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 Herbert Simon (1970)
◦ Any process by which a system improves its 

performance.
 Tom Mitchell (1990)
◦ A computer program that improves its performance

at some task through experience.
 Ethem Alpaydin (2010)
◦ Programming computers to optimize a performance 

criterion using example data or past experience.
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 How is knowledge represented?
 How is experience represented?
 What is the performance measure?
 Knowledge acquisition vs. skill acquisition
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 Automated knowledge acquisition
 Discover new knowledge
 Understand human learning
 Systems need to adapt to unknown, dynamic 

environments
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 Medical diagnosis
 Autonomous control (planes, trains, 

automobiles, robotics)
 Perception (speech, language, images, video)
 Recommendations (Amazon, Netflix)
 Prediction (business, financial, environment, 

health, energy, security, …)
 Fraud/intrusion detection
 …
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 Unsupervised Learning
◦ Clustering

 Supervised Learning
◦ Classification
◦ Regression

 Reinforcement Learning
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Categories
1) Debt exceeds 

Income
2) High Debt,

High Income
3) Low Debt

Cluster 3

Cluster 1

Cluster 2
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Default
Good Status

No Loan

Loan

if Debt < a*Income + b
then Loan
else No Loan
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 Game-playing: Sequence of moves to win a game
 Robot in a maze: Sequence of actions to find a goal
 Agent has a state in an environment, takes an 

action and sometimes receives reward and the 
state changes

 Credit-assignment
 Learn a policy
◦ π: State  Action
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 Evaluation
◦ Which learning approach is better

 Theoretical bounds
◦ What is and is not learnable

 Scalability
◦ Learning from massive, real-time datasets
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 Learning task
◦ Learn to classify cars into one of two classes: 

“family car” or “other”
◦ Each car is represented by two features (attributes): 

“engine power” and “price”
◦ Given several training examples of already-

classified cars
◦ Output classifier that accurately classifies cars
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 Feature (attribute): xi
◦ A property of the object to be classified
◦ Discrete or continuous
◦ E.g., “engine power”, “price”

 Instance: x = [x1, x2, …, xd]
◦ The feature values for a specific object
◦ E.g., “engine power = 100”, “price = high”

 Instance space: I
◦ Space of all possible instances

 Class: C
◦ Categorical feature of an object
◦ Set of instances of objects in this category
◦ E.g., “family car”
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 Example: (x,r)
◦ Instance along with its class membership r
◦ Positive example: member of class (r=1)
◦ Negative example: not a member of class (r=0)

 Training set: X = {xt,rt}, 1≤ t ≤ N
◦ Set of N examples

 Target concept (C)
◦ Correct expression of class
◦ E.g., (e1 ≤ engine power ≤ e2) and (p1 ≤ price ≤ p2)
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 Hypothesis: h(x)  {0,1}
◦ Approximation to target concept

 Hypothesis class: H
◦ Space of all possible hypotheses
◦ E.g., axis-aligned rectangles
◦ E.g., axis-aligned ellipses
◦ E.g., k-term-DNF

 Learning goal
◦ Find hypothesis h ∈ H that closely approximates 

target concept C
◦ h is the output classifier
◦ Target concept may not be in H
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Note: h is consistent with the training 
set, but not the target concept C.



 Empirical (sample) error
◦ How well h classifies training set X

 Generalization error
◦ How well h classifies instances not in X

 True error
◦ How well h classifies entire instance space

CptS 580 - Advanced ML 20

))((11)|(
1

t
N

t

t rh
N

XhE ≠= ∑
=

x

))()((11)( xx
x

Ch
I

hE
I

≠= ∑
∈

1(expr) = 1 if 
expr is true,
else 0



 Most specific hypothesis S
◦ Consistent hypothesis covering fewest instances

 Most general hypothesis G
◦ Consistent hypothesis covering most instances

 Version space
◦ All hypotheses “between” S and G
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Version space: All 
rectangles within G 
and containing S.

Assuming we don’t 
know C, which 
hypothesis in VS is 
the best?
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Margin: The distance 
between h and the 
examples closest to h.

Goal: Find h 
maximizing margin.

Note: Only shaded 
examples needed to 
find h. These examples 
are the support vector.



 Sources
◦ Incorrect feature values
◦ Incorrect class labels
◦ Hidden or latent features

 Impact
◦ Overfitting: Trying too hard to fit h to the noise
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A

B

If A and B are noise, then 
h2 overfits.

If A and B are not noise, 
then h1 underfits.



 Bias: Likelihood a learner will not change its 
hypothesis

 Variance: Ability of learner to change its 
hypothesis

 Simple models have high bias, low variance
 Complex models have low bias, high variance
 Want balanced tradeoff
 Depends on hypothesis class
◦ Rectangles vs. arbitrary shape

 Occam’s Razor: Prefer simpler models
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 Given a training set X, there are many models 
that are consistent with X

 Preferring one of these models over another 
is an “inductive bias”

 For example
◦ Preferring rectangles to arbitrary shapes
◦ Preferring rectangle with largest margin
◦ Preferring lower-degree polynomial
◦ Preferring polynomial minimizing squared error

 How do we choose the right inductive bias?
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 Empirical error too optimistic
 True error usually unobtainable
 General idea
◦ Separate available examples into training set and 

test set
◦ Learn hypothesis on training set
◦ Evaluate hypothesis on test set

 Repeat above several times with different 
training/test sets and average results
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 Supervised learning

◦ Model:

◦ Loss function:

◦ Optimization procedure:

 Choices for each constitute inductive bias
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The Gold Standard
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 Combines prior knowledge with evidence to 
make predictions

 Optimal (albeit impractical) classifier
 Naïve Bayes classifier (practical)
◦ Assumes independence among features
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 Ci is the class, 1 ≤ i ≤ K
 x is the feature vector of an instance
 P(Ci |x) = probability that instance x belongs 

to class Ci (posterior)
 p(x| Ci) = probability that an instance drawn 

from class Ci would be x (likelihood)
 P(Ci) = probability of class Ci (prior)
 p(x) = probability of instance x (evidence)
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 Classify instance x as class Ci such that

 Since only interested in maximum, can ignore 
denominator p(x)

 If prior probability distribution of classes is 
uniform, then can ignore P(Ci)
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 Practical issue
◦ p(x| Ci) is a joint probability distribution
◦ Need to know the probability of every possible 

instance given every possible class
◦ Even for D boolean features and K classes, that’s 

K*2D probabilities
 Solution
◦ Assume features are independent of each other
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 Given training set X
 Estimate probabilities from X

 Classify new instance x as class Ci such that
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 Independence assumption rarely true
◦ E.g., is “price” independent from “engine power”?

 Naïve Bayes classifier still does surprisingly 
well

 Simple, effective baseline for other learners
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 Assume a model of the underlying 
distribution p(x|θ)

 Estimate the parameters θ of the model 
based on the training set X

 Bias/variance dilemma
 Model selection
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 f(x) = 2 sin (1.5x)
 Noise N(0,1)
 Five samples taken (one below)
 Fit order 1, 3 and 5 polynomials

39
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 Example
◦ gi(x)=2 has no variance and high bias
◦ gi(x)= ∑t rt

i/N has lower bias with higher variance
 As we increase complexity,
◦ Bias decreases (a better fit to data) and
◦ Variance increases (fit varies more with data)
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Best fit “min error”
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 Cross-validation
◦ Measure generalization accuracy by testing on data 

unused during training (validation set)
 Regularization
◦ Penalize complex models
◦ E’=error on data + λ * model complexity

 Minimum description length (MDL)
◦ Best model minimizes description of model plus 

description of data given model
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 Form of underlying distributions unknown
 But still want to perform classification and 

regression
 Clustering
◦ k-means clustering

 Instance-based learning
◦ k-nearest-neighbor classifier
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 Unsupervised learning
 Partition instances into k disjoint sets
 Each set has a representative instance mi
 Place instance x into set i such that 

distance(x, mi) is minimal
 Choose new central mi for each set
 Repeat until mi converge
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 Find k nearest neighbors to x
 Classification: g(x) = majority class among k 

neighbors
 Regression: g(x) = mean value of k neighbors
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 Euclidean distance for numeric features
◦ Normalize feature values

 Hamming distance for discrete features
◦ Distance = 1 if feature values differ, else 0
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 When k is small, single instances matter
◦ Bias is small, variance is large (undersmoothing)
◦ High complexity

 As k increases, we average over more 
instances
◦ Variance decreases but bias increases

(oversmoothing)
◦ Low complexity

 Cross-validation is used to tune k
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Popular Non-Parametric Method
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 Create root node with all examples X
 Call GenerateTree (root, X)
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GenerateTree (node, X)
If node is “pure” enough
Then assign class to node and return
Else Choose “best” split feature F

Foreach value v of F
X’ = examples in X where F = v
Create childNode with examples X’
GenerateTree (childNode, X’)



 S = set of training examples
 p⊕ = proportion of positive 

examples in S
 p = proportion of negative 

examples in S
 Entropy(S) ≡ – p⊕ log2 p⊕ – p

log2 p
 Entropy measures impurity of S
 “Pure” means low entropy
 “Best” means maximally 

reduces entropy
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 Assume instances of classes are linearly 
separable

 Estimate parameters of linear discriminant
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If (x2-2x1-1) > 0
Then +
Else -



 Classification (K classes)

 Likelihood-based classification
◦ Estimate priors P(Ci) and likelihoods p(x|Ci)
◦ Define gi(x) in terms of the posteriors

◦ Requires knowledge of types of densities
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 Discriminant-based classification
◦ Learn model of boundaries between classes, instead 

of densities of bounded regions

◦ Where Φi are model parameters of the boundary
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 Simple
 Requires only O(d) space to store and O(d) 

time for classification
 Weight wi indicates importance of feature xi
 Try linear model before trying more 

complicated model
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 Weight vector w defines a hyperplane dividing 
the instance space into two regions
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 Start with random w
 Update w in the opposite direction of the 

gradient vector

 Distance of update determined by step size 
(or learning factor) ɳ

 Continue update until gradient is zero
◦ May be a local minimum
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 Given sample S from all possible examples D
 Learner L learns hypothesis h based on S
 Sample error: errorS(h)
 True error: errorD(h)

 Example
◦ Hypothesis h misclassifies 12 of 40 examples in S
◦ errorS(h) = 0.3
◦ What is errorD(h)?
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 Learner A learns hypothesis hA on sample S
 Learner B learns hypothesis hB on sample S
 Observe: errorS(hA) < errorS(hB)
 Is errorD(hA) < errorD(hB) ?
 Is learner A better than learner B?
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 How can we estimate the true error of a 
classifier?

 How can we determine if one learner is better 
than another?

 Using sample error is too optimistic
 Using error on a separate test set is better, 

but might still be misleading
 Repeating above for multiple iterations, each 

with different training/testing sets, yields 
better estimate of true error
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 Be careful not to give learner any information 
about data used to test performance

 Most common violation: Tweaking 
parameters after seeing test performance
◦ Red flag: “We chose parameter x based on 

experience.”
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 Given dataset X
 For each of K trials
◦ Randomly divide X into training set (2/3) and 

testing set (1/3)
◦ Learn classifier on training set
◦ Test classifier on testing set (compute error)

 Compute average error over K trials
 Problem
◦ Training and testing sets overlap between trials
◦ Biases the results
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 Given dataset X
 Partition X into K disjoint sets X1, …, XK
 For i = 1 to K
◦ Learn classifier on training set X – Xi
◦ Test classifier on testing set Xi (compute error)

 Compute average error over K trials
 Testing sets no longer overlap
 Training sets still overlap
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 Confusion matrix
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Predicted class
True class Positive Negative Total
Positive tp: true positive fn: false negative p
Negative fp: false positive tn: true negative n
Total p’ n’ N



Name Formula
error
accuracy

(fp + fn)/N
(tp + tn)/N

tp-rate
fp-rate

tp/p
fp/n

precision
recall

tp/p’
tp/p = tp_rate

sensitivity
specificity

tp/p = tp_rate
tn/n = 1 – fp_rate
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=== Run information ===

Scheme:       weka.classifiers.rules.OneR -B 6
Relation:     labor-neg-data
Instances:    57
Attributes:   17

duration
wage-increase-first-year
wage-increase-second-year
wage-increase-third-year
cost-of-living-adjustment
working-hours
pension
standby-pay
shift-differential
education-allowance
statutory-holidays
vacation
longterm-disability-assistance
contribution-to-dental-plan
bereavement-assistance
contribution-to-health-plan
class

…

OneR learns 
classifier based 
on one attribute 
(high bias).
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Test mode:    10-fold cross-validation

=== Classifier model (full training set) ===

wage-increase-first-year:
< 2.9 -> bad
>= 2.9 -> good
? -> good

(48/57 instances correct)

Time taken to build model: 0 seconds

…
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=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances          43    75.4386 %
Incorrectly Classified Instances        14    24.5614 %
Kappa statistic                          0.4063
Mean absolute error                      0.2456
Root mean squared error                  0.4956
Relative absolute error                 53.6925 %
Root relative squared error            103.7961 %
Coverage of cases (0.95 level)          75.4386 %
Mean rel. region size (0.95 level)      50      %
Total Number of Instances               57

… 

Presenter
Presentation Notes
Kappa -> correlation between predicted and true classesCoverage of cases -> Cases classifier is confident predicting (at the given level).Mean relative region size -> Region of instance space covered by confident predictions (?)
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=== Detailed Accuracy By Class ===

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
0.45      0.081      0.75      0.45      0.563      0.684    bad
0.919     0.55       0.756     0.919     0.829      0.684    good

Weighted Avg.    0.754     0.385      0.754     0.754     0.736      0.684

=== Confusion Matrix ===

a  b   <-- classified as
9 11 |  a = bad
3 34 |  b = good



 Most comparisons of machine learning 
algorithms use classification error

 Problems with this approach
◦ May be different costs associated with false positive 

and false negative errors
◦ Training data may not reflect true class distribution

CptS 580 - Advanced ML 78



 Receiver Operating Characteristic (ROC)
◦ Originated from signal detection theory
◦ Common in medical diagnosis
◦ Becoming common in ML evaluations

 ROC curves assess predictive behavior 
independent of error costs or class 
distributions

 Area Under ROC Curve (AUC)
◦ Single measure of learning algorithm performance 

independent of error costs and class distributions

CptS 580 - Advanced ML 79



CptS 580 - Advanced ML 80

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

0

0.25

0.5

0.75

1.0

1.00.750.50.250

Learner L1
Learner L2
Learner L3
Random



 Learner L1 dominates L2 if L1’s ROC curve is 
always above L2’s curve

 If L1 dominates L2, then L1 better than L2 for 
all possible error costs and class distributions

 If neither dominates (L2 and L3), then 
different classifiers are better under different 
conditions
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 Assume classifier outputs P(C|x) instead of 
just C (the predicted class for instance x)

 Let θ be a threshold such that if P(C|x) > θ, 
then x is classified as C, else not C

 Compute fp-rate and tp-rate for different 
values of θ from 0 to 1

 Plot each (fp-rate, tp-rate) and interpolate (or 
convex hull)

 If multiple points with same fp-rate, then 
average tp-rates
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 Want to claim a hypothesis H1
◦ E.g., H1 : errorD(h) < 0.10

 Define the opposite of H1 to be the null 
hypothesis H0
◦ E.g., H0 : errorD(h) ≥ 0.10

 Perform experiment collecting data about 
errorD(h)

 With what probability can we reject H0?
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 K-fold cross-validated paired t test
◦ Paired test: Both learners get same train/test sets
◦ Use K-fold CV to get K training/testing folds
◦ pi

1, pi
2 : Errors of learners 1 and 2 on fold i

◦ pi = pi
1 – pi

2 : Paired difference on fold i
◦ Null hypothesis is whether pi has mean 0
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Tester:     weka.experiment.PairedCorrectedTTester
Analysing:  Percent_correct
Datasets:   8
Resultsets: 2
Confidence: 0.05 (two tailed)
Sorted by:  -
Date:       10/6/10 12:00 AM

Dataset                   (1) rules.On | (2) bayes
--------------------------------------------------
loan                     (100)   39.50 |   84.50 v
contact-lenses           (100)   72.17 |   76.17  
iris                     (100)   93.53 |   95.53  
labor-neg-data           (100)   72.77 |   93.57 v
segment                  (100)   63.33 |   81.12 v
soybean                  (100)   39.75 |   92.94 v
weather                  (100)   36.00 |   67.50  
weather.symbolic (100)   38.00 |   57.50  
--------------------------------------------------

(v/ /*) |   (4/4/0)
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 Computational process 
that improves 
performance based on 
experience

 Important concepts
◦ Bias vs. variance
◦ Model selection
◦ Discriminant-based vs. 

likelihood-based 
classification
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 Bayesian learning
 Parametric methods (regression)
 Nonparametric methods (nearest neighbor)
 Decision trees
 Linear discrimination
 Neural networks
 Kernel machines
 Ensembles
 Relational learning
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 Estimate true error based on sample error
 Measure performance of learning algorithm
 Compare performance of learning algorithms
 Hypothesis testing and statistical significance
 Cross-validation
 ROC curve
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 Dimensionality reduction (feature selection)
 Semi-supervised learning
 Hidden Markov models
 Belief networks
 Scalability
 Learning theory
 Privacy and ethics
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 Machine learning seeks to give computers the 
ability to improve their performance based on 
experience

 Many mature methods and theoretical results
 Basis of multi-billion dollar industry
 Much research left to be done
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