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O r i g i n a l

Automated activity-aware prompting
for activity initiation

There will be dramatic growth in the aging popu-
lation over the next 40 years1 as well as shortages 
in healthcare resources and personnel2. Given 
the prohibitive costs of formal healthcare and in-
stitutionalization, along with older adults’ desire 
to ‘age in place’3, there is a mounting need for 
the development of assistive technologies to ex-
tend the amount of time individuals can live inde-
pendently in their homes. In recent years, rapid 
advancements have been made in the develop-
ment of assistive smart environment technologies 
geared toward increasing older adults’ functional 
independence and improving health outcomes 
and well-being. These technologies include so-
cially and physically assistive robots4.5, unobtru-
sive in-home monitoring6, complex activity rec-
ognition7, home telecare8, and reminder systems9. 

As the general population ages, the number of 
older adults with mild cognitive impairment 
(MCI) is growing10. MCI has been defined as 
an intermediate state between normal aging 
and dementia11 and is characterized by impair-
ments greater than expected for age in memory 
and other cognitive abilities with relative spar-
ing of functional abilities. Despite intact abili-
ties to carry out basic functional tasks, people 
with MCI often experience difficulty carrying 
out instrumental activities of daily living (IADLs), 
which are cognitively complex functional tasks 
like using the telephone, preparing meals, taking 
medications, and managing money12. Activities 
dependent on memory, executive functioning, 
and working memory such as medicine use and 

financial management tend to be most difficult 
for individuals with MCI13,14; however, in order 
to function independently at home, individuals 
need to be able to complete these IADLs15.

When individuals with cognitive impairment fail 
to initiate or complete everyday IADLs, caregiv-
ers are often responsible for monitoring IADLs 
and providing reminders or prompts as need-
ed. Broadly defined, ‘prompts’ are any form of 
verbal or non-verbal intervention delivered to 
an individual on the basis of time, context, or 
acquired intelligence that helps in successful 
completion of an activity9. These are time con-
suming and burdensome tasks that are often as-
sociated with negative effects for the caregiver’s 
own health16. Smart environment technologies 
that help people with MCI carry out their IADLs 
by detecting when assistance is needed and 
automatically delivering reminders or prompts 
have the potential to reduce caregiver burden 
and allow aging adults to retain their functional 
independence longer. 

A smart environment is any physical environ-
ment (for instance, home, workplace, shopping 
mall, hospital) that senses the state of the resident 
and the physical surroundings and acts in order 
to ensure the well-being of the resident and the 
environment17. Research in smart environments 
has gained popularity in the last decade and 
the potential use of smart home technology for 
health monitoring in an individual’s own home 
is viewed as ‘extraordinary’18. The goal of the 
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CASAS (Center for Advanced Studies in Adaptive 
Systems) smart home project at Washington State 
University is to design a ‘smart home in a box’ 
that is simple to install and performs key functions 
such as activity recognition, monitoring, and 
prompting that customize behavior to the resident 
with little or no effort on the part of the resident.

In this paper, we describe a new method to 
perform smart home-based automated activity 
prompting that customizes its behavior to the 
resident with no input on their part. Specifically, 
our technology utilizes data collected from an 
individual’s home to learn rules for prompting 
the individual to initiate important daily activities 
such as taking medicine, exercising, calling their 
children, or any other activity for which data is 
available. Reminder systems have long been in 
existence and range from simple alarm clocks to 
complex systems that are based on rules, plan-
ning or machine learning. Rule-based reminder 
systems allow a user to specify rules based on 
time, context and preferences19,20. More adap-
tive reminder systems integrate reinforcement 
learning21, which requires a pre-specified com-
plete schedule of activities but can make ad-
justments without direct user feedback. Other 
approaches use dynamic Bayesian networks22, 
Markov decision processes23, and Markov-based 
planning24 to coordinate and give time prompts 
for these pre-scheduled activities. Active learn-
ing has been employed as well25 to interactively 
manage calendar synchronization.

While reminder systems have been widely ex-
plored, few take into account an individual’s 
behavioral patterns to provide context-aware 
prompts, despite the fact that studies indicate 
activity-aware prompts offer significant advan-
tages over traditional time-based prompts26. Our 
unique contribution to the area of prompting sys-
tems is to design an approach that is completely 

automated, based on activity recognition. We 
assume that sensor data is collected in a home 
while an individual performs his or her daily 
routine. We also assume there are instances of 
the activities requiring prompting (when the in-
dividual correctly performed the activity or were 
prompted by a caregiver to initiate the activity). 
Our algorithm, called AP for Activity Prompting, 
learns rules that define when the activities nor-
mally occur and utilizes these rules to automate 
prompting. We evaluate our algorithm based on 
real data collected in CASAS smart environments.

Methods
Our AP activity prompting system is designed 
as part of a larger CASAS smart home project. 
We define a smart environment as an intelligent 
agent that utilizes information collected about 
the resident and the physical surroundings to im-
prove the experience of the individual in the en-
vironment17. We design the CASAS smart home 
to be easily installed and usable without custom-
ization. The CASAS ‘smart home in a box’ kit fits 
within a single small box (Figure 1). The box con-
tains wireless infrared motion sensors and mag-
netic door sensors that are placed throughout 
the home. The sensors generate event messages 
when motion or door usage is detected. Mes-
sages are collected via the CASAS mesh network, 
processed by the CASAS publish/subscribe mid-
dleware, and stored in an SQL (Structured Query 
Language) database on a small, low-power com-
puter. To date, we have installed over 30 smart 
home kits. Installation takes approximately two 
hours and removal is completed in 30 minutes.

In order to learn activity prompt timings directly 
from sensor data, the AP activity prompting al-
gorithm operates together with another software 
agent, called AR (Activity Recognition). Sensor 
events occurring in the environment are passed 
to AR, which assigns an activity label to the event. 

Figure 1. CASAS ‘smart home in a box’ kit (left) and smart home installation site (right)



2013 Vol. 11, No 43

A c t i v i t y - a w a r e  p r o m p t i n g

These activity labels are passed to AP, which pro-
vides the context necessary to decide if a prompt 
is necessary. Both systems are trained on labeled 
sensor data. AR learns classifiers for predicting 
the activity label of a sensor event. AP learns pat-
terns for predicting when an activity will occur 
relative to other activities and time landmarks. 
Here we describe the AR and AP algorithms.

Activity Recognition (AR)
Any smart environment that focuses on the needs 
of its residents requires information about the ac-
tivities that are being performed by the resident. 
At the core of these systems, then, is activity 
recognition, which is a challenging and well-re-
searched problem27,28. Activity recognition plays 
a critical role with prompting. First, some activi-
ties requiring prompting are correlated with oth-
er activities (for instance, washing dishes occurs 
after eating, medicine should be taken during 
dinner). Secondly, an intelligent prompter needs 
to recognize when the prompted activity has 
been performed and suppress further prompting 
in these situations.

The goal of activity recognition is to map a se-
quence of sensor data to a corresponding activity 
label. The CASAS activity recognition software, 
called AR, provides real-time activity labeling as 
sensor events arrive in a stream. To do this, we 
formulate the learning problem as that of map-
ping the sequence of the k most recent sensor 
events to a label that indicates the activity cor-
responding to the last (most recent) event in the 
sequence. The sensor events preceding the last 
event define the context for this last event.

Data collected in a smart home consists of events 
generated by the sensors. These are stored as a 
4-tuple: <Date, Time, SensorId, Message>. For 
example, consider the following sequence of 
sensor events.

2011-06-15 03:38:23.271939 BedMotionSensor ON
2011-06-15 03:38:28.212060 BedMotionSensor ON
2011-06-15 03:38:29.213955 BedMotionSensor ON

These events could be mapped to a ‘Sleep activ-
ity’ label. To provide input to the classifiers, we 
define features describing data point i that cor-
respond to a sensor event sequence of length k. 
The vector xi includes values for 25 features (Ta-
ble 1). Each label yi corresponds to the activity 
label associated with the last sensor event in the 
window. A collection of xi and the correspond-
ing yi are fed into a classifier to learn the activity 
models in a discriminative manner, i.e., a classi-
fier is learned that map a sensor event sequence 
to a corresponding activity label. Although a 
fixed window size k could be identified that 

works well for a given data set, AR dynamically 
adjusts the window size based on the most likely 
activities that are being observed and the activity 
duration that is typical for those activities.

Our AR algorithm uses a support vector machine 
(SVM) method for real-time activity recognition29. 
A support vector machine identifies a hyperplane 
(or set of hyperplanes) which separates points 
into different classes with the largest possible 
distances between the hyperplanes and the data 
points. Researchers have reported results from 
alternative machine learning models30-34, includ-
ing Bayes classifiers, hidden Markov models, de-
cision trees, and conditional random fields. In an 
earlier experiment35 we tested multiple models 
for their ability to recognize activities in real time 
from streaming data. We found that SVMs con-
sistently achieved the strongest performance in 
those cases and thus use SVMs as the basis for 
the activity recognition approach described in 
this paper. In addition, SVMs offer advantages in 
terms of determining the degree of fit between 
a data point and a class, which can be useful 
when identifying anomalous points. However, 
SVMs are costly in terms of training time and 
thus methods are needed to reduce these costs.

We use the LibSVM implementation36 with the 
one-vs-one paradigm and a radial basis func-
tion kernel with default parameter settings. The 
one-vs-one paradigm learns a set of classifiers 
that distinguish every pair of classes. The classi-
fier with the highest output function assigns the 
identified class label to the data point. Experi-
ments conducted by Hsu and Lin37 reveal that the 
one-vs-one paradigm is one of the most practi-
cal multi-class SVM approaches. Though we test 
our methodology in this paper using an SVM, our 
methodology can make use of any classifier.

Representing prompt rules
The goal of our automated prompting system is 
to automatically learn rules that describe when 
an activity is typically initiated. Once the rules 
are learned, they can be used to issue prompts 
at the appropriate time or context. Activities that 
are part of an individual’s regular routine are usu-
ally initiated based on wall-clock time or based 

Table 1. The feature vector describing a data point 

Feature # Value 

1..16 #Times each sensor generated an event 
in the sequence (16 unique sensors) 

17..20 Time of day at the beginning of the 
sequence (morning, afternoon, evening, 
night) 

21..24 Time of day at the end of the sequence 
25 Time duration of the entire sequence 
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on activity context. As an example of the first pat-
tern, one of our smart home residents requested 
reminders to ‘pick up her grandchildren from 
school at 3pm every Tuesday afternoon’. Howev-
er, she also needed a reminder to ‘take her medi-
cine while eating breakfast’, which is an example 
of the second type of prompting pattern.

AP learns patterns for each prompting activity, 
PA, as a function of another reference activity, 
RA, with which it is highly time-correlated. AP 
models the relative time offset between initiation 
of RA and PA as a Gaussian distribution with a 
corresponding mean and standard deviation. 
The specific format for an activity pattern is thus:

<activity> [<relative_activity> <mean (s)> <stand-
ard_deviation (s)>]+

where the “+” means one or more relative activities.

Consistent with the earlier discussion, the pos-
sible relative activities for PA include all other 
activities the resident performs, combined with 
periodic clock-based activities. The periodic 
clock-based activities include the start of each 
year, month, day, week, and hour, as well as the 
start of each specific month of the year (Janu-
ary, February, .., December) and each specific 
day of the week (Sunday, .., Saturday). This way, 
activity timings can be learned both for activities 
that occur at regular times and activities whose 
occurrence is relative to another activity. Each 
activity pattern is represented by the name of the 
prompted activity PA, the name of the relative 
activity RA, the mean time delay in seconds be-
tween RA and PA, and the time standard devia-
tion in seconds. For example, if the activity ‘Pick 
up grandchildren’ takes place every Tuesday 
around 2:40pm (+/- 5 minutes), the associated 
prompt pattern would be represented as:

   Pick_up_grandchildren Activity_Tuesday 52800 300

If the individual picked up her grandchildren 
every Tuesday and Thursday around 2:40pm, 
then the pattern would be:

Pick_up_grandchildren  Activity_Tuesday  52800 
300  Activity_Thursday  52800  300

On the other hand, if the individual needs a re-
minder to take medicine about ten minutes (+/- 
5 minutes) after breakfast begins each morning, 
then the corresponding pattern would be:

   Take_Medicine   Eat_Breakfast   600   300

Learning prompt rules
For each prompting activity PA, AP learns a 
prompt rule using a two-step process: consider 
patterns based on a single relative activity, and 
then consider patterns based on multiple rela-
tive activities. All of these possibilities are evalu-
ated (as described below) and the highest-ranked 
pattern is chosen for the prompting rule. First, 
we consider the method for evaluating patterns 
based on a single relative activity. AP must select 
a relative activity other than PA from among the 
activities the resident performs, along with the 
periodic clock-based activities described earlier. 
An ideal relative activity RA is one that always 
occurs before each instance of the prompting ac-
tivity PA and always at the same (ideally small) 
time before PA. Therefore, the score for a rela-
tive activity RA should increase proportional to 
the number of times it co-occurs with PA, should 
decrease proportional to the variance in the time 
delay between each RA and PA, and should de-
crease proportional to the absolute time delay 
between each RA and PA. Therefore, each po-
tential relative activity RA is evaluated according 
to three properties: (i) the likelihood that activity 
PA occurs after each activity RA, (ii) the confi-
dence in the distribution of the occurrence times 
of PA relative to RA, and (iii) the mean delay be-
tween RA and PA. 

Combining all these factors, we arrive at the fol-
lowing promptability measure P:

Property 1 is essentially the probability that RA 
occurs before each instance of PA. We estimate 
this probability from the dataset. Given m in-
stances of relative activity RA in the sensor data, 
and n instances of activity PA occurring between 
two consecutive RAs, we estimate the occur-
rence likelihood as n/m. This forms the first fac-
tor of our overall promptability score P [1] for RA 
as the relative activity for PA. 

Property 2 measures the variance in the delay be-
tween the two activities. Again, we want minimal 
variance, so this factor will be in the denominator 
of [1]. There are two contributions to the variance 
in the delays. The first contribution is the actual 
variance in the distribution of the delays between 
each co-occurrence of RA and PA. Over all such 
occurrences of PA preceded by RA, AP models 
the time delay (in seconds) between the two 
activities as a Gaussian and computes the cor-
responding mean μ and standard deviation σ for 
these delays. We use the standard error  as an es-
timate of the confidence (smaller the better) that 
PA follows μ seconds after RA. This comprises 
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the second factor in P below, which decreases 
P based on increased distribution error. The sec-
ond contribution to the delay error involves the 
(m-n) occurrences of RA that are not followed by 
an occurrence of PA. We estimate this contribu-
tion to the distribution error as the standard error 
based on a variance of one and a sample size of 
(m-n). This comprises the third factor in P below, 
which decreases P based on increased distribu-
tion error due to the absence of a PA after RA. 

Property 3 prefers a smaller mean delay time μ. 
Therefore, we include the fourth factor  in P below, 
which decreases P as the mean delay increases. 

The resulting promptability measure (P) esti-
mates the correlation between the two activities 
and thus represents how well RA plays the role 
of the relative activity for PA. If m=0 or n=0, we 
set P=0. If σ=0, we set σ=1. If μ=0, we set μ=1. 
If (m-n)=0, we set (m-n)=1. The relative activity 
with the highest P value, along with its associ-
ated mean and standard deviation, are output 
as the activity’s pattern. If two relative activities 
have the same P value, we prefer the one with 
the smaller mean.

The second step in the process is to consider 
rules where the prompt activity PA occurs rela-
tive to several other relative activities, not just 
one. While prompt patterns can be learned as a 
function of multiple relative activities, consider-
ing all subsets of activities as potential patterns 
is not computationally tractable. However, AP 
does consider such patterns involving subsets 
of the months of the year (January, February, …, 
December), the days of the week (Sunday, Mon-

day, …, Saturday), and the hours of the day, since 
many activities are scheduled relative to specific 
sets of months, days or hours (for instance, leav-
ing for work at 7am Monday through Friday). To 
accomplish this, we consider three additional 
relative activities: month-of-year, day-of-week 
and hour-of-day, where their promptability P 
values are computed as the sum of the above-
average P values of each individual month, day 
or hour within the set. If one of these multiple 
relative activity patterns wins out over all the 
others, then the output pattern consists of all the 
individual month, day or hour relative activities 
whose frequency is in the upper half of the range 
of normalized frequencies. So, using our exam-
ple of leaving for work at 7am Monday through 
Friday, we would consider the day-of-week rela-
tive activity by summing the above-average P 
values for each individual day of the week. AP 
would detect that the frequencies for Sunday 
and Saturday are low, and these days are thus 
not included. Therefore, the final pattern would 
look as follows (assuming 7am +/- 15 minutes):

Leave_for_Work Activity_Monday   
25200   900

Activity_Tuesday   
25200 900

Activ-
ity_Wednesday   
25200   900

Activity_Thurs-
day   25200   
900

Activity_Friday   
25200   900

Monitoring and prompting
In monitoring mode, AP determines if a prompt 
should be issued for one of the activities based 

Figure 2. CASAS prompts can be sent to a touch-screen device (left) or to a mobile device (right). The text and 
audio content can be automatically generated, and the user may choose to respond to the prompt or ignore it
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on the current time, the activity context, and 
the prompting rules that were learned. When 
a prompt is needed then AP sends a message 
to the CASAS middleware with a prompt com-
mand and (optionally) the prompt message. The 
CASAS middleware then handles issuing the 
prompt to the appropriate device, such as a 
touch-screen computer located in the home or 
a mobile device (Figure 2).

In order to determine if a prompt should be is-
sued, AP needs two pieces of information:  the 
current date and time and occurrences of activi-
ties as detected by AR. The CASAS middleware 
issues a chime each minute which updates AP 
on the current date and time and can use this 
to monitor appropriate time-based relative ac-
tivities. The CASAS middleware also forwards 
AR-generated activity labels that AP uses to 
determine if a prompted activity PA has been 
performed or if its relative activity RA has been 
initiated.

If the prompter detects the occurrence of a rela-
tive activity RA that is referenced in the pattern 
of one of the prompt activities PA, the prompter 
then watches for the beginning of PA. If PA does 
not occur within (μ–σ) seconds, where μ and σ 
are the mean and standard deviation time delay 
based on the pattern, then the prompter issues a 
first prompt for the user to execute this activity 
PA. If another σ seconds go by without activity 
PA being observed by AR, then the prompter is-
sues a second prompt for PA. Finally, if yet an-

other σ seconds go by without observing activity 
PA, the prompter issues a third and final prompt 
for PA, and then returns to watching for the next 
occurrence of the relative activity.

The prompts are sent to the CASAS middleware 
and consist of the activity name and the prompt 
repetition level (1, 2 or 3). The system assumes 
that these prompt messages will be appropriately 
handled by another process, which will most like-
ly play the audio file named <activity>_<level>.
mp3, and then provide a pop-up alert to the 
user with pre-specified response buttons (for in-
stance, ‘OK’, ‘Later’, ‘No’). The text, image and 
audio files can be provided in advance by the 
user or the user can decide to use messages that 
are automatically generated by AP. Finally, AP 
will cancel prompts if AR detects the activity has 
been initiated or the user selects an appropriate 
response. 

Results
We validate the ideas described in this paper on 
sensor event datasets collected in CASAS smart 
homes. First, we want to evaluate the ability of 
AP to learn prompting rules that reflect accurate 
times when the activity would be expected to 
occur. Second, we want to evaluate the ease 
with which AP operates in the CASAS environ-
ment. To address the first goal we test the AP al-
gorithm on sensor event datasets collected from 
three smart apartment testbeds (Figure 3). Each 
of the smart apartments housed one older adult 
(age 65+) resident with no evidence of cognitive 

impairment. During the six months that 
we collected data in each of the apart-
ments, the residents lived in the apart-
ments and performed their normal daily 
routines.

Human annotators tagged sensor events 
with the corresponding activities to pro-
vide ground truth for our evaluation, after 
looking at a visualization of the data and 
interviewing residents to gain insights 
on their daily activities. The 12 activi-
ties that were annotated (Table 2), and 
an activity occurrence is defined as an 
uninterrupted sequence of sensor events 
annotated with that activity. The AR ac-
tivity recognition algorithm was tested 
using three-fold cross validation for each 
of the datasets B1, B2 and B3, and re-
porting accuracy as a ratio between the 
number of data points correctly classi-
fied to the total number of data points.

To evaluate AP’s prompting perfor-
mance, for each dataset we used the 
first 2/3 of the data to learn the prompt 

Figure 3. The sensor layouts (black circles) and doors (black rec-
tangles) for the three apartments: B1 (top left), B2 (top right), 
and B3 (bottom)
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rules and tested the prompt timings on the re-
maining data. For each dataset we report perfor-
mance in terms of True Positives (the individual 
performed the prompted activity at the time pre-
dicted by the prompting rule), False Positives (the 
individual did not perform the prompted activity 
at the predicted time), and False Negatives (the 
individual performed the prompted activity at a 
time not predicted by the prompting rule). We 
do not report True Negatives, because they are 
difficult to define in this context.

In order to generate a baseline for comparison, 
we implemented two alternative mechanisms 
for generating prompts. The first is a time-based 
prompt (TB), which is a prompting strategy that 
has been considered by other researchers27. Us-
ing the time-based strategy, the start time for 
each prompting activity PA is estimated based on 
a Gaussian distribution over the number of sec-
onds the activity is initiated past midnight. The 
second, activity-based approach (AB) utilizes 
only activity sequence information, similar to an 
approach that was introduced by researchers to 
predict UNIX commands38. In this approach, a 
relative activity RA is identified for each prompt-
ing activity PA, where RA is the activity that oc-
curs most often just prior to PA. A Gaussian distri-
bution is then used to model the relative time be-
tween the initiations of the two activities. In both 
cases, initial prompts would be delivered at the 
distribution mean minus one standard deviation, 
then at the distribution mean, and then at the dis-
tribution mean plus one standard deviation.

In all three datasets, the AP approach results in 
more true positives and fewer false negatives 

than either the TB or AB approaches (Table 3). 
The TB approach had fewer false positives than 
AP or AB, mainly because TB can only predict 
activities once per day. So, while TB will perform 
poorly for activities that occur more than once 
per day, TB will also avoid more false positives 
when activities occur only once per day or less 
often. AP has fewer false positives than AB in 
datasets B1 and B2, but more false positives in 
dataset B3. Overall, most actual occurrences of 
an activity are correctly predicted by AP, but the 
patterns learned by AP tend to over-generalize 
(i.e., more false positives). The activity occur-
rences that AP did not predict would occur seem 
to be mostly due to the high variance in the start 
time of most activities.

In our final experiment we integrate AP into the 
CASAS middleware and test the prompt learn-
ing and generation ability in a physical smart 
environment setting. In this case, we introduced 
two activities that are performed on a regular 
basis: ‘LeaveLab’ and ‘PrepareForMeeting’. In 
this setting AP received sensor messages from 
the CASAS middleware as well as chimes for 
each minute that passed. When the time arrived 
to prompt for one of the selected activities, AP 
sent a prompt message with the corresponding 
activity name to the CASAS middleware.  CA-
SAS, in turn, sent the corresponding prompt text 
and audio files to the touch screen device (Fig-
ure 2). The users in the lab were able to select 
a response on the touch screen if desired.  AP 
correctly repeated the prompts until the activ-
ity was detected through AR, all of the prompts 
had been issued, or it heard a message to cancel 
the prompt through the middleware because of 

Table 2. Number of activity occurrences, total sensor events for each activity, and accuracy classification 
using the support-vector-machine based algorithm implementation for datasets B1, B2, and B3, taken over a 
6-8 month time period 

Activity 

Data sets with collection period 

B1: 7/17/09 – 2/3/10 B2: 6/15/09 – 2/4/10 B3: 8/11/09 – 2/4/10 

Occur-
rences 

Events Occur-
rences 

Events Occur-
rences 

Events 

Bathing 84 7,198 74 16,295 48 5,151 
Bed to toilet 136 4,170 353 14,641 119 4,346 
Cook 874 101,820 593 55,240 580 44,842 
Eat 556 28,771 415 24,417 418 39,453 
Enter home 584 3,711 462 2,440 179 996 
Housekeeping 65 3,280 255 12,971 0 0 
Leave home 577 4,305 460 2,476 211 1,246 
Personal hygiene 1,042 39,190 938 42,704 605 37,237 
Relax 642 39,934 199 16,996 107 8,207 
Sleep 336 33,213 406 10,477 299 20,693 
Take medicine 587 15,388 170 22,524 64 1,248 
Work 0 0 0 0 393 108,763 
Classification accuracy 0.85 0.83 0.88 
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a user response. This experiment demonstrates 
that the AP system can successfully work with 
the smart home components to interact with 
residents in delivering a customized prompt. 
Although the prompt was delivered to a touch 

screen in this experiment, it can be delivered to 
other media as well, including mobile devices. 
We will evaluate the effectiveness of the technol-
ogy for prompting in a mobile setting as part of 
our future work.

Table 3. Results of three approaches for the three types of activity patterns (TP, FP, FN) on three dataset 
(B1-3); TP=True-positives; FP=False-positives; FN=False-negatives 

 Results of approaches 

Activity Count 
Algorithm AP Time-based Activity-based 

TP FP FN TP FP FN TP FP FN 

Dataset B1 

Bathing 16 16 127 0 16 63 0 16 384 0 
Bed to toilet 31 31 149 0 31 48 0 31 77 0 
Cook 301 249 1 52 79 0 222 139 14 162 
Eat 231 194 6 37 79 0 152 215 86 16 
Enter home 151 136 52 15 70 9 81 140 2 11 
Housekeeping 41 1 0 40 26 53 15 30 123 11 
Leave home 142 121 45 21 70 9 72 131 270 11 
Personal hygiene 401 159 1 242 79 0 322 107 17 294 
Relax 125 93 113 32 56 23 69 90 211 35 
Sleep 109 70 9 39 77 2 32 31 0 78 
Take medicine 154 124 23 30 76 3 78 140 161 14 
Work 0 0 0 0 0 0 0 0 0 0 
TOTAL dataset B1 1702 1194 526 508 659 210 1043 1070 1345 632 

Dataset B2 

Bathing 28 28 170 0 24 44 4 27 319 1 
Bed to toilet 110 110 45 0 64 4 46 106 48 4 
Cook 234 136 6 98 67 1 167 170 176 64 
Eat 166 160 9 6 68 0 98 160 74 6 
Enter home 167 142 9 25 66 2 101 164 1 3 
Housekeeping 43 42 218 1 24 44 19 42 123 1 
Leave home 166 147 11 19 67 1 99 141 206 25 
Personal hygiene 347 225 2 122 68 0 279 141 26 206 
Relax 43 34 143 9 28 40 15 35 311 8 
Sleep 155 147 7 8 67 1 88 106 4 49 
Take medicine 70 67 20 3 67 1 3 67 166 3 
Work 0 0 0 0 0 0 0 0 0 0 
TOTAL dataset B2 1529 1238 640 291 610 138 919 1159 1454 370 

Dataset B3 

Bathing 15 13 171 2 13 57 2 15 207 0 
Bed to toilet 13 13 408 0 11 59 2 12 53 1 
Cook 189 149 17 40 69 1 120 133 9 56 
Eat 143 105 31 38 64 6 79 133 56 10 
Enter home 46 37 33 9 32 38 14 45 2 1 
Housekeeping 0 0 0 0 0 0 0 0 0 0 
Leave home 47 36 34 11 32 38 15 42 179 5 
Personal hygiene 222 141 4 81 69 1 153 55 11 167 
Relax 68 55 107 13 40 30 28 20 26 48 
Sleep 66 52 54 14 42 28 24 12 1 54 
Take medicine 29 28 145 1 20 50 9 25 196 4 
Work 132 114 63 18 60 10 72 105 84 27 
TOTAL dataset B3 970 743 1067 227 452 318 518 597 824 373 
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discussion
The results of our experiments indicate that activi-
ties can be predicted when data is available that 
is consistent with the normal desired behavioral 
routine. The need for activity prompting is par-
ticularly great for individuals with memory impair-
ment. However, such individuals are less likely to 
have a a large corpus of complete, normal routine 
data from which activity timings can be learned. 
For practical use, a data-driven activity prediction 
system would need to be implemented before 
memory difficulties arise in order to obtain the 
necessary data. Alternatively, a caregiver could 
prompt the individual through a desired routine 
on a daily basis until sufficient complete data is 
collected. The amount of data that is required to 
identify activities and learn their timings depends 
on the number of activities being monitored and 
the normal variation in an individual’s routine. 
Anecdotally, we have found that two weeks of 
complete data is sufficient for modeling the set of 
activities analyzed in this paper.

This work represents one of the first attempts 
to perform data-driven automation of activity 
prompting. There are a number of methods that 
can be explored to refine the approach that is 
described here. We note, for example, that the 
number of false positives generated by AP is 
high, which might be regulated by only issuing 
prompts with a high confidence value based on 
activity occurrence frequency.  Furthermore, the 
learned rules are based on two main factors: se-
lection of a relative activity and modeling of time 
offsets between the predicted activity and the 
relative activity. In many situations there could 
be a number of additional factors including time 
offset from secondary relative activities, the state 
of the environment, and external events such as 
weather and holidays. We will explore alterna-
tive learning and forecasting algorithms that can 
identify likely activity occurrence times from this 
larger set of influencing features.

Another factor that influences performance is 
the robustness of activity recognition. In this pa-
per, we evaluated AR and AP in single-resident 
homes. The task of activity recognition becomes 
more challenging in homes with multiple resi-
dents and pets. The performance of an activity 
recognition algorithm will also depend upon the 

number, the complexity, and the similarity of ac-
tivities that need to be distinguished and tracked. 
We will continue to refine and evaluate activity 
recognition in increasingly complex settings. We 
will also consider the usefulness of AR and AP 
using smart phone sensors instead of, or in addi-
tion to, smart home environmental sensors.

Predicting the timing of activities in order to 
deliver automated prompts is a relatively new 
area of investigation. In addition to designing 
techniques to address this problem, work is 
also needed to define appropriate performance 
measures. In this study we evaluated perfor-
mance using historic data and based on whether 
the activity was performed at the predicted time 
or not. In the future we will consider measures 
that offer greater sensitivity such as the actual 
time difference between activity prompt and ac-
tivity performance and the direction of the error 
(overly-anticipatory or overly-delayed prompts). 
We also intend to test AP in homes with older 
adult residents to evaluate the usefulness of the 
prompt timings and delivery mechanisms.

conclusions
In this paper we introduce an algorithm to auto-
mate the creation of rules to prompt individuals 
for activity initiation. Such prompts can be valu-
able for individuals who have difficulty remem-
bering important daily activities or who want to 
introduce new healthy behaviors into their rou-
tine. Unlike previous approaches, AP automati-
cally creates prompt rules from data that identify 
prompt timings based on the wall-clock time the 
activity is typically performed together with its 
temporal relation to other activities. Because 
AP is part of a larger smart home project, it uti-
lizes sensor events and activity recognition soft-
ware to learn the rules, to issue the automated 
prompts, and to monitor whether the prompted 
activities are performed.

We evaluate the performance of AP on smart 
home datasets and find that our automated 
prompt timings outperform prompts that are 
based solely on wall-clock time or on activity 
sequences. We also demonstrate how AP can 
be integrated and used within the larger CASAS 
smart home system to automatically generate 
prompts in a physical smart environment setting.
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