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Some notation
« TL - true
* NL -nega
« UL - unla
e« C-numb
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 Algorithm output is

« Classification of x;is

« |terate, for step m+1,
to the jth class
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Iterate, for step m+1, pos
to the jth class
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=1 where d; = >, Wy

| is a diagonal matrix with A;;,
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Experiments

# samples # features # classes
Coil (image)
Umist (face)
USPS (digit)
Isolet5
Newsgroup

Corel (image)




Experimen

Algorithms:

 SVM - supervi




Experimen

Algorithms:

 SVM - supervise
 LapRLS - differe
smoothness fun




Experimen

Algorithms:

 SVM - supervis
« LapRLS - differ
smoothness fun
« GRF - doesn’t us
NL as UL




Experiment

Algorithms:

SVM - supervise
LapRLS - differe
smoothness fun
GRF - doesn’t use
NL as UL

Consistency - norma
UL



Experiment

Algorithms:

« SVM - supervise
« LapRLS - differe
smoothness func
 GRF - doesn’t use
NL as UL
 Consistency - norma
UL
« LNP - instead of weights us
approximation coefficients, treat




Experiments

NL instances:




Experiments

NL instances:




Experiments

NL instances:

x| 1]0]0 1 ]0]1]0



Experiment

NL instances:

X; | 1

TL instances:
X; | O




Experiments

NL instances:

The more NL/point is given, the more certainty
about the classification
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# NL :
Name points # NL/point

Coil (image)
Umist (face)
USPS (digit)
Isolet5
Newsgroup




Experiment |
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63.0114.47 I8.8712.10 89.4741.36 89.7111.32 80.771+2.90 91.911+0.99
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Experiment Il

USPS Umist Coil Newsgroup

Fig. 3. Classification accuracies of different methods when r = 20 and n = 0.




Experiment IV

USPS DATA. TOTALLY 480 NLS.

NUMBERS OF NL POINTS ARE 0, 60, 80, 120, AND 240,
EACH POINTHAS O, 8, 6,4, AND 2 NLS, RESPECTIVELY.

[ n=>~0 n =60 n = 80 n =120 n = 240
10 62.9245.39 80.1014.71 78.761+4.33 77571461 75.861+4.74
20 77.631+3.63 87.88+43.27 87.2613.94 86.1313.40 85.4743.50
40 84.8613.92 88.02+3.16 89.0042.77 88.9442 4] 88.78+2.58
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Out-Of-Samj

« Zis a new point (

« z's label is defined by
neighbors




Computation

« Time complexit
dimensionality

« Space complexit
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