Design of Experiments:

Let us consider the following problem:

We are interested in comparing if there is a
difference in the different machine learning
algorithms

. Decision Trees (DT)

. Neural Networks (NN)

. Bayesian Learners (BL)

on mapping sensor event sequences to
activity labels

to determine if there iIs a difference between
them in terms of mean accuracy.

How would you design this study?



First is it important to design this study?

et us say

e | pick 3 students from among 1% year
Grad students and assign them the task
of using DT algorithms.

e | pick 3 students from among 2" year
Grad students and assign them the task
using of NN algorithms.

e | pick 3 students from among 3" year
Grad students and assign them the task
of BL algorithms.

IS THIS A GOOD EXPERIMENT?

HOW would you like to design this
differently?

Think of what you want to guard against
when you design an experiment?






A major player we want to guard against
IS BIAS.

What is bias?

What kind of bias would you expect in
the study we mentioned?

How would you get rid of bias?
Bias versus Precision:

Which do we want in a study, no bias or
high precision?



Before we go into the BASIC principles of
Design lets think of Bias and Precision
based on the following example:

If the bull’s eye is our target, which scheme
would you pick? Which have issues with
bias and with precision?






This leads to the three basic tenets of
DESIGN of EXPERIMENTS:
Randomization:

The procedure of selecting units at random from available
units or assigning units to treatments at random. This
reduces bias.

Replication:

Using more than one unit for a treatment for comparison.
This establishes experimental error and also reduces bias.

Local Control:

Process of stratifying the units to homogenous groups or
blocks and assigning treatments at random within the
homogenous group. This reduces bias and reduces
experimental error.

In ANY Design context think of these three tenets.



Lets go back to our original experiment:

Obviously picking 3 students from 1% year and assigning
them a specific method is not the best way to go.

So we could do it as follows:

Recruit 9 students with roughly the same capabilities and
assign 3 randomly to DT, randomly assign three to NN
and three to BL. This way we deal with bias (through
randomization) and deal with precision (by having more
than one student assigned to each task — replication). But
as all the students were “alike” or “homogenous” we do
not have to worry about local control. THIS is an
example of the Completely Randomized Design (CRD).



But now let us consider that 9 students who are in the
same year with same capabilities is hard to find and best
we can find is 3 from year 1, 3 from year 2 and 3 from
year 3. Then our thought process is the three from a
particular year have similar capabilities but are different
from the ones from the other years. So here we use local
control and assign the three from year 1 at random to
Decision Trees, Neural Networks and Bayesian learning.
So we use the difference among the years to control for
the variability and randomize within each year. This type
of experiment is called a BLOCK design and here the
year is a block.



Some Definitions and Vocabulary in the context of
DESIGN:

1. Factor, Levels, Treatment:

Factor: any substance or item whose effect on the data is
to be studied. An experiment involving two or more
treatment is called factorial experiment.

Our experiment had 1 factor.

Levels: values of the factor used in the experiment. The
levels of a factor are the specific types or amounts of the
factor that will actually be used in the experiment.

Our experiment had three levels (NN, DT, BL)
2. UNIT:

Experimental Unit: the unit to which the treatment is
applied.

Here each student is a unit.



Observational unit (or Measurement unit): the unit
on which the response is measured. In some cases, the
observational unit may be different from the
experimental unit - be careful!

The confusion between experimental and measurement
units is a problem in field sciences but less in your
fields.

3. Block: A homogenous group of units is a block.

The student year is the block

4. Replicate: The multiple units used in the experiment
IS the replicate.

5. Response Variable: what outcome is being
measured.

Accuracy score on the task is our response

6. Experimental error is the variation among
identically treated experimental units.



Model and Hypothesis:
Our Model in this framework using CRD is:
Yij = pt 0+ g

Here:
u: is the overall effect on the accuracy

01 1S the effect over and above the overall effect for
each treatment.

&ij- 1S our random error component

What are we trying to test?

We are interested in seeing if there is a difference among
the 3 treatments in terms of accuracy.



In Statistics we write this up as a hypothesis and test the
hypothesis:

HO : (NULL NYPOTHESIS) 61=62=03=0

HA: there is some difference among them.

Let us discuss Type | error and Power in the context of
the hypothesis.




In computer sciences especially in determining the
accuracy of a classifier the TRUTH is known. In
Statistics hypothesis testing our 2 by 2 classification
(similar to the confusion matrix is given as follows)

TRUTH (unknown) +HO (NULL) |Research Hypothesis
Our Cfnclusion Is TRUE HA is TRUE

Reject HO Type | error

Do not reject HO Type Il Error

Type 1: error rejecting the null when null is true

Type 11 Failing to reject null when the alternative is true.

In our context:




TYPE I: saying that there is a difference in mean accuracy
among the three methods when in reality there is no
difference among the methods.

Type | error is also called FALSE POSITIVES
Probability of Type I error is the False Positive rate

Type II: saying there is no difference among the three
methods when there is a difference.

Power: 1-Prob(Type 1 error)
Sometimes this is called the TRUE POSITIVE RATE.

However, in Statistics since we do not KNOW what the
truth is we can never really know what our TRUE type |
error or Type Il error is. What we can do is estimate the
Probability of making a Type | error and Type 1l error.

Type | error and Type 1l error go hand in hand and cannot
reduce them together. So what we do is fix our



probability of Type I error and maximize power for that
level of Type I error to fine the “most powerful test” in a
given situation. The idea is similar to a ROC plot of
Specificity (TPR) against 1-sensitivity (FPR). Itisa
tradeoff of having one versus the other. We want the best
of both worlds in terms of a “good testing scheme”.



START THURSDAY



Consider the Basics of Testing in this case by putting in

some numbers: In Table 1 and Table 2 | have some made up
numbers that are realizations of the experiment we talked about.
5 students each in the three groups DT, NN, BL

Table 1
DT NN BL
5.90 5.51 5.01
5.92 5.50 5.00
5.91 5.50 4.99
5.89 5.49 4.98
5.88 5.50 5.02
5.90 5.50 5.00
Table 2
DT NN BL
5.90 6.31 4.52
4.42 3.54 6.93
7.51 4.73 4.48
7.89 7.20 5.55
3.78 5.72 3.52

5.90 5.50 5.00




Just looking at the numbers can you say if the treatments are
different in Table 1 and Table 2?

What allows you to say that they are different?

The answer is how the variability within is compared to
variability ACROSS groups.

That’s exactly how we determine if the groups are different or
not. We calculate the variability across the treatments and
compare it with variability within. If the ratio is BIG we say
that the treatments are different. This is PREMISE of the F test
in ANOVA.



Lets look at the dot-plot of the data
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So in ANOVA what we do is find the WITHIN sample (sometimes
called treatments) variance and compare that to the ACROSS
sample variance. If the variation across the samples is MUCH
greater than the variation within the samples, we can conclude
that the samples means are different from each other. If the
across sample variation is not big compared to the within
sample variance, we cannot conclude that the means are
different.

So the main work is to calculate the WITHIN and ACROSS
sample variation. In ANOVA we call WITHIN variation the
ERROR Variation and ACROSS variation the TREATMENT
variance.



Measuring Variability within and across:

So how do we measure variability within a sample?
We pool it across all the samples.
So for the data in Table 1:

Lets first define some notation:

Level(i)  n, Vi S;

1 5 5.9000 0.0158
2 5 5.5000 0.0071
3 5 5.0000 0.0158

Here t=# of treatments=3

N=n;+n,+n;=15




So the Variation within we use the notation s, is:

Siy = (ng — 1sf + (np — D)sg + (n3 — 1)s3

Pooling the variances across the three groups.

Now, how do we get Variability across samples?

We find the variances for the 3 sample means.

sp = (V1. —¥) + Fo.—V)? + (¥3. — ¥ )?

Nn1y1.+Nn2yz +N3ys,
nq +n2 +n3

Where, y =

N=n;+n,+n;



Lets calculate the terms for our example:

sw? = (5-1)(.0158)% + (5 — 1)(.0071)? + (5 —
1)(.0158)?=0.002200

5 = 5(5.9) + 5(5.5) + 5(5.0)

5+5+5 = 547

sg? = (5.9 —5.47)? + (5.5 — 5.47)%? + (5.0 — 5.47)? = 2.033

sg?/(t—1)
sw2/(N—t)’
no treatment effects this ratio will be around 1 (variation across

So a logical choice for testing is the ratio If there are

is about the same as variation between). If the ratio is MUCH
greater than 1, we will inclined to think variation across is
MORE than variation within.

In our case this is =5544.5 which is (a bit) bigger than 1? In
general how big does this ratio have to be before we consider it
too big (enough evidence, beyond reasonable doubt).

To find the cut-off we need to understand a BIT of distribution
theory.



Distributions:

Normal (Gaussian or Laplace)

Let Y follow a Normal distribution with mean p and standard

deviation o,

1 1 y-u\2
fly) = exp(—=
(y)af2 D(Z(G))

If Y*=a + bY, Y* follows a Normal distribution with E(Y*) =a +
bu and Var(Y*) = b’c.

A normal distribution with mean 0 and variance 1 is called the
STANDARD normal distribution.

Distribution Plot
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Chi-square distribution:
Take a single Normal random variable Z; ~N(0,1).

Take the square of that, Z;* what would it look like.

Distribution Plot
Chi-Square, df=1
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This is called a (central) chi-square with 1 degree of freedom.

Now, if we have Y ~N(u, ¢2), then Y follows a NON-central
chi-square with 1 degree of freedom with a non-centrality
2

—H
parameter, A = =

Let zy, ..., Z, be iid N(0,1). Then X*=z,*+ ... +z,” follows a
chi-square distribution with n degrees of freedom.

If yi ~ N(u;, 02), then X2 = y,*+ ... +y,* follows a NON chi-
square distribution with n degrees of freedom and non-centrality

Y u?
g? '

parameter, A =




If there are some linear constraints upon the z’s like: z,+....+z,
= a (some constant) then the degrees of freedom DECREASE by
the number of constraints in the model.

Distribution Plot
Chi-Square, df=12
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F-distribution:
Let y,%(vy) and y,°(v,) follow INDEPENDENT (central) chi-
square distributions with v; and v, degrees of freedom then:

2
F = X12 (vi)/vy F distribution with v, and v, degrees of
%2 (V) v,

freedom.
Distribution Plot
F, dfi=2, df2=12
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Let y,%(v1,1) and x,%(v,) follow INDEPENDENT chi-square
distributions with v, and v, degrees of freedom then:

2
F = X12 (Vo) v,y follow a F distribution with v, and v, degrees
of freedom and non-centrality parameter A.




So Back to our Problem:

We want to figure out how large is large for the ratio of
sg”/(t—1)
sw?/(N=t)’

So we need to look at the model of ANOVA and assumptions to
understand the distribution of the statistic.

Our assumption is that ¢; are independent and follows a
Normal distribution with mean 0 and variance s°.

Lets consider the following:

Yii—=Y.=Yi—YitYVi—Y.

So,
z(yij —y): = z(yij —yi)* + z n(Ji. — y.)*
L,j L,j J

Total Sum Squares=Within Sum Squares + Between Sum
Squares




Now let us reason this out,

Vi | — % Yis al | Vij=¥.)? . hi
is normal so (y;; — ¥.) is also normal so =——==is chi-square

e (A — AT )2
with (N — 1) degrees of freedom. Similarly Z“’(ygz Yi)” _ s2 is

a chi-square with (N — t) degrees of freedom and

Yini(yi—y.)?
0-2
of freedom under the null hypothesis.

= s is a CENTRAL chi-square with (t — 1) degrees




sg?/(t—1)

sw?/(N—t)

of freedom under the NULL and follows F with (t-1,N-t) and A =

Zf=1ni(9i)2
0—2

A is high.

So the ratio follows F with ((t-1), (N —t)) degrees

under the alternative. So we reject the null when the

In our example: n=15, t=3 so we are looking at F with 2 and 12
degrees of freedom. Which we saw from the graph was 3.88.
So we reject the null hypothesis in Table 1.

For Table 2 if you calculate F =.44 and then you would fail to
reject the null.



Now let us think about what were the contributing reasons as
to WHY we rejected the null hypothesis in this case. This leads
us to the concept of power. Essentially power depends upon
the non-centrality parameter and is a function of:

1. Total Sample size, N
2. Number of treatments, t

3. The difference among the true treatment means,
i=1(67)
4. TRUE Standard deviation of the experiment, o2.

To determine sample size, for a given power we need to KNOW
what the distance among the means are, how different each
mean is from the others, what the standard deviation is and we
can plot power as a function of sample size.



Power Curve with sigma=2

Power Curve for One-way ANOVA
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To have a Power >.8 for a maximum difference of 4 we
would need n=6 observations per treatment



Power Curve with sigma=1

Power Curve for One-way ANOVA
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To have a Power >.8 for a maximum difference of 4 we
would need n=3 observations per treatment



Power Curve with sigma=3

Power Curve for One-way ANOVA
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To have a Power >.8 for a maximum difference of 3 we
would need n>10 observations per treatment.

So you see how important having some prior data is to
be able to calculate sample size, based on power.



