

# Routine Change Detection Using Apple Watches

# Jason Conci, Chance DeSmet, Diane J. Cook, Gina Sprint



# Introduction

- Programs to promote brain health have emerged as an important public health initiative
- These programs encourage behavior change, especially in physical activity and cognitive engagement
- Traditional measures for measuring behavior change can be unreliable, inefficient, expensive, or ineffective for short-term change
- Apple Watches, due to their focus on health tracking, may provide a reliable, unobtrusive, cost-effective, and time-efficient way to measure behavior change in free-living conditions

# Objectives

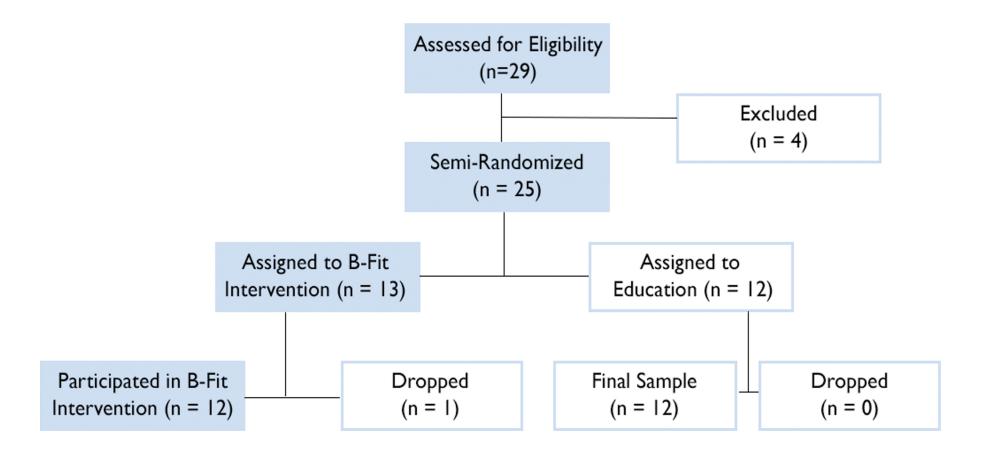
- Determine if Apple Watches can capture changes in routine after starting a behavior change intervention
- Examine patterns of routine behaviors between weeks
- Establish a pipeline for examining change in future patients as part of an ongoing study

# Methods

### Study Design

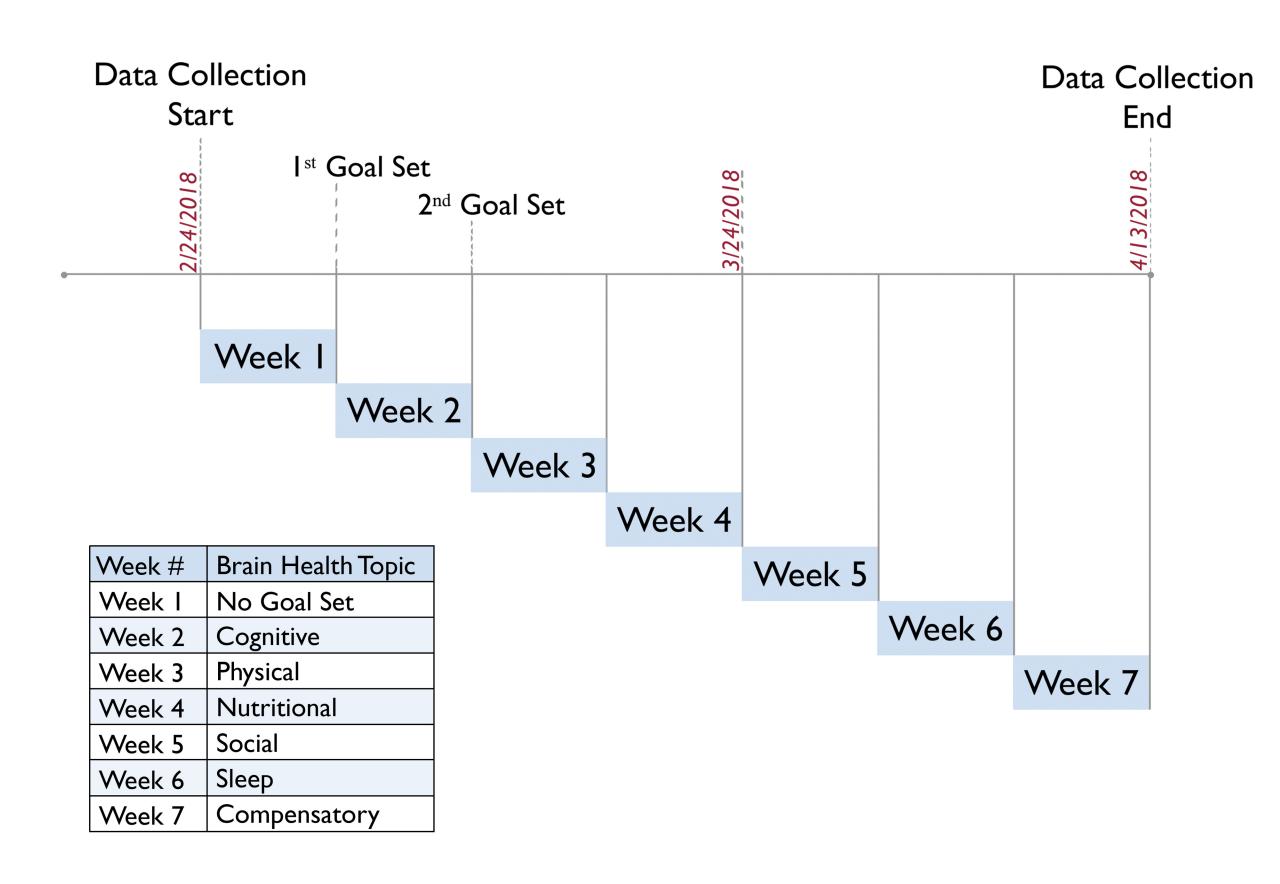
#### **Participants**

- Selected from a larger intervention
- Exclusion Criteria: a known medical, neurological, or psychiatric cause of cognitive disfunction



#### **B-Fit Intervention**

- The intervention lasted 7 weeks, with a 2-hour long weekly meeting
- Participants were provided psychoeducation on both brain health, and skills for behavior health change
- Individuals identified a daily goal based on a week's brain health topic
- All weekly goals are cumulative (ex: Week I goal is continued through Week 7)



# Methods

#### Hardware and Software

#### Participant Use of Apple Watches

• Each participant given two watches: one for daytime use, one for nighttime use

#### Apple Watch Sensors

- Contain accelerometers, gyroscopes, altimeters, and GPS
- Transmits data via Wi-Fi and Bluetooth

#### iOS Application

- Receives data from the Apple Watch,
- Exports the data to WSU hosted server

#### Data Parsing

- Watches collect data in 5 second-long intervals, followed by a 5 minute pause
- This is done to preserve battery life of both the phone and watch



#### Apple Watch Inclusion

• Apple Watches selected due to their availability as consumer items, as well as their mobility in comparison to stationary sensor types

# Data Processing

#### Labeling Data

- Features extracted from raw Apple Watch data
- Including, but not limited to: Mean, min, max, sum, median, zero crossings
- Random Forest Classifier trained with separate, pre-labeled Activity Learning files
- Intervention participant data labeled using trained RFC model

### Feature Extraction

• Probability Distribution Table is calculated for each hour of a patient's intervention

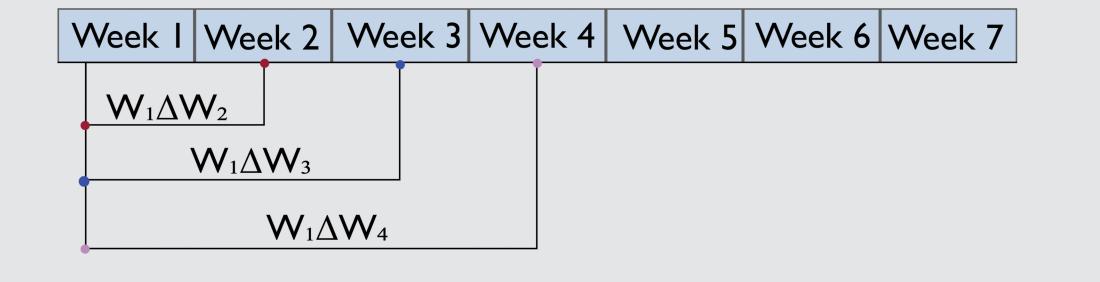
|             | chores | eat   | errands | exercise | hobby | hygiene | school | sleep | travel | work |
|-------------|--------|-------|---------|----------|-------|---------|--------|-------|--------|------|
| 10:00:00 AM | 0      | 0.083 | 0       | 0        | 0.16  | 0       | 0      | 0     | 0      | 0.75 |
| 11:00:00 AM | 0      | 0.09  | 0       | 0        | 0.45  | 0       | 0      | 0     | 0      | 0.45 |
| 12:00:00 PM | 0      | 0.083 | 0       | 0        | 0.66  | 0       | 0      | 0     | 0      | 0.25 |
| 1:00:00 PM  | 0      | 0     | 0.083   | 0        | 0.5   | 0       | 0      | 0     | 0.42   | 0    |

### Missing Data & Imputation

- First day of data collection removed due to incompleteness
- Missing data imputed via normalized average of other days within window
- Data was sectioned into seven week-long (seven day) windows, corresponding to the seven weeks of the intervention
- Missing days (at beginning of data collection) imputed via technique mentioned above

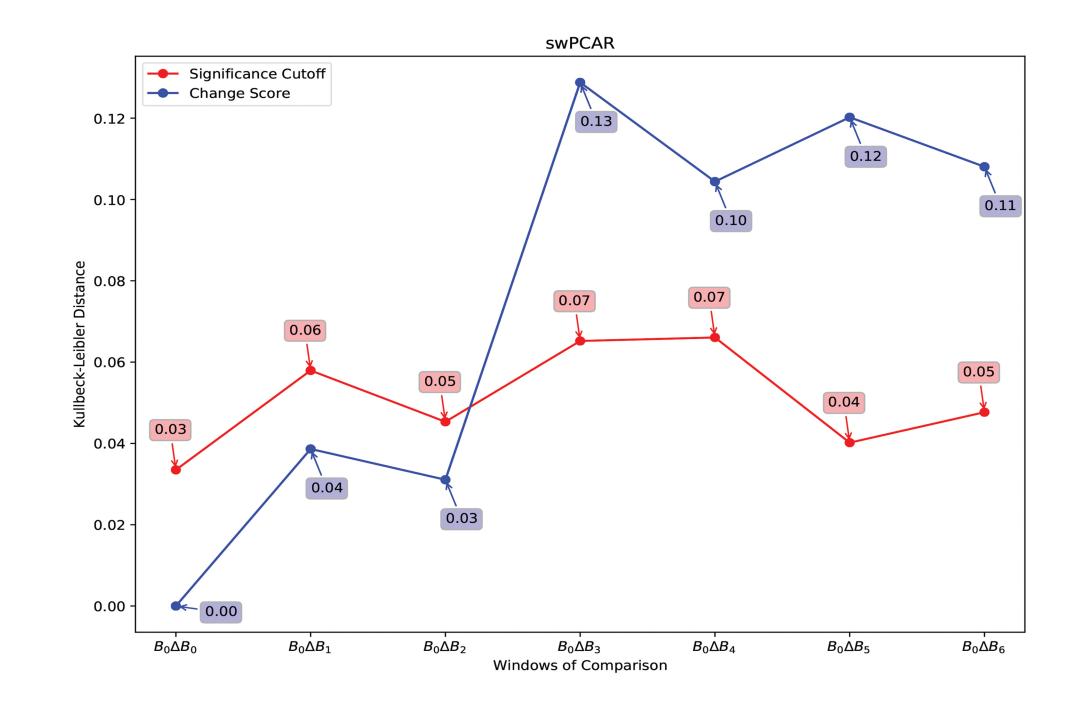
# Data Analysis: Physical Activity Change Detection [1]

- PACD used to analyze changes for each participant with Apple Watch data
- Modified to accept weeks, as opposed to days
- 2 distinct change score metrics are used: swPCAR (permutation based change detection in activity routine algorithms), and VC (Virtual Classifier)
- Week 1, where each participant did not set a goal, served as a "baseline" window, to which all other weeks are compared

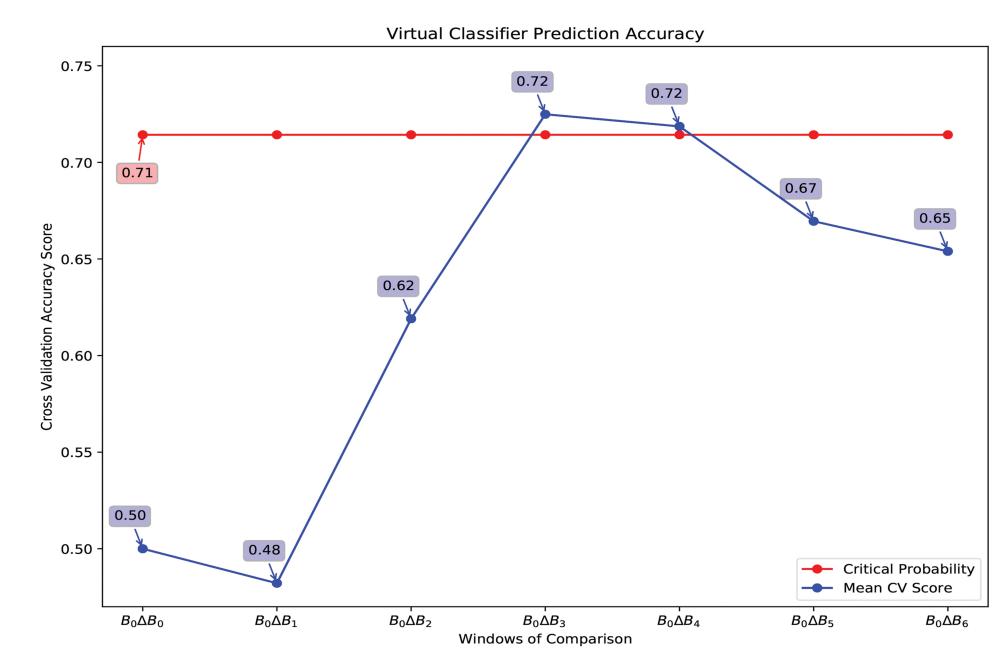


# Results

Following results are PACD Algorithms performed on single patient's watch data



Comparisons made after week 3 have a change score higher than the significance threshhold, meaning there is significant change between those weeks and week I



Comparisons involving weeks 4 and 5 have a change score higher than the significance threshhold, meaning there is significant change between those weeks and week I

# Discussion

- The change scores when comparing weeks 2 and 3 to week I are surprisingly low, considering it is the first occurence of any behavioral change by the participant
- The highest change scores in both swPCAR and VC are found when comparing weeks 4 and 5 to week I
- In weeks 4 and 5, the participant spent, on average, 3.6% less time working, and 4.4% more time on hobbies, which may explain the high change scores in that timeframe
- The disparity between swPCAR and VC may be due, in part, to different variable weights (VC placed the highest value on time eating, while swPCAR placed the highest value on time classified as work and hobby)

# Future Work

- Perform Routine Change Detection on the rest of the original B-Fit dataset (n=11)
- Perform Routine Change Detection on data accumulated in further rounds of data collection
- Further research methods for data cleaning and imputation

# Acknowledgements

We are very thankful for the support and guidance of Dr. Schmitter-Edgecombe, Dr. Minor, Jason Minor, Dr. Thomas, the Department of Psychology, and the School of Electrical Engineering and Computer Science. This work was supported in part by National Institute of Aging grant R25AG046114.

## References

[1] Sprint, G., Cook, D., Fritz, R., and Schmitter-Edgecomb, M. (2016). Using Smart Homes to Detect and Analyze Health Events. IEEE Computer, 49(11), 29-37. doi:10.1109/MC.2016.338