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Instead of: 

We have: 



Some notation 
• TL – true labels, |χ(T)| = t 
• NL –negative labels, |χ(N)| = n 
• UL – unlabeled data, |χ(U)| = u 
• C – number of classes 
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 Then normalize 
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Iterate, for step m+1, possibility of xi belonging 
to the j th class 

• I(j) is a diagonal matrix with A1j , A2j , . . . , A(t+n+u)j on 
its diagonal line 

• Λ  to be a diagonal matrix with 𝑑𝑖  on diagonal 
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Name # samples # features # classes 

Coil (image) 1440 32x32 20 

Umist (face) 575 23x28 20 

USPS (digit) 9298 16x16 10 

Isolet5 1559 617 26 

Newsgroup 3970 8014 4 

Corel (image) 1000 36 10  
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Algorithms: 

• SVM – supervised, uses only TL for training 
• LapRLS – different forms of loss and 

smoothness functions, treat NL as UL  
• GRF – doesn‟t use normalized weights, treat 

NL as UL 
• Consistency - normalized weights, treat NL as 

UL 
• LNP – instead of weights uses local linear 

approximation coefficients, treat NL as UL 
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NL instances: 

xi 1 0 0 1 0 1 0 

xi 1 1 0 1 1 1 1 

The more NL/point is given, the more certainty 
about the classification 



Name 
# NL 

points 
# NL/point 

Coil (image) 10 5 

Umist (face) 10 5 

USPS (digit) 10 5 

Isolet5 10 5 

Newsgroup 50 2 
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Four inputs: σ, k, al, au 

• τ ∈ (0, 1); 𝑑  the average of all distances 

• al and au by searching the grid {0.01, 0.02, . . . , 
0.09} and {0.90, 0.91, . . . , 0.99} 

• k - ? 



USPS 
Umist 

Coil Isolet 

Ex: i for Isolet, τ = 10(i−1)/10 for i = 1, 2, . . . , 9 



• z is a new point (unlabeled) 

• z„s label is defined by weighted labels of its 
neighbors 



• Time complexity is O((t + n + u)2D), where D is the 
dimensionality of the samples 

• Space complexity is O((t + n + u)2) 



Variable information incorporation of different type 
labels (NL vs. UL) 



Too much of parameter tuning, i.e. σ, k, al, au 

Variable information incorporation of different type 
labels (NL vs. UL) 



Too much of parameter tuning, i.e. σ, k, al, au 

Variable information incorporation of different type 
labels (NL vs. UL) 

Negative labeling defeats the purpose of SSL, 
i.e. annotating negative labels can be even 
more time consuming than annotating 
“positive” labels 
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