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Abstract

In spite of the significant work that has been done to
discover and recognize activities in the smart home re-
search, less attention has been paid to predict the future
activities that the resident is likely to perform. An ac-
tivity prediction module can play a major role in design
of a smart home. For instance, by taking advantage of
an activity prediction module, a smart home can learn
context-aware rules to prompt individuals to initiate im-
portant activities. In this paper, we propose an activity
prediction approach using Bayesian networks. We pro-
pose a novel two-step inference process to predict the
next activity features and then to predict the next activ-
ity label. We also propose an approach to predict the
start time of the next activity which is based on model-
ing the relative start time of the predicted activity using
the continuous normal distribution and outlier detection.
We evaluate our proposed models using real data col-
lected from two smart home apartments.

Introduction

Over the last decade, there has been a growing interest in
the development of smart environments which are able to
reason about their residents. A smart environment is de-
fined as one that is able to acquire and apply knowledge
about an environment, such as a home, and adapt to its in-
habitants to improve their experience in that environment
(Cook and Das 2005). The main goal of such technologies
is to achieve greater comfort, productivity, and energy ef-
ficiency. Researchers have come to realize the importance
of applying smart home technologies for health monitoring
(Pollack 2005; Helal et al. 2005; Rashidi and Cook 2009;
Crandall 2011) and companies are recognizing the potential
of such technologies in the market (BrainAid.com 2013).

In many smart home projects, the final goal is to automate
residents’ interactions with the environment, particularly in-
teractions that are repetitive or difficult to perform for older
adults or people with disabilities. An example of an assis-
tive living system is a remote health monitoring system that
monitors and tracks the activities of daily living (ADLs) for
older adults with memory impairment. ADLs consist of self-
care activities such as eating, sleeping, dressing, cooking
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and taking medication. The ability to perform ADLs inde-
pendently and completely on a regular basis provides mea-
surement of the functional status of residents if they want
to live independently in their own homes. Moreover, such
systems can provide timely prompts to the residents in case
they have forgotten to perform critical activities.

When older adults with cognitive impairment fail to initi-
ate or complete everyday ADLs, caregivers are often respon-
sible to monitor ADLs and provide the reminder or prompt.
The prompt is defined as any form of verbal or non-verbal
intervention delivered to an individual on the basis of time or
context to help the successful completion of an activity. The
mentioned interventions are time consuming and cumber-
some tasks that too often impact the caregiver’s own health
in a negative way. Smart home technologies that help peo-
ple with memory impairment perform their ADLs by detect-
ing when assistance is needed and automatically delivering
prompts have the potential to reduce caregiver burden and
allow aging adults to retain their functional independence
longer.

While reminder systems have been studied heavily, few
take into account an individual’s behavioral patterns to pro-
vide context-aware prompts (Holder and Cook 2013), de-
spite the fact that studies indicate activity-aware prompts
offer significant advantages over traditional time-based
prompts (Kaushik, Intille, and Larson 2008). The required
component which can provide an individual’ behavioral pat-
tern to deliver the context-aware prompts is the activity
prediction module.

By taking advantage of an activity prediction module,
a reminder system can customize its behavior to the resi-
dents with no input on their part. Particularly, our technology
utilizes data collected from an individual’s home to learn
context-aware rules for prompting the individual to initiate
important daily activities. We assume that sensor data is col-
lected in a home while an individual performs her daily ac-
tivities. We also assume that the training data is available
from when the resident correctly performed the activities or
were prompted by a caregiver to initiate the daily activities.
Last, we assume that we are given a list of critical activities
for which the resident needs to be prompted.

The following scenario highlights the role of an activity
prediction component together with the activity recognition
module to provide an automated context-aware prompt,



provided that “Taking Medication” is assumed to be a
critical activity:

“In the morning, the activity recognition module rec-
ognizes that the breakfast activity has occurred. Then the
activity prediction component, which has already been
trained with the correctly performed activities, makes the
following prediction with a high enough confidence: “The
taking medication activity will occur within 30 minutes”.
Then the activity prompting system would have a relative
time offset when the taking medication activity usually hap-
pens. When the typical timespan has passed and medication
has not been taken, a prompt is delivered.”

In this paper, we propose a prediction approach which
uses Bayesian networks in a novel two-step inference pro-
cess. While we focus on the activity prediction problem in
this paper, the proposed two-step inference process is not
limited to this area and can be extended easily to the other
domains as well. To predict the relative start time of the pre-
dicted activity, we propose a method which is based on mod-
eling the relative start time of the activity using a continuous
normal distribution and outlier detection. The rest of the pa-
per is organized as follows. We first overview the probabilis-
tic graphical models. Next, we present the details of the pro-
posed activity prediction approach, both for the activity label
prediction and the relative start time prediction. We then pro-
vide the evaluation results of the proposed method. Finally,
we close the paper by providing some concluding remarks
and future directions.

Directed Acyclic Graphical Models

In this section, we briefly overview the directed acyclic
graphical models, also known as Bayesian networks, and
discuss the conditional independence relationships encoded
by them.

Bayesian Networks

Probabilistic graphical models (PGMs) are graphs where
nodes represent random variables and arcs represent the
statistical dependencies between the corresponding random
variables. Hence, the PGMs provide a compact way of repre-
senting the joint probability distribution. The directed graph-
ical models are also known as Bayesian networks (BNs) or
belief networks. We refer to the directed graphical models
as Bayesian networks (BNs) throughout the paper. A sam-
ple of BNs, representing 5 random variables, is illustrated in
Fig. 1.

One of the properties of BNs is their capability of encod-
ing the notion of causality. For instance, the arc from A to
B in Fig. 1 indicates that node A causes node B. One of
the conclusions of the notion of causality is that the directed
graph in a BN must be acyclic, as a node cannot cause it-
self. In addition to the structure, a BN should specify the
conditional probability distribution (CPD) for each node. If
variables in the model are discrete, the CPD can be repre-
sented as a conditional probability table (CPT). A CPT for
a node indicates the probability that the node can take each

Figure 1: A sample of Bayesian networks.

of its different values for each combination of values of its
parents.

The inference in BNs boils down to marginalizing the
joint probability distributions (JPD). Given the JPD, we can
answer all possible inference queries by marginalizing out
the irrelevant variables. Considering a BN consisting of N
random variables Z = (Z1, Za, ..., ZN), the general form
of the joint probability distribution of the Bayesian network
can be represented as in Equation 1, where pa(Z;) repre-
sents the parents of node Z;:

N
P(Zy, 2y, ..., Zx) = || P(Zilpa(Z:)) (1)
=1

The Equation 1 is derived due to the BNs property that
each node is independent of the rest of the network, given its
parents. Furthermore, dynamic Bayesian networks (DBNs)
extend the BNs by adding a temporal dimension to BNs to
model the time series data.

Conditional Independence Relationships

The conditional independence relationships let the joint
probability to be presented in a more compact form. The
more compact form (factorized form) has fewer parameters,
which makes the learning easier. The conditional indepen-
dence relationship answers to the question that if random
variable A is conditionally independent of B, given random
variable C'. It is common to denote the conditional indepen-
dence relationship with symbol L, thus A 1l B|C should
be interpreted as random variables A and B are condition-
ally independent, given variable C.

There are basically three types of relations between ran-
dom variables A, B, and C, which could be considered as
building blocks of the more complex relations. The men-
tioned conditional independence relationships can be best
explained by the Bayes Ball algorithm (Shachter 1998) as
follows:

Two nodes A and B are conditionally independent, given
the third node C, if a ball cannot get to node B starting from
node A (or vice versa), when the allowable move is pre-
sented in the second column in Fig. 2. In all of the three cases
represented in Fig. 2, the shaded node represents variable C,
which is assumed to be observable in data. The second col-
umn in Fig. 2, representing converging arrows, implies that



the observable node allows the ball to pass through. As a
conclusion, the converging arrows case implies that nodes
A and B are conditionally dependent, given node C. As
opposed to the converging arrows case, the first and third
columns represent the A Ll B|C conditional independence
relationship.

Figure 2: The Bayes ball algorithm: The stop sign indicates that
the observable node blocks the ball to pass through.

Proposed Model

In this section, we present our proposed model for the daily
activity prediction problem, when the BN structure is un-
known and variables contributing in the model have full ob-
servability in the data. We assume the horizon of the pre-
diction is one. We also assume variable X; represents the
current activity label and variables Y;’s (i = 1..n) repre-
sent activity features that are caused by X;. Taking into ac-
count the prompting scenario mentioned in the Introduction,
we assume an Activity Recognition (AR) module reports
the current activity label X;, which makes the next activ-
ity conditionally independent of all previous activities, i.e
Xi41 U X;| X, where [ < t. The mentioned conditional in-
dependence relationship is illustrated in Fig. 3. In addition to
our proposed model, we also present an alternative network-
based approaches in this section and compare its prediction
accuracies with our proposed model in the Experimental Re-
sults section. Finally, we end this section by presenting our
proposed approach to predict the start time of the predicted
activity.
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Figure 3: The current activity label X is assumed to be given by
our AR module.

CRAFFT

In this section, we present our proposed method to solve the
prediction problem illustrated in Fig. 3. Taking into consid-

eration the conditional independence relationships in Fig. 3,
one should note that activity features Y;"’s are conditionally
independent of the next activity X; ., (see Fig. 2). There-
fore, we propose the Bayesian network presented in Fig. 4
together with our proposed two-step inference process to an-
swer the prediction problem illustrated in Fig. 3.

Xt Xi+1
Y Y
- Y4 Y2
Y Yot

Figure 4: The structure of the proposed model (CRAFFT).

We call our proposed model CRAFFT (short for Using
CuRrent Activity and Features to predict the next FeaTures.
As it stands from Fig. 4, CRAFFT utilizes three features for
each activity. The description of all variables contributing to
CRAFFT follows:

e State variable (X;): the label of the current activity. Sim-
ilarly, the variable X refers to the label of the activity
that is expected to occur immediately after X;.

e Activity location feature (Y;!): the location in the smart
home where the current activity occurs. The location
is specified in terms of the location of a sensor. In a
smart home, the corresponding sensor will generate a
message if resident movement is detected in its field of
view. The locations we consider in our smart home in-
clude Kitchen, Bathroom, Bedroom, Living Room, Din-
ing Room, Medicine Cabinet, Lounge Chair, Kitchen
Door, Bathroom Door, and Front Door.

e Activity time of day feature (Y,?): a discretized value of
the time when the current activity occurs. Time values are
binned into the following ranges: 0 — 3,4 — 7, 8 — 11,
12 — 15,16 — 19, and 20 — 23.

e Activity day of week feature (Y2 ): an integer value ranging
from 1 to 7 representing the day of the week in which the
current activity happens, where 1 represents Monday.

Here, we present our proposed method to make the
prediction inference in the CRAFFT model illustrated in
Fig. 4. The proposed approach consists of two prediction
steps. In the first step, we predict the features representing
the next activity. In the second step, we predict the activity
label based on the predicted features in the first step and the
current activity label.

Step I: Next Activity Features Prediction

In the first step, CRAFFT predicts the features that are
associated with the next activity, i.e. Y;! ;, Y4, and Y2 ;.



As illustrated in Fig. 5, we hypothesize that features rep-
resenting the next activity are dependent upon their current
values as well as the current activity label. More specifically,
CRAFFT hypothesizes that the next activity location is in-
fluenced by the current activity label, location, time of day
and day of week. Also, the next activity time of day and day
of week are dependent upon their current values, as well as
the current activity label. For instance, the goal of the activ-
ity time of day (Y2) and day of week prediction is to find
Y;11 which satisfies Equation 2.

X

Yy Y1
- Y3 Y21
YR Y31

Figure 5: Step I- Next activity features prediction.

Yip1 < argmazy, ., P(Yerr = g1 [Ye = ye, Xo = 1) (2)

In Table 1, we provide 5 examples for the feature predic-
tion step, where the first row represents the template used
to represent examples. Note that the start sign (¥) can be re-
placed by any value of the corresponding feature.

The first example suggests that the Bathing activity,
when performed in the morning, is typically followed by an
activity that happens in the Bathroom; however, the second
example indicates that it is followed by an activity in the
Bedroom, when performed in the evening. The first two
examples imply why CRAFFT utilizes the current time of
day feature to predict the next location feature as well as the
current location. Moreover, the third example suggests that
the Eating activity at noon is usually followed by an activity
in the living room, when performed on Tuesdays through
Sundays; however, the fourth example indicates that it is
followed by an activity at the Front Door, when performed
on Mondays. The last two examples justify the need for
considering the current day of week to predict the next
activity location as shown in Fig. 5. The last example also
suggests that the Sleeping activity, when performed in the
evening, is followed by an activity in the Kitchen next day
in the morning. Therefore, the last example is to show when
there is a transition in day of week and why we connect the
current activity to the next day of week feature.

Step II: Next Activity Label Prediction

In the second step, CRAFFT predicts the next activity la-
bel based on the predicted features in the first step, as well as

the current activity label. Fig. 6 represents the next activity

label prediction step.
Y
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Figure 6: Step II- Next activity label prediction.

The prediction problem we take into account in this sec-
tion is defined as to find the x}, 4, such that it satisfies the
Equation 3.

% _ 1,2 .3 _
Tiyq < argmaxthP(XtJrl = xt+1|ytvyt7yt>Xt = xt)

3)

Related Model

In this section, we review a related structure-based models
for the prediction problem represented in Fig. 3. In the Ex-
perimental Results section, we compare its prediction ac-
curacy with CRAFFT. Similar to the CRAFFT model, the
model presented in this section utilizes the same feature set
(i.e. location, time of day and day of week) as well as the
current activity label.

Considering the features corresponding to the current ac-
tivity, one natural model is to predict the next activity based
on the current feature set. We refer to the presented model in
Fig. 7 as CEFA (short for using CurrEnt Features and activ-
ity to predict the next Activity).

Y,

Y2

~ Y3l

Figure 7: The structure of the CEFA model.

Relative Start Time Prediction for the Predicted
Activity

In the previous sections, we discussed how CRAFFT and
the other alternative approaches predict the next most likely
activity label. In this section, we explore the question that



Table 1: Feature prediction step: examples

(Xt71/tl:YtQ7)/t3)
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1

(Bathing, Bath, Morning, *)

(Bathroom, Morning, *)

(Bathing, Bath, Evening, *)

(Bedroom, Evening, *)

(Eating, Dining Room, Noon, 2 — 7)

(Eating, Dining Room, Noon, 1)

(Front Door, Noon, 1)
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when the predicted activity starts. As we discussed in the
prompting scenario presented in the Introduction, we are in-
terested to know the relative start time of the predicted ac-
tivity with respect to the start time of the current activity. In
order to do that, we extract the time offset between each two
consecutive activities in our dataset and cluster them using
the Expectation Maximization algorithm to construct a nor-
mal mixture model for the time offsets. In Fig. 8, we show
three most probable clusters which represent the time offsets
between activity X; and Xy ;. It is noteworthy that the time
offset in our setting is not exactly the duration of the current
activity (X;), because some “other activities” that we do not
consider in our study might occur between X; and X, .

Relative Start Time Distribution
Xt > Xt+1

06

— Cluster 1

Probability

0 10 20 30 40
(min)

Figure 8: The relative start time distribution for X4 1.

Lets denote the time offset between two activities a; and
aj by t; ;. Then we express the time offset as a normal prob-
ability density function with parameters O = (u, o) as rep-
resented in Equation 4. Here i and o are the mean and stan-
dard deviation values, calculated for the time offset.

1 (t;,;—m)?
prob(ti7j|@k) = Wé QJ”Q (4)

According to the normal distribution characteristics, the
distance of “two standard deviations” from the mean ac-
counts for about 95% of the values, as illustrated in Fig. 9.
Therefore, if we consider only observations falling within
two standard deviations, observations that are deviating from
the mean will be automatically removed. Such observations
that are distant from the rest of the data are called “outliers”.

In the Experimental Results section, we present a sample
for the time offset modeling between the “Breakfast” and the
“Taking Medication” activities.

(Sleeping, Bedroom, Evening, 7)

_>
—
—  (Living Room, Noon, 2 — 7)
_>
‘>

(Kitchen, Morning, 1)

Normal Distribution

Figure 9: Outlier detection mechanism using the normal distribu-
tion properties.

Experimental Results

In this section, we present the experimental results for the
CRAFFT model, together with the results of the other re-
lated algorithms. Before getting into the evaluation of the
CRAFFT model, we describe our Experimental Setup.

Experimental Setup

We use two one-bedroom single resident smart home apart-
ments for our experiments, referred to as Aptl and Apt2. In
order to track resident movements, we use sensors installed
on ceilings and walls as well as doors and cabinets. The sen-
sor layouts of Aptl and Apt2 are shown in Fig. 10, where red
circles and blue triangles represent infrared motion sensors
and magnetic door/cabinet sensors, respectively. A sensor
network captures all the sensor events and our middleware
stores them in a SQL database. To provide real activity data
for our experiments, we have collected data while the resi-
dents were living in smart homes performing normal daily
routines. Table 2 provides the characteristics of our smart
home testbeds:

Table 2: Characteristics of the smart homes used in our study

Aptl Apt2
# of motion sensors 20 18
# of door/cabinet sensors 12 12
# of residents 1 1
# of sensor events collected | 371,925 | 254,918
Timespan 6 months | 4 months

For our experiments, we take into consideration 11 ADLs
that the residents perform in the smart homes. The activ-
ities we consider in our study are as follow: Bathing, Bed-
Toilet Transition, Eating, Enter Home, Housekeeping, Leave
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Figure 10: The sensor layouts of Aptl (left) and Apt2 (right)

Home, Meal Preparation, Personal Hygiene, Sleeping in
Bed, Sleeping not in Bed, and Taking Medication. There-
fore, each sensor event in our dataset consists of a times-
tamp, a sensor ID, and an optional activity label. Events in
the dataset have been manually annotated with correspond-
ing activity labels by trained researchers who employed vi-
sualization tools and interviews with residents to generate
accurate ground truth labels.

Evaluation of CRAFFT

In this section, we provide the results of running CRAFFT
on our smart home data and compare them with the related
prediction approaches. All of the prediction results are eval-
uated using 10-fold cross validation method.

As already mentioned, CRAFFT consists of two predic-
tion steps, which are the next activity features and the next
activity label prediction. The prediction accuracies related to
both steps using data gathered from Aptl and Apt2 are pro-
vided in Table 3. As shown, the results suggest that the activ-
ity label prediction accuracy of CRAFFT for Apt2 is 73.68%
which is stronger than the Aptl’s accuracy of 64.59%. The
next activity features prediction results of CRAFFT are also
provided in Table 3. The results indicate that the location
prediction accuracy for Aptl is 46.60%, while it is 60.94%
for Apt2. Furthermore, the time of day prediction accuracy
for Aptl is 88.10%, whereas it is 86.41% for Apt2. Finally,
the day of week prediction accuracy for Aptl is 96.74%,
while it is 96.48% for Apt2. It is interesting to note that
while CRAFFT total activity prediction for Apt2 outper-
forms its accuracy for Aptl, location is the only feature
whose prediction accuracy is greater for Apt2 as compared
to that of for Aptl. This result underscores the significance
of the location feature in our prediction model.

To present the results for the related structures, we first
provide the activity prediction results using the CEFA model
on our datasets. The results suggest the activity label predic-
tion accuracies of CEFA are 45.41% and 60.05% for Aptl
and Apt2, respectively. In contrast to the prediction results
of CRAFFT represented in Table 4, the CEFA model shows

a 19.18% decline for Aptl and a 13.63% decline for Apt2.
It is worth mentioning that the CEFA model does not predict
the next activity features, so there is not entry for the activity
feature prediction in Table 4.

Table 4: CEFA Prediction accuracy for Aptl and Apt2
CEFA Activity Label Prediction
45.41%

60.05%

Apartment1
Apartment2

Moreover, we present the activity prediction accuracy of
naive Bayes (NB) in Table 5. Compared to the prediction
results of CEFA presented in Table 4, NB shows a 3.31%
decline for Aptl and a 0.11% decline for Apt2. It is worth
adding that NB ignores the meaning and temporal relations
among variables represented in Fig. 3.

Table 5: NB Prediction accuracy for Aptl and Apt2
NB Activity Label Prediction
42.10%

59.94%

Apartment1
Apartment2

In order to compare the results of CRAFFT with non-
network based approaches, we present the prediction results
for the Support Vector Machines (SVMs) and Multi-layer
Perceptron (MLP) algorithms on our datasets. Table 6 pro-
vides the prediction accuracies of SVMs with a polynomial
kernel on Aptl and Apt2. The results suggest a 18.53%
decline for Aptl and a 26.15% decline for Apt2 as com-
pared to the results of CRAFFT presented in Table 3. In
Table 6, we also provide the prediction results of the MLP
algorithm, where the results implies a 28.10% decline for
Aptl and a 38.88% decline for Apt2 as compared to the re-
sults presented in Table 3 for the CRAFFT model. The dis-
cussed comparisons imply the superior performance of the
proposed network-based model over the non-network based
algorithms for the task of temporal prediction.



Table 3: Activity label prediction accuracies of CRAFFT

Next Activity Feature Prediction

Next Activity Label Prediction

Location | Time of Day | Day of Week

Aptl | 46.60% 88.10%

96.74%

64.59%

Apt2 | 60.94% 86.41%

96.48%

73.68%

Table 6: Activity label prediction accuracies of SVMs and MLP
SVM MLP

Apartmentl | 46.06% | 59.71%

Apartment2 | 45.68% | 58.41%

In Fig. 11, we summarize the activity label predic-
tion comparison between CRAFFT and the other discussed
structure-based and non-structure based algorithms.

Prediction Accuracy
80

70

60 -

50 A

40
30 A
20 A
10 A

CRAFFT CEFA NB MmLP SVM

Figure 11: The activity label prediction accuracy comparison
among discussed models.

Finally, we present a sample result for our proposed relative
start time prediction method. Considering that the current
and predicted activities are “Breakfast” and “Taking Medi-
cation”, Fig. 12 illustrates the predicted time offset between
the mentioned activities. As already discussed, we model the
time offset using a normal distribution. After discarding the
outliers, the results illustrated in Fig. 12 suggest that when
the “Taking Medication” activity occurs after the “Break-
fast” activity, the typical time offset between them falls in
the following range (see Fig. 9):

[0 — 20,04 20]=[31 —2%8,31 + 2% 8] =[15,47] min.

Relative u=031'
Start Time 0=0:08'

0:00 0:14 0:28 043 0:57 1:12 Taking
Medication

Figure 12: The predicted relative start time for Taking Medication,
when it happens after the Breakfast activity.

Breakfast

Conclusions and Future Work

In this paper, we proposed an activity prediction approach,
called CRAFFT, using Bayesian networks. CRAFFT uses a
novel two-step inference process to predict the next activ-
ity features and then the next activity label. Furthermore, we
proposed an approach to predict the relative start time of the
next activity which was based on modeling the relative start
time using the continuous normal distribution and outlier de-
tection. We evaluated CRAFFT and other related prediction
approaches using real data collected from two smart home
apartments. The Experimental Results suggest the superior
performance of the CRAFFT model over the related predic-
tion approaches. In future, we aim to extend the proposed
two-step inference process to the cases where the data is
partially observable. Moreover, we plan to use the proposed
approach for prompting-based interventions.
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