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Abstract 
Activity recognition is a widely researched area with 
applications in health care, security and other domains. With 
each recognition system considering its own set of activities 
and sensors, it is difficult to compare the performance of 
these different systems and more importantly it makes the 
task of selecting an appropriate set of technologies and tools 
for recognizing an activity challenging. In this work-in-
progress paper we attempt to characterize activities in terms 
of a complexity measure. We define activity complexity 
along three dimensions – sensing, computation and 
performance and illustrate different parameters that 
encompass these dimensions. We look at grammars for 
representing activities and use grammar complexity as a 
measurement for activity complexity. Then we describe how 
these measurements can help evaluate the complexity of 
activities of daily living that are commonly considered by 
various researchers. 

Introduction 

ADLs (Activities of Daily Living) have been studied in 
different fields. These are often used in healthcare to refer 
to daily self-care activities within an individual’s place of 
residence, in outdoor environments, or both. Health 
professionals routinely refer to the ability or inability to 
perform ADLs as a measurement of the functional status of 
a person [1]. This measurement is useful for assessing 
older adults, individuals with cognitive disabilities and 
those with chronic diseases, in order to evaluate what type 
of health care services an individual may need. There are 
many ADL lists published in the Psychology domain, 
however each research group has concentrated on a subset 
of this list according to their own needs and requirements 
[2, 3]. 
While sitting, standing, walking etc., appear at one end of 
the spectrum of activities, the other end consists of 
complicated activities such as cooking and taking 
medication, which encompass ambulation, ADLs and 

instrumental ADLs (iADLs).  From a computational 
standpoint, it is difficult to combine these different 
activities into a single category for the purpose of 
designing a recognition system. Having a standard way to 
classify these activities based on their complexities will 
help researchers in all fields who want to study activities. 
This is the primary motivation behind this paper, where we 
attempt to define a formal complexity measure for 
activities. The complexity of an activity can be defined in 
terms of different parameters such as the underlying 
sensing modality, the computational techniques used for 
recognition or inherent property of the activity. We 
describe each of these parameters in greater detail. 
Defining such a complexity measure provides a means for 
selecting activities for conducting benchmarking 
experiments. Furthermore, it also helps in choosing the 
correct technology for recognizing a specific set of 
activities. 

Defining Activity Complexity 

In general, the complexity of an activity can be defined in 
terms of different factors. In this paper we attempt to 
define it in terms of three components: Sensing 
complexity, Computational complexity, and Performance 
complexity. 
Sensing complexity: Sensing complexity refers to 
complexity of sensors which are used in collecting data. 
Research advances in pervasive computing have resulted in 
the development of a wide variety of sensors that can be 
used for sensing activity. On one hand there are sensors 
that have to be worn by individuals [4] and on the other 
hand there are environmental [5] and object sensors that 
have to be embedded in the environment for gathering 
activity related information. Each of these sensors provides 
a rich set of information on a certain set of activities. For 
example, it is easier to recognize ambulation using 



wearable sensors over environmental sensors, while iADLs 
such as cooking and bathing are easier to recognize using 
environmental sensors. We define the sensing complexity 
of activities in terms of the following parameters: number 
of distinct sensors fired, number of sensor types fired, 
number of objects involved which can put sensor on, 
sensor size, sensor price, ease of use (Subject, 
Deployment), type of output data, battery life and type of 
sensor (wired or wireless). In the following paragraphs, we 
will discuss each of them in more detail. 
The number of sensors used is an important factor that 
defines this complexity, which in turn can be divided into 
two groups: number of distinct sensors fired and number of 
sensor types fired. For example, one particular sensor 
might be fired many times, but we count it as only one 
distinct sensor. Based on the technology used in each 
study, different sensor types can be seen, such as 
environmental sensors (motion, temperature, light, etc), 
object sensors (RFID tags, accelerometers, shake sensors, 
etc) and wearable sensors (accelerometers, RFID, health 
monitoring sensors, etc). For example if we are using 
environmental motion sensors, wearable accelerometers 
and shake sensors on objects, all three sensor types are 
fired for cooking activity. But for washing hands, only two 
of them are fired: environmental and wearable (assuming 
no sensor has been placed on soap). The number of objects 
involved in an activity that can be sensed through some 
modality is another factor defining the sensing complexity. 
For some activities such as brooming, placing sensors on 
the objects involved (broom) is possible, thus it can be 
considered simpler than reading books (placing sensor on 
every book is impractical).  
The price and form factor of a sensor is another component 
of the sensing complexity. An expensive sensor system 
would be harder to implement, so it can be considered 
more complex. The same is true with sensor size, 
especially for wearable and object sensors. Smaller sensors 
are easy to adopt, while bigger sensors are relatively 
difficult to deploy. The ease of use of a sensor can be seen 
from two perspectives: Subject and Deployment. Ease of 
use with respect to subject refers to ease and level of 
acceptance with which participants use sensors. For 
example some wearable sensors could be easier and more 
comfortable for participants to wear. The deployment 
aspect of ease of use can be defined in terms of the ease 
with which experimenters deploy a particular sensor. A 
sensor might give us helpful data but working with it might 
be too hard for experimenters that they prefer alternative 
but less useful ways. This reasoning would be true about 
type of output of the sensor as well. Some sensor outputs 
need further complex computations and pre-processing 
which results in higher sensing complexity. 
The battery life of a sensor is an important factor especially 
in the context of wireless and wearable systems. Choosing 
wired or wireless sensor depends on the requirements of 
the system and it has effect on the sensing complexity. 

While the values for some of these parameters (e.g., 
number of sensors, battery life) can be derived empirically, 
other factors (e.g., form factor and ease of use) require 
some kind of subjective evaluation. We would expect the 
measure derived from these parameters to be low for 
ambulatory activities for wearable sensors such as 
accelerometers, but will be high for environmental sensors 
such as motion sensors. In Table 1 we have represented 
some of the popularly used considered ADLs using these 
different factors. 
Computational complexity: Advances in machine 
learning and pattern recognition domain has resulted in a 
number of supervised and unsupervised techniques for 
recognizing activities. Discriminative classifiers such as 
SVMs [4], Logistic regression [4], CRFs [6] and generative 
classifiers such as GMMs [7], HMMs [5] are very popular 
for activity recognition. In addition to this, computational 
complexity also includes the algorithms that transform the 
raw data stream into a form that is used by some of the 
recognition algorithms. Examples of these algorithms are 
FFTs [8], wavelets, and other techniques that extract the 
statistical and spectral properties of the raw data. The main 
component of the computational complexity is the 
complexity of the underlying recognition/transformation 
algorithm. Other factors that affect the computational 
complexity include memory requirements of the algorithm 
and real-time performance. The relevance of the 
computational complexity of an activity depends on the 
computational resources available. For example, if the goal 
of the system is to perform recognition on a low power 
device such a mobile phone, the computational complexity 
plays a significant role in selecting the appropriate set of 
algorithms.  
Performance complexity: We define the performance 
complexity to be an abstraction of some of the inherent 
properties of an activity that is independent of the 
underlying sensing and computational mechanisms. This 
complexity term can be defined using different parameters 
such as: average duration and deviation, duration of non-
repetitive patterns, predefined time of the activity, number 
of steps, number of distinct location movements, number 
of people and objects involved. 
The average duration of an activity, even though an 
important component, does not clearly differentiate the 
complexity of activities. In other words there is no general 
rule that can say an activity with higher duration is more 
complex or vice versa. As an example, cooking is a 
relatively long and complex activity; at the same time 
sleeping is also long but not very complex from the 
perspective of recognition. Thus, this component should be 
taken into consideration along with other factors. Perhaps 
one could look at how much time during the activity the 
person was active. For example, person is not active for a 
large portion of time while sleeping and watching TV. 
Associated with the average duration of an activity is also 



the deviation in the duration in the performance of the 
activity. 
The third component would be the duration of non-
repetitive patterns. Patterns in activities usually give us 
useful information. Repetitive patterns are easier to 
recognize. For example, walking or running involve 
periodic movements of the human body that can be easily 
recognized, in contrast to movements such as pouring 
water, or scooping sugar while making a cup of tea. Some 
activities have a predefined time of occurrence during the 
daily routine of an individual. Such a unique characteristic 
of an activity can be effectively utilized by machine 
learning algorithms for recognition. An example of such an 
activity is taking medication. 
Typically every activity is defined in terms of a number of 
steps. Some activities have larger number of steps which 
make them more complex. Step can be defined as event 
that can not be divided in to sub-events in the current 
technology. Defining the activity steps in this format 
facilitates different representations of the steps depending 
on the underlying technology. Next thing to be considered 
is number of distinct location movements; an activity 
which is performed in different locations can be considered 
more complex in comparison with an activity that takes 
place in one location. 
Other factors that define the performance complexity of an 
activity are the number of people and objects involved in 
that activity. The activities get more complex with 
increasing number of people and objects defining it. 
 
Table 1- Complexity measurement over activity based on WSU 
CASAS sensing technology. 

 

Evaluating the Complexity 

In Table 1 we have represented 6 common activities and 
measured some of their complexity measurements 
discussed before. There are different ways to generate one 
total value from these measurements. One straight forward 
approach would be assigning numbers 1, 2, 3 to values 
low, medium and high respectively, and then summing up 
all the values for each activity. We can ignore the value of 
‘Number of people involved’ in this case, since it is the 
same for all these activities. Following above rules we will 
get 8 for ‘cooking’, 7 for ‘sweeping’, 6 for ‘watering 

plants’, ‘hand washing’ and ‘washing counter tops’ and 5 
for ‘medication’. Therefore, ‘cooking’ can be categorized 
as the most complex activity to recognize with this study’s 
sensing technology and ‘taking medication’ as the easiest 
one.  For generating these examples we assumed sensing 
technology of WSU Center for Advanced Studies in 
Adaptive Systems (CASAS), which consists of three 
sensor types (environmental, wearable and object). 
 

Using Grammar Complexity 

While the complexity values can be derived from pre-
defined measures as described previously, another possible 
approach is making use of grammars for representing 
activities. Then, grammar complexity can be used for 
measuring complexity of the corresponding activity. Using 
grammar has different benefits: It helps to formally define 
complex activities based on simple actions or movements. 
Rules are understandable by human. It can be extended and 
modified at any time and it can be used by systems with 
different technologies. In addition, grammar facilitates us 
with a formal representation of activities which helps 
researchers in different fields to have a benchmark while 
trying to choose and compare activities in their studies.  
Researchers have used grammar for representing different 
activities. Ward et al. have used wearable accelerometer 
and looked at wood workshop activities such as “grinding” 
and “drilling” [9]. But most of studies have used camera 
for gathering data; for example Ryoo and Aggarwal have 
defined grammar for activities such as “Shake hands”, 
“Hug”, “Punch”, etc [10]. Chen et al. have used grammar 
in gesture recognition [11]. There are a few studies on 
using grammar for representing ADLs, Teixeira et al. has 
represented ADLs with hierarchical finite state machines 
[13]. 
To the best of our knowledge, no study has looked at 
complexity of grammar to derive the activity complexity. 
Different grammars such as CFG, SCFG, DOP(Data 
Oriented Processing), LFG(Lexical-functional Grammar) 
can be used for this purpose [12, 13]. In this study we will 
focus on Context-free Grammar, in which the left-hand 
side of each production rule consists of only one single 
non-terminal symbol, and the right-hand side is a string 
consisting of terminals and/or non-terminals. Human 
actions and interactions are usually composed of multiple 
sub-actions which themselves are atomic or composite 
actions and CFG is able to construct a concrete 
representation for any composite action [10]. On the other 
hand, context-free grammars are simple enough to allow 
the construction of efficient parsing algorithms [11]. 
In order to define a CFG, we need to define terminals and 
non-terminals symbols. We can associate the atomic 
actions with the terminals and complex actions with non-
terminal symbols. However, as discussed before, the 



definition of the atomic action can vary according to the 
underlying sensing technology. For example, if one is 
looking at walking patterns, atomic action can be each 
movement of legs and hands, if one is using accelerometers 
as the sensing modality. In contrast, in a study that only 
uses environmental sensors, moving from one part of the 
room to the other which results in triggering a new sensor 
is considered atomic. In this paper, we try to define a 
general definition in a way that any research study will be 
able to adopt it. Continuing with our previous discussion, 
we define an atomic action as an event that cannot be 
divided into smaller sub-events that is recognizable by the 
underlying sensing modality. If an action contains two or 
more atomic actions, it is classified as a composite action 
[10]. By using CFG, we are able to define a composite 
action (Non-terminal) based on atomic actions (Terminals). 
In order to formally represent an atomic action we follow 
the linguistic theory of “verb argument structure”. Park’s 
operation triplet is <agent-motion-target> [14], where 
agent refers to the body part (i.e. arm, head) directed 
toward an optional target. Motion set contains action atoms 
such as “stay”, “move right”, etc. But this triplet is too 
specific to their sensing technology which is using camera 
and image processing.  
As a more generic formal representation we define an 
atomic action as <agent – motion – location - target> 
where an agent is the person performing the action, motion 
represents the event of that atomic action which can be in 
any form based on the technology, location indicates the 
location of the event and target is the object or person in 
interaction. If the action doesn’t contain any interaction, 
target value will remain null. As an example, we chose two 
common activities and formalized them with this CFG 
scheme. Following examples show ‘Sweeping’ and 
‘Dusting’ activities. There is only one person involved in 
these activities which is represented by ‘i’. In order to 
generate these examples we assumed CASAS sensing 
technology which we have described before. 
Sweeping:  
RetrieveBroom(i) =  
    atomicAction(<i, RaiseHand, Near kitchen cupboard, 
Broom>) 
SweepKitchenFloor(i) =  
    atomicAction(<i, Repetitive pattern & Raise, Kitchen, 
Broom>) 
Sweep(i)   
    RetrieveBroom(i) and SweepKitchenFloor(i) 
 
Dusting: 
DustLivingRoom(i) =  
    atomicAction(<i, Repetitive pattern & Raise, Living 
room, Duster>) 
DustDiningRoom(i) = 
    atomicAction(<i, Repetitive pattern & Raise, Dining 
room, Duster>)  
Dusting(i)   

   DustLivingRoom(i) or DustDiningRoom(i) 
DustRooms(i)   
   RetrieveDuster(i) and Dusting(i) 

Summary 

In this paper we have defined the complexity of an activity 
using two approaches. First, we have proposed 
measurements along three dimensions – sensing, 
computation and performance. We have illustrated some of 
the parameters that define each of these dimensions, and 
then categorized some of the popularly used ADLs using 
these measures. As the second approach, we have proposed 
to use grammar as a formal representation of activities and 
make use of grammar complexity for categorizing ADLs. 
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