
Automated Activity Interventions to Assist

with Activities of Daily Living

Barnan Das
1
, Narayanan C. Krishnan and Diane J. Cook

School of Electrical Engineering and Computer Science

Washington State University, Pullman WA, USA

Abstract. Over the last decade there has been a significant growth of research
endeavors in the area of ambient intelligence or smart environments. An

anticipated increase in the older adult population around the globe and an increase

in health care expenditures as a result, has increased the demand of smart health
assistance systems. Along with the classical problems of remote health monitoring

and activity tracking, delivering in-home interventions to residents for timely

reminders or brief instructions to ensure successful completion of daily activities,
is receiving a significant amount of attention in the community. In this chapter, the

problem of delivering in-home interventions has been described in detail and some

of the prospective approaches have been compared and contrasted. The approaches,
details and challenges mentioned in this chapter revolve around a prototypic model

of an automated prompting system, namely PUCK, which is an on-going project at

the Center for Advanced Studies in Adaptive Systems at Washington State
University. The previous study done on this project investigated the application of

machine learning techniques to identify appropriate timing of prompts based on

data provided by off-the-shelf sensors. The fundamental machine learning problem
faced while learning the timing of prompts is that the class of training instances

that represent prompt situations is under represented as compared to no-prompt

situations. While a method was originally proposed to deal with this problem,
popularly known as learning from imbalanced class distributions in this chapter a

novel Cluster-Based Under-sampling (CBU) approach is proposed that shows

promising results.

Keywords. Prompting system, smart environments, machine learning, imbalanced

class distribution, activities of daily living

Introduction

Research in the area of smart environments has gained popularity over the last

decade. Most attention has been directed towards health monitoring and activity

recognition [1-4]. Recently, assistive health care systems have started making an

impact in society, especially in countries where human care-giving facilities are

expensive and a large population of adults prefers an independent lifestyle.

According to the studies conducted by the US Census Bureau [5], the number of

older adults in the US aged 65+ is expected to increase from approximately 35

million in 2000 to an estimated 71 million in 2030, and adults aged 80+ from 9.3

1
 Corresponding Author: EME 130 Spokane Street, PO Box 642752, School of Electrical Engineering

and Computer Science, Washington State University, Pullman WA, 99164-2752, USA; Email:

barnandas@wsu.edu.

million in 2000 to 19.5 million in 2030. Moreover, there are currently 18 million

people worldwide who are diagnosed with dementia and this number is predicted to

reach 35 million by 2050 [6]. These older adults face problems completing both

simple (e.g. eating, dressing) and complex (e.g. cooking, taking medicine)

Activities of Daily Living (ADLs) [7].

Real-world caregivers do not perform all activities for the care recipient, nor do

they prompt each step of a task. Instead, the caregiver recognizes when the care

recipient is experiencing difficulty within an activity and at that time provides a

prompt that helps in performing the activity completely. The number of prompts that

a caregiver typically provides depends upon the level of cognitive impairment.

Worsening of the level of impairment demands an increased number of caregiver

duties and thus places a heavier burden on the caregiver. Therefore, an automated

computerized system that would be able to provide some of the facilities of a human

caregiver is the call of the hour and would help in alleviating the burden of many

caregivers that are helping a large section of the population.

In this chapter, we describe in detail the problem of delivering in-home

interventions and compare some of the prospective approaches. The approaches, details

and challenges mentioned in this chapter are based on a prototypic model of an

automated prompting system, namely PUCK, which is an on-going project at the

Center for Advanced Studies in Adaptive Systems (CASAS) at Washington State

University. In an earlier study [8, 9] PUCK learned the timing of prompts for eight

different activities of daily living, based on real sensor data collected in a smart home

with volunteer participants. The purpose was to achieve the goal of automating prompt

timing without any direct user feedback. In this study, a challenge faced while learning

the timing of prompts because of the nature of the data collected from the sensors. The

class of training instances that represent a prompt situation is under represented as

compared to no-prompt situations. In order to address this problem, which is popularly

known as learning from an imbalanced class distribution [10], a fundamental

modification was introduced to the Synthetic Minority Over-sampling Technique or

SMOTE [11] proposed by Nitesh Chawla et al. Due to certain limitations of this

approach, in this chapter a novel Cluster-Based Under-sampling (CBU) technique is

proposed that can handle more realistic situations and that performs better than the

aforementioned technique.

The chapter starts by describing the problem of in-home interventions for activities,

in detail. The discussion proceeds by detailing the system architecture for conducting

the study at Center for Advanced Studies in Adaptive Systems at Washington State

University, followed by a description of the data collection methodology and data

representation. Previous approaches taken to address the problem are described and the

limitations are highlighted. Next, the Cluster-Based Under-sampling (CBU) technique

is proposed and new experimental results are shown. The chapter ends with a related

work section that covers both applied and theoretical aspects of the problem.

1. Problem Definition

A "prompt" in the context of a smart home environment can be defined [8] as any

form of verbal or non-verbal intervention delivered to a user on the basis of time,

context or acquired intelligence that helps in successful (in terms of time and

purpose) completion of a task. Although the literature is flooded with similar terms

such as reminders, alerts, and notifications, “prompt” is generically used to

represent interventions that ensure accomplishment of certain activity goals.

Prompts can provide a critical service in a smart home setting, especially for older

adults and inhabitants with cognitive impairment. Prompts can remind individuals

to initiate an activity or to complete incorrect or missing steps of an activity.

However, a number of challenges rise when creating prompting systems:

 Problem Identification: When and for which tasks are the prompts necessary?

 Justification: When and for which tasks are the prompts effective?

 Prompt Granularity: Which tasks require what level of prompting granularity

(in terms of activity step detail)?

 Media: What type of prompt is most effective (audio, video or multi-modal)?

 User Environment: What is the physical layout of the home and how does this

affect the timing and mode of prompts?

The goal of the Prompting Users and Control Kiosk or PUCK project is to

develop an automated prompting system that guides a smart home inhabitant

through every step of an activity. The PUCK project operates on the hypothesis that

the timing of the prompt within an activity can be learned by identifying when an

activity step has been missed or performed erroneously. As a result, PUCK’s goal is

to deliver an appropriate prompt when, and only when, one is required. The prompt

granularity for this system is individual activity steps, unlike other projects which

consider activities as a whole. A unique combination of pervasive computing and

machine learning technologies is required to meet this goal. More explanation on

other projects that deal with the prompting problem can be found in Section 8 of

this chapter.

In order to address the applied problem of automated prompting, a more

theoretical machine learning problem needs to be addressed, namely the ability to

learn from an imbalanced class distribution. The fundamental challenge of this

domain is to learn the appropriate timing of prompts when the vast majority of

training situations do not require prompts. Thus, the data gathered from the sensor

grid in the testbed, consists of very few prompt situations as compared to no-prompt

situations.

In the following, the bigger problem of automated activity interventions has

been broken down into layers of applied problems and theoretical problems. A top

down approach is taken to transition from the applied problem to in-depth machine

learning challenges.

2. System Architecture

PUCK is not just a single device but a framework that helps in providing automatic

interventions to inhabitants of a smart home environment. Therefore, this

framework (Figure 1) includes every component necessary for a working prompting

system, including data collection, data preparation and machine learning algorithms.

In the previous work, it was possible to predict a relative time in the activity when a

prompt is required after learning intensively from training data collected over a

period of time. Past research has also included the deployment of time-based and

context-aware prompts with one or two older adult residents. In these deployments,

touch screen monitors with embedded speakers were used to deliver the prompts.

The prompts included audio cues along with images that are relevant to the activity

for which the prompt is being given. The same interface is being used for the

automated prompting system.

Figure 1: System architecture.

The PUCK system architecture can be broadly divided into four major modules:

 Smart Environment: The smart home environment testbed is a two-story

apartment located on the Washington State University campus. The

apartment contains a living room, dining area and kitchen on the first floor

and three bedrooms and bathroom on the second. All of these rooms are

equipped with a grid of motion sensors on the ceiling, door sensors on the

apartment entrance and on doors for cabinets, refrigerator and microwave

oven, item sensors on containers in the cabinet, temperature sensors in each

room, a power meter, analog sensors for burner and water usage, and a

sensor that keeps track of telephone use. For this study, the data gathered by

motion, door and item sensors have been considered. Figure 2 depicts the

structural and sensor layout of the apartment. One of the bedrooms on the

second floor is used as a control room where the clinically-trained

experimenters monitor the activities performed by the participants (via web

cameras) and deliver prompts through an audio delivery system whenever

they deem a prompt is necessary. The goal of PUCK is to automate the role

of the experimenter in this setting. The sensor data is stored in a SQL

database in real time.

Figure 2: Three-bedroom smart apartment used for data collection (Sensors: motion (M), temperature

(T), water (W), burner (B), telephone (P) and item (I)).

 Data Preparation: The portion of raw sensor data that would be used by the

learning models is collected from the database. This data is manually

annotated for activities and activity steps and made suitable for feature

generation. Features or attributes that would be helpful in differentiating a

prompt step from a no-prompt step are generated. Because of the imbalanced

nature of the training data, the data is modified before applying the machine

learning models.

 Machine Learning Model: Once the data is prepared by the Data Preparation

module, machine learning techniques are employed to determine whether a

prompt should be issued. This is the primary decision making module of the

entire system.

 Prompting Device: The prompting device acts as a bridge between the

resident and the digital world that contains the sensor network as well as the

data and learning models. Prompting devices can range from simple speakers

to basic computers, PDAs, or even smart phones.

The focus of this chapter is on the unique approach taken in the Machine

Learning Model to handle the imbalanced data that is inherent in an activity-

prompting application.

3. Data Collection

The PUCK data collection is done in collaboration with Washington State

University's Department of Psychology. Participants in these experiments are

volunteers who are either healthy older adults, people with mild cognitive disorders

(MCI) or people with dementia, Alzheimer's or traumatic brain injury (TBI).

3.1. Experimentation Methodology

The experiments are conducted by the psychologists by inviting participants to the

smart apartment testbed. The participants are requested to perform different activities

of daily living which are monitored by the experimenters via web cam from the

control room. The following set of eight ADLs is considered for our experiments:

1. Sweeping 2. Taking Medication 3. Writing Birthday Card

4. Watching DVD 5. Watering Plants 6. Receiving Phone Call

7. Cooking 8. Selecting Outfit

These activities are subdivided into relevant steps by the psychologists in order

to track their proper completion. The detailed description of all the activities and

their steps is beyond the scope of this chapter. Therefore, the steps of a sample

“Cooking” activity (Table 1) are provided as an example to illustrate how every

activity is subdivided into individual steps that need to be completed to meet the

goal of the activity.

Table 1. Steps of “Cooking” activity.

Cooking

1. Participant retrieves materials from cupboard.

2. Participant fills measuring cup with water.

3. Participant boils water in microwave.
4. Participant pours water into cup of noodles.

5. Participant retrieves pitcher of water from refrigerator.

6. Participant pours glass of water.
7. Participant returns pitcher of water.

8. Participant waits for water to simmer in the cup.

9. Participant brings all items to the dining room table.

The participants are asked to perform activities of daily living in the testbed. A

prompt is issued by the experimenter if the participant misses any critical step,

performs the step erroneously or takes longer than usual. The goal of the

experimenter is to issue as few prompts as possible but at the same time ensure a

successful completion of the activity. The prompt issuance time is logged in the

database and is later used to determine the activity step to which it corresponds.

This information is incorporated into the vector of features describing the raw data.

3.2. Annotation

An in-house sensor network captures all sensor events and stores them in a SQL

database in real time. The sensor data gathered for the SQL database is expressed by

several features. A sample of sensor data collected in the smart apartment and

described by the features is given in Table 2.

Table 2. Sample of sensor events used for our study.

Date Time Sensor ID Message

2009-02-06 17:17:36 M45 ON
2009-02-06 17:17:40 M45 OFF

2009-02-06 11:13:26 T004 21.5

2009-02-07 11:18:37 P001 1.929kWh
2009-02-09 21:15:28 P001 2.536kWh

After collecting data, the sensor events are annotated with the corresponding

activities (as shown in Table 3) that were performed while the sensor events were

generated. Activities are labeled with their corresponding activity IDs (as listed in

Section 3.1) and step IDs. This is done in the following format: <Activity ID>.<Step

Number>. For example, 7.4 would indicate the fourth step of the seventh activity

“Cooking”, i.e., “Participant pours water into cup of noodles”.

Table 3. Annotated steps for activity 7 (Cooking).

2009-05-11 14:59:54.934979 D010 CLOSE 7.3

2009-05-11 14:59:55.213769 M017 ON 7.4
2009-05-11 15:00:02.062455 M017 OFF

2009-05-11 15:00:17.348279 M017 ON 7.8

2009-05-11 15:00:34.006763 M018 ON 7.8
2009-05-11 15:00:35.487639 M051 ON 7.8

2009-05-11 15:00:43.028589 M016 ON 7.8

2009-05-11 15:00:43.091891 M017 ON 7.9
2009-05-11 15:00:45.008148 M014 ON 7.9

As the annotated data is used to train the learning models, the quality of

annotation is very important for the appropriate performance of the system.

Generation of a large number of sensor data events in a smart home environment

makes it difficult for researchers and users to interpret raw data into residents'

activities [13] without the use of visualization tools. Therefore to enhance the quality

of the annotated data, an open source Python Visualizer, called PyViz [14] and

developed by CASAS research team members, is used to visualize the sensor events.

4. Dataset and Performance Measures

4.1. Feature Generation

Relevant features are generated from the annotated data that is helpful in predicting

whether a step is a prompt step or a no-prompt step. Each step of an activity is treated

as a separate training instance, and pertinent features are defined to describe the step

based on sensor data. Each data instance is tagged with the class value. Specifically,

a step at which a participant received a prompt is marked as "1" indicating prompt,

others are hence assumed to be no-prompt steps and marked as "0". Table 4 provides

a summary of all generated features. It should be noted that the machine learning

models learn and predict class labels from this refined dataset. This way PUCK

predicts if an instance (steps of activities in this context) constitutes a prompt

instance. Thus, the problem of when a prompt should be delivered is addressed.

Table 4. Generated features.

Feature Description

stepLength Length of step in time (seconds)
numSensors Number of unique sensors involves with the step

numEvents Number of sensor events associated with the step

prevStep Previous step ID
nextStep Next step ID

timeActBegin Time (seconds) elapsed since the beginning of the activity

timePrevAct Time (seconds) difference between the last event of the previous step and
first event of the current step

stepsActBegin Number of steps visited since the beginning of the activity

activityID Activity ID
stepID Current step ID

M01…M51 All of M01 to M51 are individual features denoting the frequency of firing
of these sensors associated with the step

Class Binary class representing prompt and no-prompt

Sensor data was collected for 128 participants and was used to train the machine

learning models. There are 53 steps in total for all the activities, out of which 38 are

recognizable by the annotators. The rest of the steps are associated with specific

object interactions which could not be tracked by the current sensor infrastructure.

The participants were delivered prompts in 149 cases which involved any of the 38

recognizable steps. Therefore, approximately 3.74% of the total instances are positive

(prompt steps) and the rest are negative (no-prompt steps). Essentially, this means

that, predicting all the instances as negative, would give more than 96% accuracy

even though all the predictions for positive instances were incorrect.

4.2. Performance Measures

Conventional performance measures such as accuracy and error rate consider

different types of classification errors as equally important. For example, the purpose

of this work is not to predict whether a prompt should not be delivered in a step, but to

predict when to issue the prompt. An important thing to keep in mind about this

domain of automated prompting is that false positives are more acceptable than false

negatives. While a prompt that is delivered when it is not needed is a nuisance, that

type of mistake is less costly than not delivering a prompt when one is needed,

particularly for a resident with dementia. In addition, considering that the purpose of

the research is to assist people by delivering a lesser number of prompts, there

should be a trade-off between the correctness of predicting a prompt step and the total

accuracy of the entire system.

Therefore, performance measures that directly measure the classification

performance for positive and negative classes independently are considered. The True

Positive (TP) Rate (the positive and in this case the minority class) here represents

the percentage of activity steps that are correctly classified as requiring a prompt; the

True Negative (TN) Rate here represents the percentage of steps that are accurately

labeled as not requiring a prompt. TP and TN Rates are thus capable of measuring

the performance of the classifiers separately for the positive and negative classes.

ROC curve analysis is used to evaluate overall classifier performance. An ROC

curve plots the classifier’s false positive rate [15] on the x-axis and the true positive

rate on the y-axis. A ROC curve is generated by plotting the accuracy obtained by

varying different parameters of the classifiers. The primary advantage of using these

is that they illustrate the classifier’s performance without taking into account class

distribution or error cost. We report AUC, or the area under ROC curve [16], in

order to average the performance over all costs and distributions. Also, the geometric

mean of TP and TN rates denoted by Gacc is reported, which is commonly used as a

performance metric in imbalanced class learning. Gacc is calculated as

 . To evaluate the overall effect of classification, the

conventional accuracy of the classifiers is also considered.

5. Background on Machine Learning Methods

5.1. Decision Tree

A decision tree classifier [17] uses information gain to create a classification model, a

statistical property that measures how well a given attribute separates the training

examples according to their target classification. Information gain is a measure based

on entropy, a parameter used in information theory to characterize the purity of an

arbitrary collection of examples. It is measured as:

 (1)

where S is the set of data points, p+ is the number of data points that belong to the

positive class and p- is the number of data points that belong to the negative class. The

information gain for each attribute is as follows:

 (2)

where Values(A) is the set of all possible values for feature A. Gain(S,A) measures how

well a given feature separates the training examples according to their target

classification. In our experiments, we use the J48 decision tree provided with the Weka

distribution.

5.2. Nearest Neighbor

k-Nearest Neighbor [18] is the most basic technique amongst instance based learning

methods in which all instances are assumed to correspond to points in the n-

dimensional space. The distance measure that is used to find the neighbors is Euclidean

distance given by the following:

 (3)

When a query instance xq is to be classified, the training examples denoted by x1…

xk (such that there are k training examples), which are nearest to xq, are found by the

equation:

 (4)

where (,) 1a b if a b and where (,) 0a b otherwise. For any value of k, the

algorithm assigns the most common classification label that appears among the k

nearest training examples.

5.3. Support Vector Machines

Support Vector Machines (SVMs) were first introduced in 1992 [19]. This is an

algorithm for data classification which maximizes the margin between the training

examples and the class boundary. The SVM learns a hyperplane which separates a

series of positive data instances and a series of negative data instances with maximum

margin. Each training data instance should contain one class label and several features.

The target of a SVM is to generate a hyperplane which provides a class label for each

data point described by a set of feature values.

The class boundary of SVM can be solved by the following constrained

optimization problem.

 subject to:

 (5)

To introduce a non-linear kernel; function, the optimal problem can be converted

into a dual form which is a quadratic programming problem:

 (6)

The target function can be computed by:

 (7)

For a traditional SVM, the quadratic programming problem introduces a matrix,

whose dimensions are equal to the number of training examples. If the training set is

large, the SVM algorithm will use a lot of memory. To solve such a problem,

Sequential Minimal Optimization (SMO) [20] decomposes the overall quadratic

programming problem into a series of smaller quadratic programming problems.

During the training process, SMO picks a pair of Lagrange multipliers (ai,aj) in each

iteration and solves the quadratic programming problem, then repeats the same process

until it converges on a solution. SMO significantly improves the ability to scale and the

computation time for SVMs.

6. Sampling to Handle Imbalanced Prompt Cases

6.1. Experimental Results With No Sampling

Experiments were initially run with 10 fold cross validation to see how well the

learning models perform at the task of predicting the timing (in terms of activity steps)

of prompts. As can be seen from Figure 3(a), the usage of classical machine learning

algorithms on original dataset obtains a high accuracy. However, Figure 3(b) depicts

that the TP Rates are extremely low as compared to the TN Rates.

From this experiment it can be inferred that traditional classifiers are not able to

effectively learn to recognize the positive instances of the dataset. The reason for this is

that the dataset has a highly imbalanced class distribution; it is more skewed towards

negative instances than positive.

Figure 3: (a)Accuracy, (b)TP and TN Rates obtained without any preprocessing.

There can be number of reasons for the dataset to be skewed. In this case, there is a

domain-specific reason for the data to be skewed towards the negative class. As

mentioned before, the purpose of PUCK is not to prompt an inhabitant in every step of

an activity but to deliver the prompt only for steps where individuals need help to

complete the task. Therefore, in spite of having high accuracies, direct application these

algorithms is not suitable for the goal of the project as they either fail to predict the

steps in which the prompt should be issues or do that job with poor performance.

6.2. Reasons for Failure of Learning Algorithms

Decision trees do not take all attributes into consideration to form a hypothesis. The

inductive bias is to prefer a smaller tree over larger trees. Moreover, like many other

learning methods (e.g. rule based), a decision tree searches for a hypotheses from a

hypotheses space that would be able to classify all new incoming instances. While

doing so, it prefers shorter hypothesis trees over longer once and thus compromises

with unique properties of the instances that might lie with an attribute that has not been

considered.

Unlike decision tree, k-Nearest Neighbor does not estimate the target function

once for the entire instance space, rather it estimates the function locally and differently

for each new instance to be classified. Also, this method calculates the distance

between instances based on all attributes of the instance i.e. on all axes in the Euclidean

space containing the instances. This is in contrast to methods such as rule and decision

tree that selects a subset of the learning attributes while forming the hypothesis. As the

data is highly skewed, considering a subset of all the instances might not even consider

the attributes activityID and stepID, which are unique identifiers of an instance

belonging to a particular step, thus predicting an incorrect class. But, k-Nearest

Neighbor is capable of taking care of this issue and the result is reflected in Figure 3(b).

As the number of attributes is quite high (61 in this case), the SVM algorithm,

SMO, constructs a set of hyperplanes for the purpose of classification. Usually a good

separation is achieved by a hyperplane that has the largest distance to the nearest

training data points of any class (the functional margin). However, due to a lesser

number of positive class instances in this case, the functional margin is quite small and

thus results in a lower TP rate.

6.3. SMOTE-Variant

Sampling is a technique of rebalancing the dataset synthetically and can be

accomplished by under-sampling or over-sampling. While under-sampling can throw

away potentially useful data, oversampling can overfit the classifier if it is done by data

replication. As a solution to these challenges, SMOTE [11] uses a combination of both

under and over sampling, but without data replication. Over-sampling is performed by

taking each minority class sample and synthesizing a new sample by randomly

choosing any or all (depending upon the desired size of the class) of its k minority class

nearest neighbors. Generation of the synthetic sample is accomplished by first

computing the difference between the feature vector (sample) under consideration and

its nearest neighbor. Next, this difference is multiplied by a random number between 0

and 1. Finally, the product is added to the feature vector under consideration. In the

dataset under consideration, the minority class instances are not only small in terms of

percentage of the entire dataset, but also in absolute number. Therefore, if the nearest

neighbors are conventionally calculated (as in original SMOTE) and the value of k is

small, there would be null neighbors. Unlike SMOTE, in SMOTE-Variant the k-nearest

neighbors are calculated on the basis of just two features: activityID and stepID. Under-

sampling is done by randomly choosing a sample of size k (as per the desired size of

the majority class) from the entire population without repetition.

6.4. Experimental Results

The purpose of sampling is to rebalance a dataset by increasing the number of minority

class instances, enabling the classifiers to learn more relevant rules on positive

instances. However, there is no ideal class distribution. A study done by Weiss et al.

[21] shows that, given plenty of data when only n instances are considered, the optimal

distribution generally contains 50% to 90% of the minority class instances. Therefore,

in order to empirically determine the class distribution, the J48 decision tree is

considered as the baseline classifier and the experiments are repeated by varying

percentages of minority class instances from 5% up to 95%, by increments of 5%. A

sample size of 50% of the instance space is chosen.

Figure 4: TP Rate, TN Rate and AUC for different class distributions

While any lower sample size will cause loss of potential information; any higher

size will make the sample susceptible to overfitting. Figure 4 shows that the TP rate

increases while the TN rate decreases as the percentage of the minority class is

increased. These two points intersect each other at some point that corresponds to

somewhere between 50-55% of minority class. Also, the AUC value is between 0.923

and 0.934, a relatively high value, near this point. Therefore, 55% of the minority class

is chosen to be the appropriate sample distribution for further experimentation.

Three different algorithms, namely J48, IBk (a k-nearest neighbor algorithm), and

SMO are run on the sampled dataset. From Figure 5 (a) it is seen that the TP rate has

increased tremendously for all the algorithms without compromising too much the TN

rate (shown in Figure 5(b)). Also, the area under ROC curve and Gacc have increased

(Figure 5(c) and 5(d), respectively) indicating that the overall performances of all the

learning methods have increased. Clearly, sampling encouraged the learning methods

to learn more rules for the positive class. However, it should also be noted that the

average accuracy decreases by a few percentage points. This is acceptable until the TP

rate is high.

7. Improvements on Basic Sampling

7.1. Analysis of Previous Approach

The results of the previous approach are fairly optimistic but do not reflect reality. A

deeper analysis of the previous methodology and results indicates that there were a

number of implicit assumptions that do not hold in realistic settings. In the following,

an analysis of the previous approach is done and simultaneous a new improved method

is been proposed.

Evaluation of the methods was performed using cross validation. In case of

SMOTE-Variant, as the training and testing were done on the same examples that were

Figure 5: Comparison of (a)TP Rate, (b)TN Rate, (c) AUC, and (d) Gacc.

synthetically generated, the overfitting of the classifiers caused by an overwhelmed

synthesis of artificial minority class examples, was never detected. In order to avoid

this inappropriate evaluation technique, the current approach trains the classifiers on

80% data and considers the rest for testing. Also, the degree of imbalance in the

original dataset is maintained in training and testing examples.

While studying the nature of the data and trying to find the heuristic that

essentially makes a prompt instance different from a no-prompt instance, it was found

that there are minor differences in the values of the attributes of prompt and no-prompt

instances. This means that there is no crisp boundary between positive and negative

class examples. Positive data points are embedded into negative data points causing a

high degree of overlap between the two classes.

7.2. The Overlap Problem and Its Existence in Prompting Data

The overlap problem [22] occurs when there are ambiguous regions in the data

space where there are approximately the same number of training examples from

both classes. Conceptually, ambiguous regions can be visualized as regions where

the prior probability for both classes is approximately equal and thus makes it

difficult or impossible to distinguish between the two classes. This is because it is

difficult to make a principled choice of where to place the class boundary in this

region since it is expected that the accuracy will be equal to the proportion of the

volume assigned to each class. Figure 6, illustrates the difference between normal

data and data with class overlap.

Figure 6: (a) Data without overlap, (b) Data with overlap

The prompting data has similar overlapping nature in between the two classes and

that is confirmed by performing a dimensionality reduction on the attributes. A

Principal Component Analysis (PCA) [23] is considered for this purpose. The

dimension is reduced to three and then plotted. Figure 7 shows a reduced three

dimension plot of the prompting data. It can be easily seen from the figure that the

positive (prompt) class instances are highly embedded in negative (no-prompt) class

instances.

Figure 7: 3D PCA plot of prompting data.

7.3. Cluster-Based Under-sampling

By performing a hypothesis testing, Denil et al. proved [24] that overlap and

imbalance are not independent factors. They showed that if overlap and imbalance

levels are too high, good performance cannot be achieved regardless of amount of

available training data. Therefore, in Cluster-Based Under-sampling (CBU) method,

the purpose is to get rid of the overlapping problem and the hypothesis is that

achieving success with the overlap problem would also be helpful in getting rid of

the imbalance problem to some extent as the majority class is under-sampled. It

should also be kept in mind that the prompting data has an absolute rarity

imbalance problem, that is, the minority class instances are not only relatively less

as compared to majority class, but also rare in absolute number. Therefore, no

sampling method that involves throwing away minority class instances can be

employed.

The idea of devising this technique is derived from the use of Tomek links [25]

combined with other sampling methods like Condensed Nearest Neighbor [26] and

SMOTE [27]. Tomek links are defined as: given two examples Ei and Ej belonging to

different classes, and d(Ei,Ej) being the distance between Ei and Ej, a (Ei,Ej) pair is

called a Tomek link if there is not an example Ek such that d(Ei,Ek) < d(Ei,Ej). If two

examples form a Tomek link, then either one of these examples is noise or both

examples are on or near the class boundary. Tomek links are used both as a data

cleaning method and an under-sampling method. As a data cleaning method, examples

of both classes are removed, and as an under-sampling method, only examples

belonging to the majority class are eliminated.

One-sided selection [28] is an under-sampling method that applies Tomek links

followed by the applying Condensed Nearest Neighbor (CNN). In this method, Tomek

links are used to remove noisy and borderline majority class examples. As a small

amount of noise can make the borderline examples fall on the wrong side of the

decision boundary, borderline examples are considered as unsafe. CNN is used to

remove examples from the majority class that are far away from the decision boundary.

The rest of the majority and minority class examples are used for learning.

As opposed to the use of Tomek links in OSS to find closest minority and majority

class example pairs and then remove majority class examples, in the Cluster-Based

Under-sampling (CBU) method, clusters of minority and majority class examples are

considered and majority class examples from those clusters are removed.

Table 5. Algorithm of Cluster-Based Under-sampling.

1. Let S be the original training set.

2. Use K-means clustering to form clusters on S denoted by Ci where 1<i<|C|.
3. Find the degree of imbalance for all the clusters denoted by:

4. For clusters which satisfy: 0<ri<1 and r>=τ (where, τ is an empirically determined
threshold value for r and is uniform over all the clusters), remove all the majority class

examples and retain all the minority class example.

Table 5 summarizes the CBU algorithm. First, the entire training data is clustered

ignoring the class attribute and using simple K-means clustering which uses Euclidean

distance as the distance measure. The degree of minority dominance, denoted by r, for

each of these clusters is calculated as the ratio of number of minority class examples to

the size of the cluster. Therefore, r=0 indicates that all the examples of the cluster

belong to the majority class, and r=1 indicate that all the examples belong to the

minority class. The clusters whose r lies between 0 and 1 are of interest in this method

as indicates that the cluster has both minority and majority class examples. For this

kind of cluster, the majority class examples are removed if r is equal to or greater that

an empirically determined threshold value τ. Clearly, if the threshold τ is low more

majority class examples would be removed as compared to when τ is high. This method

creates a “vacuum” around the minority class examples and thus helps the machine

learning classifiers learn the decision boundary more efficiently.

7.4. Experimental Results

The set of data attributes considered for CBU is a bit different from the data

considered in the previous study. The motion sensor frequencies for each activity

step, which was previously considered as 51 different attributes, have been merged

to form locations in the apartment that would represent regions of the smart home

such as kitchen, living room, dining room, bedroom, kitchen doors, etc. As

mentioned in Section 7.1, 80% of the original data is used for training and the rest

for testing. However, the degree of imbalance that is originally present in the data

is maintained in both the training and the test data.

With the training data is of size 3184, the number of clusters that is considered to

be formed using K-means clusters is 100. Although the current study does not involve

any empirical study on the effects of number of clusters to be formed on the training

data, it would be considered in the future. As mentioned in the CBU algorithm, the

threshold value on the degree of imbalance for the clusters is calculated empirical,

Figure 8 shows the outcome. The TP Rate for three different classifiers: J48 decision

tree, k-nearest neighbor and SMO, is varied with a decreasing value of the threshold τ.

TP Rate has a clear increasing trend irrespective of the classifier and becomes constant

after a certain point. From the figure, it can be seen that there is no further increase in

TP Rate beyond τ=0.04, that is, 4% of the cluster size is minority class examples.

Therefore, 0.04 is considered as τ.

Figure 8: Change in TP Rate with decreasing τ.

Further experimentation to find out the performance of the classifiers for other

performance measures is done with τ=0.04. The CBU method is compared with the

performance of the classifiers on the original un-sampled dataset and after the

application of SMOTE.

Figure 9: Comparison of (a)TP Rate(top left), (B)TN Rate(top right), (c)AUC(bottom left), and
(d)Gacc(bottom right).

It should be noted that with the SMOTE method for this dataset, the minority class

examples were boosted up to 50% of the entire dataset. Any further increase would

incur more cost to synthesize new training examples in a real-life situation.

Figure 9 shows the comparison of TP Rate, TN Rate, Area Under ROC Curve and

Gacc for all three approaches. Figure 9(a) shows a significantly better performance of

CBU as compared to SMOTE in terms of TP Rate. The most interested thing to keep in

mind is that the significant increase in TP Rate for CBU was achieved with under-

sampling and without incurring extra cost of synthesizing new training examples. AUC

and Gacc values have also increased. However, the decrease in TN Rate is more as

compared to SMOTE, but it is in an acceptable range. k-NN has the lowest TN Rate for

CBU and it is approximately 83% which is quite acceptable.

8. Related Work

8.1. Prompting Systems

Reminder systems have been in existence for quite some time now, the simplest form

being an alarm clock which is used to provide an alarm tone at a time that is

determined by the user. As the technology for building innovative prompting systems is

flourishing, research groups are taking their own unique way of solving the problem.

From a computational perspective the approaches can be broadly classified into five

major types: time-based, location-based, context-aware, AI planning and machine

learning.

The simplest example of a time based prompt (or reminder, to be more appropriate

in this case) is an alarm clock. It produces a general audible or vibration alert to grab

the user's attention when the appointed time arrives. Most of the electronic organizers

have this feature. Lim et al. [29] designed a medication reminder system that

recognizes the service (composed of a digital health frame, medicine chest and

medication prompting application) suitable for a medication situation. Oriani et al .[30]

developed an electronic memory aid that allows a user or caregiver to prerecord

messages (e.g. reminders to complete a task) that can be played back to the user at

predefined times.

Location based prompts are more complex than time-based prompts. They are

usually used in association with time-based or context-aware prompts (as discussed

next) to provide more precise location related reminders to the users. Marmasse et al.

[31] did a pioneering work on delivering proactive location-based reminders and

messages with the help of their system comMotion that uses GPS to determine location.

The Assistive Cognition Project at University of Washington [32] sensed aspects of

individual's location and environment (both outdoors and at home) by relying on a wide

range of sensors such as GPS, active badges, motion detectors and other ubiquitous

computing infrastructure.

Context-aware prompting is the oldest and first of its kind technology. A milestone

was set by Dey et al. with the development of CyberMinder [33], a context-aware

reminder application based on Context Toolkit [34] that focused on using complex

contextual information to determine a prompt situation. Mihailidis et al. [35] proposed

the usage of context-aware computing to assist people with dementia for ADLs that

needs more privacy such as toileting. HYCARE [36] or hybrid context-aware

reminding framework uses a novel scheduling mechanism to handle synchronous time-

based and asynchronous event-based reminding services. By conducting an extensive

user study, the authors classify the reminding services into four categories and

formulate the context-aware reminding rules accordingly.

There has also been a significant amount of work in the application of AI planning

approaches for prompting. The Autominder System developed by Pollack et al. [37]

uses dynamic Bayesian networks as an underlying domain model to coordinate pre-

planned events in an attempt to ensure that scheduled tasks are executed without

interfering with each other or with other activities, such as watching television. Pineau

et. al. [38] uses variant of partially observable Markov decision processes (POMDPs)

to design the high level control system for “Nursebot”, an artificially intelligent robot

designed to assist elderly people with daily activities. Boger et al. [39] proposed a

planning system that uses Markov decision processes (MDPs) to determine when and

how to provide prompts to a user with dementia for guidance through the activity of

hand washing.

There has not been any significant work on applying machine learning methods in

this domain. Rudary et al. [40] integrated temporal constraint reasoning with

reinforcement learning to build an adaptive reminder system. This algorithm can

personalize to a user and adapt to both short and long term changes. Although this

approach is useful when there is no direct or indirect user feedback, it relies on a

complete schedule of user activities. The Independent LifeStyle Assistant project [41]

used machine learning techniques to capture interactions among devices, environment

and humans. Patterned behavior profiles were created to build models of what sensor

firings correspond to what activities in what order and at what time. Alerts were raised

when activities that were probabilistically unlikely, occurred. Also, schedule

information for regular activities was learned using machine learning techniques.

8.2. Imbalanced Class Distribution Problem

Several solutions have been proposed over the years to deal with the imbalanced class

distribution problem. He et al. [10] have done an extensive literature review on the

approaches that have been developed over the past decade to deal with imbalanced

class problem. The methods can be broadly classified into data-level methods and

algorithm-level methods. Data level methods mainly include under-sampling the

majority class [42] to match the size of the other class; over-sampling the minority

class [28] to match the size of the other class; and combination of both under and over

sampling as proposed by Chawla et al. [11]. Algorithm level methods include:

threshold method [43] in which the classifiers yield a score that represents the degree to

which an example is a member of a class; one-class learning [44]; and cost-sensitive

learning [45] in which unequal misclassification cost is considered between classes.

8.3. Class Overlap Problem

Class overlap is a much more difficult problem than imbalanced class distribution.

Therefore, comparatively very less work has been done in this area. One of the reasons

for this is that there is no widely accepted way to identify overlap in dataset. Yaohua et

al. [46] apply different classifiers to ambiguous and non-ambiguous region and report

improved overall performance. However, others [47, 48] proposed that instead of

making a decision on the ambiguous region, these points should be categorized as a

third “I don’t know” class. Prati et al. [49] explore how overlapping classes affect

classifier accuracy in the presence of imbalance in synthetic data.

9. Conclusion

In this chapter, the problem of automated activity intervention in the domain of

ambient intelligence has been addressed. In order to ensure a clear understanding of the

problem definition, the problem has been discussed in detail. The approaches

developed to address this problem are based on the system architecture developed at

the Center for Advanced Studies in Adaptive Systems at Washington State University.

An initial sampling-based approach that was attempted for this domain is reported and

its limitations have been highlighted. A novel method (CBU) to address the issues of

the previous approach is proposed and the experimental results show that CBU

performs significantly better than the previous approach.

References

[1] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, Recognizing independent and joint activities

among multiple residents in smart environments, Journal of ambient intelligence and humanized
computing, vol. 1, pp. 57-63, 2010.

[2] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, Tracking activities in complex settings using

smart environment technologies, International journal of biosciences, psychiatry, and technology
(IJBSPT), vol. 1, p. 25, 2009.

[3] E. M. Tapia, S. S. Intille, and K. Larson, Activity recognition in the home using simple and ubiquitous

sensors, Pervasive Computing, pp. 158-175, 2004.
[4] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, Activity recognition and monitoring using

multiple sensors on different body positions, 2006, pp. 4 pp.-116.

[5] U. C. Bureau. (2011). US Population Projections. Available:
http://www.census.gov/population/www/projections/natdet-D1A.html

[6] J. Bates, J. Boote, and C. Beverley, Psychosocial interventions for people with a milder dementing

illness: a systematic review, Journal of Advanced Nursing, vol. 45, pp. 644-658, 2004.
[7] V. G. Wadley, O. Okonkwo, M. Crowe, and L. A. Ross-Meadows, Mild Cognitive Impairment and

everyday function: Evidence of reduced speed in performing instrumental activities of daily living,

American Journal of Geriatric Psych, vol. 16, p. 416, 2008.
[8] B. Das, C. Chen, A. M. Seelye, and D. J. Cook, An Automated Prompting System for Smart

Environments, presented at the 9th International Conference on Smart Homes and Health Telematics,

2011.
[9] B. Das, C. Chen, N. Dasgupta, D. J. Cook, and A. M. Seelye, Automated prompting in a smart home

environment, presented at the 2010 IEEE International Conference on Data Mining Workshops, 2010.

[10] H. He and E. A. Garcia, Learning from imbalanced data, IEEE Transactions on Knowledge and Data
Engineering, pp. 1263-1284, 2008.

[11] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, SMOTE: synthetic minority over-

sampling technique, Journal of Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.

[12] B. Das and D. J. Cook, Data Mining Challenges in Automated Prompting Systems, presented at the

Proceedings of 2011 Internatuional Conference on Intelligent User Interfaces Workshop on Interaction

with Smart Objects, 2011.
[13] S. Szewcyzk, K. Dwan, B. Minor, B. Swedlove, and D. Cook, Annotating smart environment sensor

data for activity learning, Technology and Health Care, vol. 17, pp. 161-169, 2009.

[14] B. L. Thomas and A. S. Crandall, A Demonstration of PyViz, a Flexible Smart Home Visualization
Tool, in IEEE International Conference on Pervasive Computing and Communications, Seattle, WA,

2011.

[15] F. Provost, T. Fawcett, and R. Kohavi, The case against accuracy estimation for comparing induction
algorithms, 1998.

[16] D. J. Hand, Construction and assessment of classification rules vol. 15: Wiley, 1997.
[17] J. R. Quinlan, Induction of decision trees, Machine learning, vol. 1, pp. 81-106, 1986.

[18] T. M. Mitchell, Machine learning. WCB, Mac Graw Hill, p. 368, 1997.

[19] B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classifiers, 1992,
pp. 144-152.

[20] J. Platt, Sequential minimal optimization: A fast algorithm for training support vector machines,

Advances in Kernel Methods-Support Vector Learning, vol. 208, pp. 98–112, 1999.
[21] G. M. Weiss and F. Provost, The effect of class distribution on classifier learning: an empirical study,

Rutgers Univ, 2001.

[22] M. Denil, The Effects of Overlap and Imbalance on SVM Classification, Master's, Dalhousie
University, 2010.

[23] I. Jolliffe, Principal component analysis, 2002.

[24] M. Denil and T. Trappenberg, Overlap versus Imbalance, Advances in Artificial Intelligence, pp. 220-
231, 2010.

[25] I. Tomek, Two modifications of CNN, IEEE Trans. Syst. Man Cybern., vol. 6, pp. 769-772, 1976.

[26] P. Hart, The condensed nearest neighbor rule (corresp.), Information Theory, IEEE Transactions on,
vol. 14, pp. 515-516, 1968.

http://www.census.gov/population/www/projections/natdet-D1A.html

[27] G. E. Batista, R. C. Prati, and M. C. Monard, A study of the behavior of several methods for balancing
machine learning training data, ACM SIGKDD Explorations Newsletter, vol. 6, pp. 20-29, 2004.

[28] M. Kubat and S. Matwin, Addressing the curse of imbalanced training sets: one-sided selection, 1997,

pp. 179-186.
[29] M. Lim, J. Choi, D. Kim, and S. Park, A smart medication prompting system and context reasoning in

home environments, 2008, pp. 115-118.

[30] M. Oriani, E. Moniz-Cook, G. Binetti, G. Zanieri, G. Frisoni, C. Geroldi, L. De Vreese, and O. Zanetti,
An electronic memory aid to support prospective memory in patients in the early stages of Alzheimer's

disease: a pilot study, Aging & Mental health, vol. 7, pp. 22-27, 2003.

[31] N. Marmasse and C. Schmandt, Location-aware information delivery with commotion, 2000, pp. 361-
370.

[32] H. Kautz, O. Etzioni, D. Fox, D. Weld, and L. Shastri, Foundations of assisted cognition systems,

University of Washington, Computer Science Department, Technical Report, Tech. Rep, 2003.
[33] A. Dey and G. Abowd, Cybreminder: A context-aware system for supporting reminders, 2000, pp. 201-

207.
[34] A. K. Dey, G. D. Abowd, and D. Salber, A conceptual framework and a toolkit for supporting the rapid

prototyping of context-aware applications, Human–Computer Interaction, vol. 16, pp. 97-166, 2001.

[35] A. Mihailidis and G. Fernie, Context-aware assistive devices for older adults with dementia,
Gerontechnology, vol. 2, pp. 173-189, 2002.

[36] K. Du, D. Zhang, X. Zhou, M. Mokhtari, M. Hariz, and W. Qin, HYCARE: A hybrid context-aware

reminding framework for elders with mild dementia, Smart Homes and Health Telematics, pp. 9-17,
2008.

[37] M. E. Pollack, L. Brown, D. Colbry, C. E. McCarthy, C. Orosz, B. Peintner, S. Ramakrishnan, and I.

Tsamardinos, Autominder: An intelligent cognitive orthotic system for people with memory
impairment, Robotics and Autonomous Systems, vol. 44, pp. 273-282, 2003.

[38] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun, Towards robotic assistants in nursing

homes: Challenges and results, Robotics and Autonomous Systems, vol. 42, pp. 271-281, 2003.
[39] J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and A. Mihailidis, A decision-theoretic approach

to task assistance for persons with dementia, 2005, p. 1293.

[40] M. Rudary, S. Singh, and M. E. Pollack, Adaptive cognitive orthotics: combining reinforcement
learning and constraint-based temporal reasoning, 2004, p. 91.

[41] K. Z. Haigh, L. M. Kiff, and G. Ho, The independent lifestyle assistant: Lessons learned, Assistive

Technology, vol. 18, pp. 87-106, 2006.
[42] S. Kotsiantis and P. Pintelas, Mixture of expert agents for handling imbalanced data sets, Annals of

Mathematics, Computing & TeleInformatics, vol. 1, pp. 46-55, 2003.

[43] G. Weiss, Mining with rarity: A unified framework, SIGKDD explorations, vol. 6, pp. 7-14, 2004.
[44] B. Raskutti and A. Kowalczyk, Extreme re-balancing for SVMs: a case study, ACM SIGKDD

Explorations Newsletter, vol. 6, pp. 60-69, 2004.

[45] C. Elkan, The foundations of cost-sensitive learning, 2001, pp. 973-978.
46] T. Yaohua and G. Jinghuai, Improved classification for problem involving overlapping patterns, IEICE

TRANSACTIONS on Information and Systems, vol. 90, pp. 1787–1795, 2007.

[47] T. P. Trappenberg and A. D. Back, A classification scheme for applications with ambiguous data, 2000,
p. 6296.

[48] S. Hashemi and T. Trappenberg, Using SVM for Classification in Datasets with Ambiguous data, SCI

2002, 2002.
[49] R. C. Prati, G. E. Batista, and M. C. Monard, Class imbalances versus class overlapping: an analysis of

a learning system behavior, MICAI 2004: Advances in Artificial Intelligence, pp. 312-321, 2004.

