are pre-segmented, the segments can represent individual data points. When a sliding

window approach is used, individual windows represent the data points. Some alternative
selections are to separate the datasets by time boundaries such as hours, days, or weeks in order
to retain much of the sequential relationships. This method also allows the activity recognition
algorithm to be tested for its ability to generalize to new days, weeks, or months. When the
recognition algorithm is trained to generalize over multiple users or physical settings, the
individual users or environments can be treated as separate data points for testing. Finally, leave-
one-out testing can be used to train the data on contiguous sequential data and test it on held-out
data from the end of the sequence. The length of the training sequence can iteratively increase so
that eventually all of the available data is used for both training and testing.

While most methods choose a holdout set for testing either through random selection or at the
end of a sequence, holdout selection can also be performed strategically to demonstrate the
generalizability of the activity recognition algorithm over selected dimensions. For example, an
algorithm can be trained over multiple individual people or homes, selecting one person or home
as the holdout set. Similarly, an entire activity can be held out to determine how the algorithm
performs on a previously-unseen activity class.

Additionally, a need may arise to compare the performance of two alternative activity
recognition algorithms. If minimizing error rate (or conversely, maximizing accuracy) of activity
classification is considered as the performance metric of interest, then two alternative approaches

1f and 2f can be compared by, for example, looking at the mean error found through cross
validation. However, because cross validation testing is performed only on a subset of the
possible data points in the space, this comparison may not be a strong indicator of how the two
approaches will compare in general.

Statistical tests such as the Student's t-test can be used to determine whether a set of
performance differences between 1f and 2f , such as generated through k-fold cross validation,
is significant. To perform this computation from cross-validation results let 11

2
1

1 ,..,, kfff
represent the set of results for 1f , 22

2
2

1 ,..,, kfff represent the set of values for 2f , and

kddd ,..,, 21 represent the differences between the results (i.e., 22
iii ffd). We are then trying

to determine if the mean 1f is significantly different from the mean 2f . This calculation
assumes that the values for 1f , 2f , and d follows a Student's distribution, which approximates a
normal distribution as k becomes large. We first reduce the difference to a zero-mean, unit-
variable variable t as a function of the difference mean, number of folds, and difference variance

2
d as shown in Equation 5.20.

k
dt
d /2

 (5.20)

If zt or zt , where z represents a confidence limit, then the difference in performance
between the two approaches can be termed significant at the corresponding confidence level. The
values of z are determined by the Student's distribution and the number of folds k (or,
corresponding, the degrees of freedom k-1). For example, if k=10 and we want to reject the
hypothesis that there is no difference in performance between the approaches with probability
p<.05 (a common threshold used to report statistical significance), then z=2.262.

5.5 Additional Reading

Ali and Aggarwal71 learn activity breakpoints from video data using a supervised learning
technique that is provided with activity begin and end frames for each activity class. Ho and
Intille72 and Feuz et al.73 use supervised learning to recognize transitions between specific
activity pairs. Iqbal and Bailey74 use a multilayer perceptron to recognize and categorize
breakpoints between any type of computer-related task. Niu and Abdel-Mottaleb75 describe a
method of activity segmentation that relies on rejecting sequences not clearly belonging to any
one activity. Somewhat related is the idea of co-segmentation of event sequences introduced by
Duchenne et al.76 Co-segmentation is applied to two sequences that are known to contain the
same activity of interest. The fact that they share the activity facilitates the process of identifying
the activity boundaries within both sequences. The idea of employing an ensemble of classifiers
to recognize activities from different window sizes is introduced by Zheng et al.77. Varying the
size of a sliding window based on activity likelihood and relevant sensors has been explored by
Krishnan and Cook78 and by Okeyo et al79. A thorough treatment of one-class classifiers and
their uses for outlier and anomaly detection is provided by Khan and Madden80.

Hong and Nugent81 introduce an activity segmentation method that learns the relationship
between activities, sensors, and locations, and then uses changes in these parameters to identify
activity boundaries. In addition, Gu et al.82,83 propose the idea of identifying activity boundaries
based on the difference between accumulated sensor relevance. In their case, the sensors were
object sensors and weights were calculated based on the discriminatory relevance of each object
to each activity. Yamasaki84 takes a similar approach to identifying activity boundaries based on
differences in activity signatures from video data. This approach pinpoints activity boundaries
based on maximizing the difference between feature vectors describing successive frames in the
video. Keogh et al.85 propose the idea of combining sliding windows with bottom-up
segmentation in their SWAB algorithm to provide real-time segmentation with improved
performance over a pure sliding window approach.

The Bayesian online change point detection is based on work by Adams and MacKay86. An
alternative approach to online change point detection is to directly estimate the ratio of the
probability density functions before and after candidate change points. Direct density ratio
estimation is useful when the individual probability distributions are unknown87. Techniques to
perform this include kernel mean matching, logistic regression, Kullback-Leibler importance
estimation, unconstrained least-squares importance fitting, and relative unconstrained least-
squares importance fitting (RuLSIF).88 Other changepoint detection variations were introduced
by Guenterberg et al.89, who identify an activity boundary when the differences in spectral
energy (defined in Chapter 3) before and after the boundary point are greater than a threshold
value. Feuz et al.73 use change point detection to identify activity boundaries as a time to provide
prompt-based interventions. Xie and al.90 introduce a new variation on change point detection
that scales well to high-dimensional data.

A number of survey articles exist which provide an excellent overview of activity recognition
algorithms for different classes of sensors and activities. Many of the articles detail the
algorithms and summarize achieved recognition performance on simulated and real-world
datasets30,91–99. Activity recognition using NBCs has been explored by Cook100 using smart home
sensor data and by Bao et al.35 and Ravi et al.101 for accelerometer data. Popular methods for
activity recognition also include hidden Markov models102–105 and conditional random
fields41,100,106. Other have found SVMs107 and decision trees35 to be effective. Many methods

have been explored which combine these underlying learning algorithms, including boosting and
other ensemble methods101,108,109.

While activity recognition focuses on labeling activities, other work focuses on evaluating the
quality of the activity that was performed110–112. Ogris et al.113 and Amft114 describe the problem
of activity spotting and propose alternative approaches using data from wearable sensors.

Ward et al.115 and Bulling et al.93 introduce a number of performance metrics that fall into the
categories of time-based and event-based evaluation of activity recognition algorithms. Reiss et
al.94 discuss the effectiveness of hold-one-activity-out evaluation of activity recognition
algorithms for generalizability assessment. The notion of the timeliness of activity recognition
was introduced by Ross and Kelleher116.

Di Eugenio and Class117 provide a good introduction to the kappa statistic and alternative
ways to calculate P(E) in calculating the kappa statistic. Davis and Goadrich118 provide a useful
discussion of the relationship between ROC and PRC curves and how to compute the area under
the curves. Additional methods for evaluating and comparing the performance of supervised
learning algorithms are presented by Cohen119 and by Dietterich120. Nuzzo121 offers an
interesting discussion of the limits of p values for determining statistical significance and the
need to also consider effect sizes (in the discussion of this chapter, the effect size would be the
amount of difference in performance between alternative activity recognition algorithms).

